JPS6167273A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6167273A
JPS6167273A JP18811384A JP18811384A JPS6167273A JP S6167273 A JPS6167273 A JP S6167273A JP 18811384 A JP18811384 A JP 18811384A JP 18811384 A JP18811384 A JP 18811384A JP S6167273 A JPS6167273 A JP S6167273A
Authority
JP
Japan
Prior art keywords
film
become
metal
source
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18811384A
Other languages
Japanese (ja)
Inventor
Shinichi Katsu
勝 新一
Masahiro Hagio
萩尾 正博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP18811384A priority Critical patent/JPS6167273A/en
Publication of JPS6167273A publication Critical patent/JPS6167273A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To manufacture an FET having a short gate length, a small gap between a gate and a source and a small gate resistance in good reproducibility by undercutting a metal film to become ohmic, and lifting off a metal to become a Schottky barrier by a resist. CONSTITUTION:An active layer 2 is formed on a GaAs substrate 1, metals to become ohmic such as Au or Ge alloy and Au are deposited thereon to form a film 5, a photoresist is coated, patterned, to form a resist film 4 on a source and a drain. With the film 4 as a mask the film 5 is etched, and a time is regulated to sufficiently undercut the lower portion of the film 4. A metal to become a Schottky barrier in this state such as an aluminum is deposited to form a film 3. Then, the film 4 and the film 3 thereon are removed by lifting off, the film 5 is further patterned to form the profile. The films, 6, 7 become source and drain electrodes, and the film 3 becomes a gate electrode.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体装置特にGaAsFETの製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a semiconductor device, particularly a GaAsFET.

(従来例の構成とその問題点) 従来GaAsFET (砒化ガリウム電界効果トランジ
スタ)は超高周波用など尾用いられるトランジスタであ
るが、高周波特性を良好にするためできるだけダート長
を短かくし、ソース、ダート間の寄生抵抗を小さくして
いる。従来の製造方法の一例を説明すると、第1図(、
)に示すように、たとえばクロムをドープした半絶縁性
GaAs基板1の上に活性層2を形成し、その上に第1
図(b)に示すようにアルミニウムなどの電極材料を蒸
着して膜3をつくシ、さらにフォトレジストを塗布した
のちツクターニングしてダート部にレノスト膜4を作る
。レジスト膜4をマスクとしてアルミニウム膜3をエツ
チングし、しかもこのエツチングはレノスト膜4の下部
のアルミニウム膜3が第1図(C)に示すようにサイド
エツチングにより十分アンダーカットされるように長時
間性なう。この第1図(C)の状態でAu−Ge合金お
よびAuの蒸着を行なって第1図(d)K示すように膜
5を作る。つぎにリフトオフを行なってレジスト膜4お
よびその上のAu−Ge、Au膜5を除去し、さらに残
っているAu−Ge、Au膜5を・Pターニングして外
形を整え第1図(e)の状態にする。膜6および7はソ
ース電極およびドレイン電極、膜3はケ゛−ト電極とな
シ、ケ゛−ト電極3と、ソース電極6、ドレイン電極7
の間の間隙gが上記のサイドエッチングにより形成され
る。第1図(e)の状態の電極部平面図が第1図(f)
である。
(Conventional configuration and its problems) Conventional GaAsFETs (gallium arsenide field effect transistors) are transistors used for ultra-high frequencies, but in order to improve high frequency characteristics, the dart length is shortened as much as possible, and the distance between the source and the dart is This reduces parasitic resistance. An example of a conventional manufacturing method is shown in Figure 1 (
), for example, an active layer 2 is formed on a semi-insulating GaAs substrate 1 doped with chromium, and a first layer is formed on the active layer 2.
As shown in Figure (b), a film 3 is formed by vapor depositing an electrode material such as aluminum, and then a photoresist is applied and then turned to form a renost film 4 on the dirt portion. The aluminum film 3 is etched using the resist film 4 as a mask, and this etching is carried out for a long time so that the aluminum film 3 under the Lenost film 4 is sufficiently undercut by side etching as shown in FIG. 1(C). Now. In the state shown in FIG. 1(C), an Au--Ge alloy and Au are vapor-deposited to form a film 5 as shown in FIG. 1(d)K. Next, lift-off is performed to remove the resist film 4 and the Au-Ge and Au films 5 thereon, and the remaining Au-Ge and Au films 5 are subjected to P turning to adjust the outer shape as shown in Fig. 1(e). state. Films 6 and 7 are source electrodes and drain electrodes, film 3 is a gate electrode, gate electrode 3, source electrode 6, and drain electrode 7.
A gap g between them is formed by the above-mentioned side etching. Figure 1(f) is a plan view of the electrode section in the state shown in Figure 1(e).
It is.

しかし上記のような方法では、FET0高周波特性を最
も支配するダート長Lgが、アルミニウム膜3のサイド
エッチ量で左右されるため、1μm以下のデート長を安
定に再現性よく形成するのは困難である。さらに、アル
ミニウム膜3のサイドエツチングを化学的に行なった場
合、反応の不均一性のため、デート電極の輪郭は理想的
な直線とはならず、微小な凹凸を含んだものとなって、
高周波特性が劣化する問題点を有していた。さらにアル
ミニウム膜3のアンダーカット量はアルミニウム膜3の
膜厚程度になるため、アルミニウム膜3を十分厚くする
とr−ト長の再現性が乏しくなる。
However, with the method described above, it is difficult to stably form a date length of 1 μm or less with good reproducibility because the dart length Lg, which most dominates the FET0 high-frequency characteristics, is influenced by the amount of side etching of the aluminum film 3. be. Furthermore, when the side etching of the aluminum film 3 is carried out chemically, due to the non-uniformity of the reaction, the outline of the date electrode does not become an ideal straight line, but contains minute irregularities.
This had the problem of deteriorating high frequency characteristics. Furthermore, since the amount of undercut of the aluminum film 3 is approximately the same as the thickness of the aluminum film 3, if the aluminum film 3 is made sufficiently thick, the reproducibility of the r-t length will be poor.

したがって、ケ゛−ト抵抗を十分小さくできず、良好な
高周波特性が得られないという問題点も有していた。
Therefore, there is a problem in that the gate resistance cannot be made sufficiently small and good high frequency characteristics cannot be obtained.

(発明の目的) 本発明の目的は、従来の欠点を解消し、ケ°−ト長およ
びダート・ソース間隙は小さくし、かつデート抵抗の十
分小さいFETを再現性よく製造することのできる半導
体装置の製造方法を提供することである。
(Object of the Invention) An object of the present invention is to eliminate the drawbacks of the conventional semiconductor device, to reduce the gate length and dart-source gap, and to manufacture an FET with sufficiently small date resistance with good reproducibility. An object of the present invention is to provide a manufacturing method.

(発明の構成) 本発明の半導体装置の製造方法は、基板上にオーミック
となる金属からなる第1の膜を形成し、この上に、−e
ターニングされたフォトレジストの第2の膜を形成し、
この第2の膜をマスクとして、第1の膜をエツチングし
、かつサイドエツチングにより、アンダーカットし、つ
ぎにショットキー障壁となる金属からなる第3の膜を形
成し、第2の膜を除去するりフトオフ工程により、前記
第3の膜を)J?ターニングするものである。
(Structure of the Invention) In the method for manufacturing a semiconductor device of the present invention, a first film made of an ohmic metal is formed on a substrate, and -e
forming a second film of turned photoresist;
Using this second film as a mask, the first film is etched and side-etched to undercut, then a third film made of metal that will become a Schottky barrier is formed, and the second film is removed. By a slip-off process, the third film is removed by) J? It is a turning thing.

(実施例の説明) 本発明の一実施例を第2図に基づいて説明する。(Explanation of Examples) An embodiment of the present invention will be described based on FIG. 2.

第2図(、)に示すようにGaAs基板1上に活性層2
を形成し、この上に第2図(b)K示すようにオーミッ
クとなるような金属、たとえばAu−Ge合金およびA
uの蒸着を行なって膜5を作る。、さらにフォトレジス
トを塗布したのち・9ターニングして、ソース、ドレイ
ン部にレノスト膜4を作る。
As shown in FIG. 2(,), an active layer 2 is formed on a GaAs substrate 1.
As shown in FIG. 2(b)K, ohmic metal such as Au-Ge alloy and A
A film 5 is formed by vapor deposition of u. Then, after coating a photoresist, nine turns are performed to form a renost film 4 on the source and drain portions.

この膜4をマスクとして、Au−Ge、 Au膜5をエ
ツチングし、しかもこのエツチングは膜4の下部のAu
−Ge、 Au膜5が第2図(c)に示すようにサイド
エツチングにより充分アンダーカットされるよう時間を
調節する。この第2図(e)の状態でショットキー障壁
となる金属、たとえばアルミニウムの蒸着を行なって第
2図(d)に示すように膜3を作る。
Using this film 4 as a mask, the Au-Ge and Au films 5 are etched.
- The time is adjusted so that the Ge, Au film 5 is sufficiently undercut by side etching as shown in FIG. 2(c). In the state shown in FIG. 2(e), a metal, such as aluminum, which will become a Schottky barrier is vapor-deposited to form a film 3 as shown in FIG. 2(d).

つぎにリフトオフを行なってレノスト膜4およびその上
のアルミニウム膜3を除去し;さらにAu−Ge、Au
膜5をパターニングして外形を整え第2図(e)の状態
にする。膜6および膜7はソース電極およびドレイン電
極、膜3はケ9−ト電極となシ、ケ9−ト電極3とソー
ス、ドレイン電極6°、7との間隙gは上記サイドエツ
チングにより正確にあけられる。第2図(e)の状態の
電極部平面図が第2図(f)である。
Next, lift-off is performed to remove the Renost film 4 and the aluminum film 3 thereon;
The film 5 is patterned to adjust its outer shape and become as shown in FIG. 2(e). The films 6 and 7 are source and drain electrodes, and the film 3 is a keto electrode.The gaps g between the gate electrode 3 and the source and drain electrodes 6° and 7 are precisely formed by the side etching described above. It can be opened. FIG. 2(f) is a plan view of the electrode section in the state shown in FIG. 2(e).

以上のように本実施例によれば、アンダーカットをオー
ミックとなる金属膜5に施すため、y −ト長りはレジ
スト膜4のパターンがそのまま転写されるため、r−ト
長の再現性は極めて良好となる。したがってレノストを
電子ビームによシ露光して、0.5μm以下の極めて微
細なパターンを作成し、デート長0.5μm以下のFE
Tでも再現性よく製造することができる。さらに、本発
明では、アルミニウム膜3の厚さは、仕上シダート長に
、影響しないため、十分に厚くしゲート抵抗を小さく、
すぐれた高周波特性が得られる。またダート電極の輪郭
もきれいな直線となシ、一層高周波特性を良くすること
ができる。さらにダート電極とソース電極との間隙は0
.3ないし0.6μm程度となり、ソース寄生抵抗が小
さく、すぐれた高周波特性が得られる。
As described above, according to this embodiment, since the undercut is applied to the ohmic metal film 5, the pattern of the resist film 4 is directly transferred to the y-t length, so the reproducibility of the r-t length is It becomes extremely good. Therefore, Rennost is exposed to an electron beam to create an extremely fine pattern of 0.5 μm or less, and an FE with a date length of 0.5 μm or less is created.
It can be manufactured with good reproducibility even with T. Furthermore, in the present invention, since the thickness of the aluminum film 3 does not affect the finished cedar length, it is made sufficiently thick to reduce the gate resistance.
Excellent high frequency characteristics can be obtained. Furthermore, if the contour of the dart electrode is a clean straight line, the high frequency characteristics can be further improved. Furthermore, the gap between the dirt electrode and the source electrode is 0.
.. The thickness is approximately 3 to 0.6 μm, and the source parasitic resistance is small and excellent high frequency characteristics can be obtained.

(発明の効果) 本発明の半導体装置の製造方法は、オーミ、りとなる金
属膜にアンダーカットを施し、ショットキー障壁となる
金属膜にはレジストによるリフトオフを行なうため、0
5μmJl下のケ゛−ト長が再現性よく製造でき、その
実用的効果は大である。
(Effects of the Invention) The method for manufacturing a semiconductor device of the present invention undercuts the metal film that will serve as an ohm and ridge, and performs lift-off using a resist on the metal film that will serve as a Schottky barrier.
Cathet lengths of less than 5 μmJl can be manufactured with good reproducibility, and the practical effect is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)ないし第1図(、)は従来のGaAsFE
Tの製造工程を説明する断面図、第1図(f)は同電極
平面図、第2図(a)ないし第2図(、)は本発明によ
る半導体装置の製造工程を説明する断面図、第2図(f
)は同電極平面図である。 1・・・基板、2・・・活性層、3,5・・・金属膜、
4・・・レジスト膜、6,7・・・電極。 第1図  第2図
Figure 1(a) to Figure 1(,) are conventional GaAsFE
1(f) is a plan view of the same electrode; FIGS. 2(a) to 2(a) are sectional views explaining the manufacturing process of the semiconductor device according to the present invention; Figure 2 (f
) is a plan view of the same electrode. 1... Substrate, 2... Active layer, 3, 5... Metal film,
4... Resist film, 6, 7... Electrode. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims]  基板上にオーミックとなる金属からなる第1の膜、リ
フトオフ用の第2の膜を順次形成し、該第2の膜をパタ
ーニングし、このパターニングした第2の膜をマスクと
して、前記第1の膜をエッチングし、かつサイドエッチ
ングによりアンダーカットし、つぎにショットキー障壁
となる金属からなる第3の膜を金属蒸着して作り、かつ
前記第2の膜を除去するリフトオフ工程により、前記第
3の膜をパターニングすることを特徴とする半導体装置
の製造方法。
A first film made of an ohmic metal and a second film for lift-off are sequentially formed on the substrate, the second film is patterned, and the patterned second film is used as a mask to form the first film. The film is etched and undercut by side etching, and then a third film made of a metal that becomes a Schottky barrier is formed by metal vapor deposition, and the third film is removed by a lift-off process in which the second film is removed. 1. A method for manufacturing a semiconductor device, comprising patterning a film.
JP18811384A 1984-09-10 1984-09-10 Manufacture of semiconductor device Pending JPS6167273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18811384A JPS6167273A (en) 1984-09-10 1984-09-10 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18811384A JPS6167273A (en) 1984-09-10 1984-09-10 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6167273A true JPS6167273A (en) 1986-04-07

Family

ID=16217927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18811384A Pending JPS6167273A (en) 1984-09-10 1984-09-10 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6167273A (en)

Similar Documents

Publication Publication Date Title
JP3621221B2 (en) Manufacturing method of semiconductor device
JPH07107905B2 (en) Method for manufacturing semiconductor device
JPS6167273A (en) Manufacture of semiconductor device
JPS6222536B2 (en)
JPH07118482B2 (en) Method for manufacturing semiconductor device
JPS6155969A (en) Semiconductor device and manufacture thereof
JPS5838945B2 (en) Method for manufacturing a short-barrier field effect transistor
JPS6057977A (en) Manufacture of shottky gate field effect transistor
JPH01165126A (en) Manufacture of semiconductor device
JP2557432B2 (en) Field effect transistor
JPH0281441A (en) Manufacture of semiconductor device
GB2064868A (en) Schottky barrier gate field-effect transistor
JPS61240684A (en) Schottky-type field effect transistor and manufacture thereof
JPS6161550B2 (en)
JPS61214482A (en) Manufacture of schottky-barrier type field-effect transistor
KR100323694B1 (en) method for fabricating a T-gate
JPH02156544A (en) Manufacture of gaas mesfet
JPS62115782A (en) Manufacture of semiconductor device
JPS6390171A (en) Manufacture of field effect transistor
JPH0629322A (en) Formation of gate electrode of field-effect transistor
JPH03145738A (en) Formation of gate electrode
JPS61220375A (en) Semiconductor device and manufacture thereof
JPH02180032A (en) Manufacture of gaas mesfet
JPH04171831A (en) Manufacture of semiconductor device
JPS6039875A (en) Manufacture of semiconductor device