JPH04171831A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04171831A
JPH04171831A JP30062490A JP30062490A JPH04171831A JP H04171831 A JPH04171831 A JP H04171831A JP 30062490 A JP30062490 A JP 30062490A JP 30062490 A JP30062490 A JP 30062490A JP H04171831 A JPH04171831 A JP H04171831A
Authority
JP
Japan
Prior art keywords
electrode
layer
drain electrode
source electrode
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30062490A
Other languages
Japanese (ja)
Inventor
Toshio Mizuki
敏雄 水木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP30062490A priority Critical patent/JPH04171831A/en
Publication of JPH04171831A publication Critical patent/JPH04171831A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To make the title semiconductor device maintain the specific electrode shapes even after the heat treatment having excellent electrical characteristics by a method wherein both the second source electrode and the second drain electrode contain Mo layers. CONSTITUTION:After the lamination of a GaAs channel layer 21 on a semiinsulating GaAs substrate 20, the first source electrode 23 and the first drain electrode 24 at the wide electrode interval of exceeding 5mum are formed. Next, after coating the whole surface with an electron ray resist 25, the channel layer 21 on a gate electrode part 26 is exposed by successively drawing with the electron rays. Successively, the recess-etching step is performed so that the current value running between the first source electrode 23 and the first drain electrode 24 may be specified. Later, e.g. Al is evaporated as a gate electrode metal 27 and then the Al in the needless region is removed together with the electron ray resist to form a gate electrode 27. Later, the second source electrode 28 and the second drain electrode 29 at the electrode interval of 1-3mum are formed. At this time, both electrodes contain Mo layers while AuGe layer, Ni layer, Mo layer and Au layer are successively laminated. Finally, the whole body is heat-treated at 430 deg.C for one minute so as to bring it into ohmic contact.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、化合物半導体からなるSHF帯の電界効果
トランジスタの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for manufacturing an SHF band field effect transistor made of a compound semiconductor.

〈従来の技術〉 化合物半導体素子、例えばGaAsを用いた電界効果ト
ランジスタ(以下FETと略記する)は、Siを用いた
FETに比較して高周波動作に適するため、その開発が
進められている。
<Prior Art> Compound semiconductor elements, such as field effect transistors (hereinafter abbreviated as FETs) using GaAs, are more suitable for high frequency operation than FETs using Si, and therefore their development is progressing.

従来のFET断面構造を第2図に示す。半絶縁性GaA
3基板1の表面に1ずキャリア濃度1017儒−3オー
ダーのGaAsチャネル層2を積層し、このGaAsチ
ャネル層2の能動領域3の外側の領域をエツチングによ
って除去した後、ソース電極4ドレイン電極5及びゲー
ト電極(ショットキー電極)6を形成する。
The cross-sectional structure of a conventional FET is shown in FIG. Semi-insulating GaA
3. First, a GaAs channel layer 2 with a carrier concentration of the order of 1017 F-3 is laminated on the surface of the substrate 1, and after removing the region outside the active region 3 of this GaAs channel layer 2 by etching, a source electrode 4 and a drain electrode 5 are formed. and a gate electrode (Schottky electrode) 6.

FETの高周波特性指標である遮断周波数fTは、ゲー
ト長をし、キャリアの飽和速度をVとして、 ■ f丁キーーー 2πL と表わせる。上式よりゲート長しが短いほど遮断周波数
fTは高くなり高周波特性が良くなる。
The cutoff frequency fT, which is an index of high frequency characteristics of the FET, can be expressed as: (2) 2πL where the gate length is the gate length and the carrier saturation velocity is V. According to the above equation, the shorter the gate length, the higher the cutoff frequency fT and the better the high frequency characteristics.

0.5μm未満のゲートを描画する場合、光りソグラフ
ィ法では困難であり、電子線露光法が用いられる。
When writing a gate with a diameter of less than 0.5 μm, it is difficult to use photolithography, so electron beam exposure is used.

電子線露光法を用いる従来のFET製造工程例を第3図
に示し説明する。
An example of a conventional FET manufacturing process using the electron beam exposure method is shown in FIG. 3 and will be described.

■ 半絶縁性GaAs基板1上にGaAsチャネル層2
を積層し、次いで能動領域3の外側をエツチングにより
除去する。続いてリフトオフ法を用いて第1のソース電
極4第1のドレイン電極5を形成する□画電極4,5は
例えばAuGe(〜1,0OOA)、N:(〜200A
)、Au(〜1,0OOA)を順次積層したものである
。電極形成後熱処理を施し、オーミック接触を得る。(
第3図(1))■ 次に電子線レジスト7を塗布する。
■ GaAs channel layer 2 on semi-insulating GaAs substrate 1
is laminated, and then the outside of the active area 3 is removed by etching. Next, the first source electrode 4 and the first drain electrode 5 are formed using a lift-off method.
), Au (~1,0OOA) are sequentially laminated. After electrode formation, heat treatment is performed to obtain ohmic contact. (
FIG. 3(1)) ■ Next, an electron beam resist 7 is applied.

この時第1のソース電極と第1のドレイン電極間隔8が
2μmと狭い場合、電極端段差の影響で、電子線レジス
ト厚さが均一でありかつ再現性良く塗布できない。その
対策として電極間隔8を約20μmと広くし、電子線レ
ジスト7を均一かつ再現性良く塗布する。電子線レジス
ト7の塗布後、ゲート電極部9を電子線描画し、ゲート
電極部のGaAsチャネル層2を露出させる該第3図(
2)) ■ 続いて、リセスエッチングをウェットエツチング法
あるいはドライエツチング法により行い、ゲート電極金
属6を蒸着する。ゲート電極金属6は、例えばAIを用
い、厚さ2000A蒸着する。(第3図(3)) ■ そして、チャネル層2のソース抵抗10、ドレイン
抵抗11を低減するため、さらに第2のソース電極12
、第2のドレイン電極13を形成する。第2のソース電
極12、第2のドレイン電極13は例えばAuGe(〜
1,0OOA)、Ni(〜200A)Au(+、0OO
A)を順次積層したものである。電極形成後、熱処理を
施す。(第3図以上は、同出願人の特願平2−1480
16号「半導体装置の製造方法」(平成2年6月6日出
願)で提案したところのものである。
At this time, if the distance 8 between the first source electrode and the first drain electrode is as narrow as 2 μm, the electron beam resist cannot be applied with uniform thickness and with good reproducibility due to the difference in electrode end height. As a countermeasure, the electrode spacing 8 is widened to about 20 μm, and the electron beam resist 7 is applied uniformly and with good reproducibility. After applying the electron beam resist 7, the gate electrode portion 9 is exposed by electron beam drawing to expose the GaAs channel layer 2 of the gate electrode portion (FIG. 3).
2)) Next, recess etching is performed by wet etching or dry etching, and gate electrode metal 6 is deposited. The gate electrode metal 6 is made of, for example, AI and is deposited to a thickness of 2000 Å. (Fig. 3 (3)) ■ Then, in order to reduce the source resistance 10 and drain resistance 11 of the channel layer 2, a second source electrode 12 is further added.
, forming the second drain electrode 13. The second source electrode 12 and the second drain electrode 13 are made of, for example, AuGe (~
1,0OOA), Ni (~200A) Au (+, 0OOA)
A) are sequentially laminated. After electrode formation, heat treatment is performed. (Figures 3 and above are from patent application No. 2-1480 filed by the same applicant.
This was proposed in No. 16 "Method for Manufacturing Semiconductor Devices" (filed on June 6, 1990).

〈発明が解決しようとする課題〉 ところで上記提案の方法においては、特に第2のソース
電極12、第2のドレイン電極13の形成工程中に、抵
抗低減のための熱処理が必要である。しかし、このAu
Ge、Ni、Au で構成した電極においては熱処理過
程で合金化反応が不均一におこり、電極金属が凝集して
所望の電極形状を維持できない。′また表面の平坦性に
乏しくなるという欠点および接触抵抗が十分小さくなら
ないという欠点がある。
<Problems to be Solved by the Invention> By the way, in the method proposed above, heat treatment is required to reduce the resistance, especially during the process of forming the second source electrode 12 and the second drain electrode 13. However, this Au
In electrodes made of Ge, Ni, and Au, alloying reactions occur unevenly during the heat treatment process, and the electrode metals aggregate, making it impossible to maintain a desired electrode shape. 'Furthermore, there are disadvantages in that the surface flatness is poor and contact resistance is not sufficiently small.

本発明は上記点に鑑み、改良された半導体装置の製造方
法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above points, an object of the present invention is to provide an improved method for manufacturing a semiconductor device.

く課題を解決するだめの手段〉 熱処理後の凝集がない良好な電極を形成するため、本発
明においては、 半導体基板上に■−v族化合物半導体活性層を積層した
後、5μm以上の広い電極間隔を有する第1のソース電
極及びl@1のドレイン電極を形成する工程と、 前記半導体基板に電子線レジストを塗布し、電子線露光
法を用いてゲート電極部の[[−V族化合物半導体表面
を露出させる工程と、 前記露出した化合物半導体表面をエツチングする工程と 前記半導体基板にショットキー金属を蒸着し、リフトオ
フ法により不要な部分の前記ショットキー金属を取り去
りゲート電極を形成する工程と、電極間隔1〜3μmと
短く、かつAuGe層、Ni層、Mo層及びAu層をこ
の順序に積層した第2のソース電極及び第2のドレイン
電極を形成する工程を有する。
In order to form a good electrode without agglomeration after heat treatment, in the present invention, after laminating a ■-V group compound semiconductor active layer on a semiconductor substrate, a wide electrode of 5 μm or more is formed. a step of forming a first source electrode and a drain electrode of 1@1 with a distance therebetween; applying an electron beam resist to the semiconductor substrate, and using an electron beam exposure method to form a [[-V group compound semiconductor a step of exposing the surface; a step of etching the exposed surface of the compound semiconductor; a step of depositing a Schottky metal on the semiconductor substrate and removing unnecessary portions of the Schottky metal by a lift-off method to form a gate electrode; The method includes a step of forming a second source electrode and a second drain electrode having a short electrode interval of 1 to 3 μm and stacking an AuGe layer, a Ni layer, a Mo layer, and an Au layer in this order.

〈作用〉 上記の製造方法において、Moは高融点でかつ熱的にも
安定であるので、電極形成後の熱処理過程においても、
下層の金属と合金反応を起こすことなく、所望の電極形
状を維持しまた良好な電気的特性を得ることができる。
<Function> In the above manufacturing method, Mo has a high melting point and is thermally stable, so even in the heat treatment process after electrode formation,
A desired electrode shape can be maintained and good electrical characteristics can be obtained without causing an alloy reaction with the underlying metal.

〈実施例〉 以下、この発明の半導体装置の製造方法を実施例により
説明する。
<Example> Hereinafter, the method for manufacturing a semiconductor device of the present invention will be described with reference to an example.

第1図(1)乃至(4)は実施例のFETの製造方法を
示す。
FIGS. 1 (1) to (4) show a method of manufacturing an FET according to an embodiment.

■ 半絶縁性GaAs基板20上にGaAsチャネル層
21全21し、次いで能動領域22の外側をエツチング
により除去する。続いてリフトオフ法を用いて第1のソ
ース電極23と第1のドレイン電極24を、電極間隔約
20μmとして形成する。両電極23.24は、例えば
qILuGe(〜1,0OOA)、Ni(〜200A)
、A u (〜1,0OOA)を順次積層したものであ
る。電極形成後、例えば390℃の熱処理を行い、化合
物半導体と電極金属をオーミック接触させる。(第1図
(1)〕■ 次に電子線レジスト25を塗布後、電子線
描画現像を順次行い、ゲート電極部26のチャンネル層
21を露出させる。(第2図(2))■ 続いて、第1
のソース電極23及び第2のドレイン電極24間に流れ
る電流値が所定の値となるようリセスエッチングを行う
。その後、ゲート電極金属にとして例えばAlを厚さ2
00OA蒸着する。蒸着後電子線レジストを剥離する。
(2) The entire GaAs channel layer 21 is formed on the semi-insulating GaAs substrate 20, and then the outside of the active region 22 is removed by etching. Next, a lift-off method is used to form a first source electrode 23 and a first drain electrode 24 with an electrode spacing of about 20 μm. Both electrodes 23 and 24 are made of, for example, qILuGe (~1,000A), Ni (~200A)
, A u (~1,0OOA) are sequentially laminated. After forming the electrode, heat treatment is performed at, for example, 390° C. to bring the compound semiconductor and the electrode metal into ohmic contact. (FIG. 1 (1)) ■ Next, after applying the electron beam resist 25, electron beam drawing development is performed sequentially to expose the channel layer 21 of the gate electrode portion 26. (FIG. 2 (2)) , 1st
Recess etching is performed so that the current value flowing between the source electrode 23 and the second drain electrode 24 becomes a predetermined value. After that, the gate electrode metal is made of, for example, Al with a thickness of 2
Deposit 00OA. After vapor deposition, the electron beam resist is peeled off.

この時不要領域のAtは電子線レジストと共に除去され
、ゲート電極27が残る。(第1図(3))■ 第2の
ソース電極28第2のドレイン電極29を電極間隔2μ
mとして形成する。両電極はMoNtk含み、例えばA
uGe層(〜1,0OOA)、Ni層(〜200A)、
Mo層(〜l、000A)、Au層(〜500A)を順
次積層する。次に例えば430℃1分の熱処理を行いオ
ーミンク接触を得る。
At this time, At in the unnecessary region is removed together with the electron beam resist, leaving the gate electrode 27. (Fig. 1 (3)) ■ The second source electrode 28 and the second drain electrode 29 are connected with an electrode spacing of 2 μm.
Form as m. Both electrodes contain MoNtk, e.g. A
uGe layer (~1,0OOA), Ni layer (~200A),
A Mo layer (~l, 000A) and an Au layer (~500A) are sequentially laminated. Next, a heat treatment is performed at, for example, 430° C. for 1 minute to obtain an ohmink contact.

第2のソース電極28、第2のドレイン電極291/i
:IdMo層を含むため、熱処理後も所定の電極形状を
維持し、良好な電気特性も得らnる。
Second source electrode 28, second drain electrode 291/i
: Since it contains an IdMo layer, the predetermined electrode shape is maintained even after heat treatment, and good electrical properties are also obtained.

〈発明の効果〉 以上のように本発明によれば、電極金属の凝集を防ぎ表
面が平坦であって所望の電極形状を維持でき、かつ接触
抵抗か低いオーミック電極を得ることが可能になる。
<Effects of the Invention> As described above, according to the present invention, it is possible to obtain an ohmic electrode that prevents agglomeration of electrode metal, has a flat surface, maintains a desired electrode shape, and has low contact resistance.

本製造方法は実施例で示したFETの他HEMTに対し
ても適用できるものである。
This manufacturing method can also be applied to HEMTs in addition to the FETs shown in the examples.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図t1)乃至(4)はこの発明の一実施例を示す工
程図、第2図は先行技術の構造例を示す断面図、第3図
[+)乃至(4)は先行技術における工程図である。 20・・・半絶縁性GaAs基板、21・・・GaAs
チャンネル層、23・・・第1のソース電極、24・・
・第1のドレイン電極、25・・・電子線レジスト、2
6・・・ゲート電極部、27・・・ゲート電極、28・
・・第2のソース電極、29・・・第2のドレイン電極
。 代理人 弁理士 梅 1) 勝 (他2名)−−−−〜
−−′−一\ 2.3      づ4 =−−20 一=−20 第 1 図 −シー−\ 第2図 ど−J〜−−\ 一\1 第3図
Fig. 1 t1) to (4) are process diagrams showing one embodiment of the present invention, Fig. 2 is a sectional view showing a structural example of the prior art, and Fig. 3 [+] to (4) are process diagrams of the prior art. It is a diagram. 20... Semi-insulating GaAs substrate, 21... GaAs
Channel layer, 23...first source electrode, 24...
・First drain electrode, 25...Electron beam resist, 2
6... Gate electrode part, 27... Gate electrode, 28.
...Second source electrode, 29...Second drain electrode. Agent Patent attorney Ume 1) Katsu (and 2 others)-----
--'-1\ 2.3 zu4 =--20 1=-20 Fig. 1 - C-\ Fig. 2 Do-J~--\ 1\1 Fig. 3

Claims (1)

【特許請求の範囲】[Claims] (1)半導体基板上にIII−V族化合物半導体層を積層
した後、5μm以上の広い電極間隔を有する第1のソー
ス電極及び第1のドレイン電極を形成する工程と、 前記半導体基板に電子線レジストを塗布し、電子線露光
法を用いてゲート電極部のIII−V族化合物半導体表面
を露出させる工程と、 前記露光させた化合物半導体表面を所定量エッチングす
る工程と、 前記エッチングされた化合物半導体表面にショットキー
金属を蒸着し、リフトオフ法により不要部分のショット
キー金属を取り去りゲート電極を形成する工程と、 前記第1のソース電極及び前記第1のドレイン電極をそ
れぞれ覆い、電極間隔が1〜3μmと短く、かつAuG
e層、Ni層、Mo層及びAu層をこの順に積層した第
2のソース電極及び第2のドレイン電極を形成する工程
を有することを特徴とする半導体装置の製造方法。
(1) After laminating a III-V compound semiconductor layer on a semiconductor substrate, forming a first source electrode and a first drain electrode having a wide electrode interval of 5 μm or more, and applying an electron beam to the semiconductor substrate. a step of applying a resist and exposing the surface of the III-V group compound semiconductor of the gate electrode portion using an electron beam exposure method; a step of etching the exposed compound semiconductor surface by a predetermined amount; and a step of etching the etched compound semiconductor by a predetermined amount. a step of depositing a Schottky metal on the surface and removing unnecessary portions of the Schottky metal by a lift-off method to form a gate electrode; As short as 3μm and made of AuG
A method for manufacturing a semiconductor device, comprising the step of forming a second source electrode and a second drain electrode in which an e layer, a Ni layer, a Mo layer, and an Au layer are laminated in this order.
JP30062490A 1990-11-05 1990-11-05 Manufacture of semiconductor device Pending JPH04171831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30062490A JPH04171831A (en) 1990-11-05 1990-11-05 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30062490A JPH04171831A (en) 1990-11-05 1990-11-05 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04171831A true JPH04171831A (en) 1992-06-19

Family

ID=17887103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30062490A Pending JPH04171831A (en) 1990-11-05 1990-11-05 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04171831A (en)

Similar Documents

Publication Publication Date Title
US4377899A (en) Method of manufacturing Schottky field-effect transistors utilizing shadow masking
JPH0279437A (en) Manufacture of semiconductor device
JPS5952881A (en) Manufacture of field-effect type semiconductor device
JPH03248439A (en) Manufacture of compound semiconductor device
JPH07118482B2 (en) Method for manufacturing semiconductor device
JPH04171831A (en) Manufacture of semiconductor device
JPS6155969A (en) Semiconductor device and manufacture thereof
JPS59184572A (en) Manufacture of semiconductor device
JPS61240684A (en) Schottky-type field effect transistor and manufacture thereof
GB2064868A (en) Schottky barrier gate field-effect transistor
JPS6057977A (en) Manufacture of shottky gate field effect transistor
JP2557432B2 (en) Field effect transistor
JPS5833714B2 (en) Method for manufacturing gallium arsenide Schottky barrier gate field effect transistor
JPH01165126A (en) Manufacture of semiconductor device
JPH0845962A (en) Manufacture of semiconductor device
JPH0226790B2 (en)
JPS616870A (en) Manufacture of field-effect transistor
JPS60161676A (en) Schottky barrier type field-effect transistor
JPS60198869A (en) Manufacture of semiconductor device
JPH02180032A (en) Manufacture of gaas mesfet
JPH02156544A (en) Manufacture of gaas mesfet
JPS6292478A (en) Manufacture of semiconductor device
JPS61196581A (en) Manufacture of field effect transistor
JPH0713977B2 (en) Method for manufacturing a shutter gate-gate type field effect transistor
JPS6395676A (en) Manufacture of field-effect transistor