JPS6166969A - Optical voltage sensor - Google Patents

Optical voltage sensor

Info

Publication number
JPS6166969A
JPS6166969A JP59190256A JP19025684A JPS6166969A JP S6166969 A JPS6166969 A JP S6166969A JP 59190256 A JP59190256 A JP 59190256A JP 19025684 A JP19025684 A JP 19025684A JP S6166969 A JPS6166969 A JP S6166969A
Authority
JP
Japan
Prior art keywords
measurement
voltage
signal
light
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59190256A
Other languages
Japanese (ja)
Inventor
Shotaro Shindo
進藤 昭太郎
Akira Miura
明 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP59190256A priority Critical patent/JPS6166969A/en
Publication of JPS6166969A publication Critical patent/JPS6166969A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Optical Integrated Circuits (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To improve characteristics by providing two voltage measurement systems which are equal in half-wavelength voltage and different in phase difference and measure the same voltage on the same substrate. CONSTITUTION:The two voltage measurement systems A and B which are equal in half-wavelength voltage and difference in phase difference are provided on the same substrate. Those measurement systems A and B are applied with output light from the same light source 50 and also applied with a measurement voltage from the same signal source 40, and measurement light output signals P1 and P2 of those measurement systems A and B are converted by photodetecting elements 60 and 70 into electric signals, which are applied to a signal processing circuit 80. Those signals P1 and P2 have a phase difference based upon the difference in length between photoconductor bodies. For example, when the measurement voltage applied from a signal line 40 is lower than a half-wavelength voltage, it is nearly proportional to the measurement voltage of the signal P2 of the measurement system B. The noise component of the signal P1 of the measurement system A, on the other hand, is obtained from a specific expression and calculated by the circuit 80 to obtain a measurement output; the noise is canceled and a voltage measurement with a superior S/N is taken.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光電圧センサに関するものであり、詳しくは
、先導波路体を通過する光を測定電界で強度変調するよ
うに構成された光電圧センサにおける電圧測定特性の改
良に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a photovoltage sensor, and more particularly to a photovoltaic sensor configured to intensity-modulate light passing through a guiding waveguide body with a measurement electric field. This invention relates to improvements in voltage measurement characteristics in sensors.

〔従来の技術〕[Conventional technology]

ニオブ酷リチウム(LiNbO,)のような電気光学材
Itよりなる基板にチタン(T1)などの金属不純物を
熱拡敞することにより基板よりも屈折率の高い先導波路
が形成され、電気光学効果の効率の極めて高い先導波路
体が得られる。このような先導波路に電界を加えると、
先導波路を通過する光は電気光学効果により強度変調さ
れる。
By thermally expanding a metal impurity such as titanium (T1) on a substrate made of an electro-optic material It such as lithium niobium (LiNbO), a leading waveguide with a higher refractive index than the substrate is formed, and the electro-optic effect is enhanced. A leading waveguide body with extremely high efficiency can be obtained. When an electric field is applied to such a leading wavepath,
The light passing through the leading waveguide is intensity modulated by the electro-optic effect.

このような先導波路体の一種に、第3150に示すよう
な分岐干渉形光導波路体がある。
One type of such a leading waveguide body is a branching interference type optical waveguide body as shown in No. 3150.

第3図において、10は基板、20は先導波路、30は
!極、40は信号源である。
In FIG. 3, 10 is a substrate, 20 is a leading waveguide, and 30 is! Pole 40 is a signal source.

基板10は電気光学効果を有するニオブ酌リチウム(L
iNbO,)のような電気光学ネイオ′(で410成さ
れたものであり、例えばX、Z軸が水平面どなりY軸が
垂直面となるようにカットされている。
The substrate 10 is made of niobium-dipped lithium (L), which has an electro-optic effect.
It is made of an electro-optical material such as iNbO, and is cut so that, for example, the X and Z axes are horizontal planes and the Y axis is a vertical plane.

光導波路20は基板10にチタン(Ti)のような金属
不純物を熱拡敵する二とにより線状に形成され基板10
よりも高い屈折率を有するものであり、7字形の分岐部
21.互いに平行な位相Ht移部22及び7字形の結合
部23が連続的に一体化されている。電極30は光導波
路20を通過する光を強度変調するために先導波路20
に電界を印加するものであり、位相打[8部22を挟む
ようにして第1の電極31及び第2の電極32が基板1
0−1:に設けられている。これら電極は、例えば金と
タロムを所定のパターンに積層することにより形成され
ている。信号源40は電界を供給するものであり、第1
の電極31と第2の電極32との間に接続されている。
The optical waveguide 20 is formed into a linear shape by thermally expanding a metal impurity such as titanium (Ti) on the substrate 10.
It has a higher refractive index than the figure 7-shaped branch 21. A mutually parallel phase Ht shifting portion 22 and a 7-shaped coupling portion 23 are continuously integrated. The electrode 30 connects the leading waveguide 20 to intensity modulate the light passing through the optical waveguide 20.
The first electrode 31 and the second electrode 32 are connected to the substrate 1 with the phase striking part 22 in between.
0-1:. These electrodes are formed by laminating, for example, gold and tarom in a predetermined pattern. The signal source 40 supplies an electric field, and the first
is connected between the electrode 31 and the second electrode 32.

なお、先導波路20の7字形の分岐部21の端部にはレ
ーザダイオードなどの光源からの光を伝送するための光
ファイバーが接続され、7字形の結合部23の端部には
強度変調された光をフォトトランジスタなどの受光素子
に伝送するための光ファイバーが接続されるが図示しな
い。
An optical fiber for transmitting light from a light source such as a laser diode is connected to the end of the figure-7-shaped branching part 21 of the leading waveguide 20, and an optical fiber for transmitting light from a light source such as a laser diode is connected to the end of the figure-7-shaped coupling part 23. An optical fiber for transmitting light to a light receiving element such as a phototransistor is connected, but is not shown.

このような構成において、先導波路20の7字形の分岐
部21の端部に光源からの光が加えらるど、光は分岐部
21で2分割されて位相推移部22に伝送される。位相
推移部22では2分割された光の間に電極30を介して
加えられる信号源40の出力の大きさに応じた位相差が
与えられる。
In such a configuration, when light from a light source is applied to the end of the 7-shaped branching section 21 of the leading waveguide 20, the light is divided into two by the branching section 21 and transmitted to the phase shifting section 22. In the phase shifting section 22, a phase difference corresponding to the magnitude of the output of the signal source 40 applied via the electrode 30 is applied between the two divided lights.

そして、位相差を有するこれら光は結合部23で再び結
合される。これにより、結合部23の端部から強度変調
された光が送出されることになる。
Then, these lights having a phase difference are combined again at the coupling part 23. As a result, intensity-modulated light is sent out from the end of the coupling section 23.

ここで、位相推移部22にλ/4ので!/相差を与えて
強度変調された光を受光素子に加えることにより電極3
0を介して加えられる信号源4oの出力の大きさに応じ
た電気信号を得ることができる。
Here, since the phase shift unit 22 has λ/4! /By applying intensity-modulated light to the light receiving element by giving a phase difference, the electrode 3
0 can be obtained according to the magnitude of the output of the signal source 4o.

(発明が解決しようとする問題点〕 ところで、従来のこのような装置における強度変調され
た光は、例えば第4図に示すようにWi極30を介して
加えられる信号源40の出力の大きさに応じて周期的に
変化することになり、半波長電圧■τよりも大きな電圧
を測定することは困難である。また、このような構成に
よれば、測定出力信号に含まれている光源の出力変動な
どに起因するノイズを軽減することはできず、分解能お
よび精度が制限されることになる。
(Problems to be Solved by the Invention) By the way, the intensity-modulated light in such a conventional device is limited by the magnitude of the output of the signal source 40 applied via the Wi pole 30, for example, as shown in FIG. Therefore, it is difficult to measure a voltage larger than the half-wavelength voltage Noise caused by output fluctuations etc. cannot be reduced, and resolution and accuracy will be limited.

本発明は、このような従来の欠点を解決したものであり
、その目的は、先導波路体を用いた光電圧センサにおい
て、電圧測定範囲の拡大を図るとともに測定出力値()
に含まれている光源の出力変動などに起因するノイズを
打ち消して分解能およびネ^度を高めることにある。
The present invention solves these conventional drawbacks, and its purpose is to expand the voltage measurement range and increase the measurement output value () in an optical voltage sensor using a guiding waveguide.
The objective is to cancel out noise caused by fluctuations in the output of the light source included in the image, thereby increasing resolution and sharpness.

〔問題点を解決するための手段〕[Means for solving problems]

このような目的を達成する本発明は、電気光学材料より
なる基板に先導波路体とこの光導波路体に測定電界を印
加する電極が形成され、前記光導波路体を通過する光を
測定電界で強度変調するように構成された光電圧センサ
において、同一基板上に半波長電圧が等しく位相差が異
なり同一の電圧を測定する2系統の電圧測定系を設け、
これら電圧測定系の測定信号に基づいて測定電圧を演算
処理することを#+徴とする。
The present invention achieves the above object, in which a guide waveguide body and an electrode for applying a measurement electric field to the optical waveguide body are formed on a substrate made of an electro-optic material, and the intensity of light passing through the optical waveguide body is measured by the measurement electric field. In an optical voltage sensor configured to modulate, two voltage measurement systems are provided on the same substrate to measure the same voltage with equal half-wavelength voltages and different phase differences,
Arithmetic processing of the measured voltage based on the measurement signals of these voltage measurement systems is defined as a #+ sign.

(実施例〕 以下、図面を用いて詳細に説明する。(Example〕 Hereinafter, it will be explained in detail using the drawings.

第1図は本発明の一実施例の要部を示す構成説明図であ
り、第3図と同等部分には同一符号を付けている。第1
図において、同一基板10土には11′波長電圧が等し
く位相差が異なるように第3図とほぼ同様にJ16成さ
れた2系統の電圧測定系A。
FIG. 1 is an explanatory diagram showing the main parts of an embodiment of the present invention, and the same parts as in FIG. 3 are given the same reference numerals. 1st
In the figure, two voltage measurement systems A are constructed on the same substrate 10 in substantially the same manner as in FIG. 3 so that the 11' wavelength voltages are equal and the phase difference is different.

Bが設けられている。これら2系統の電圧測定系A、B
には同一の光f150から出力光が加えられるとともに
同一の信号′a40から測定電圧が加えられ、これら各
電圧測定系A、Bの測定光出力4n号はそれぞれ受光素
子60.70で電気信号に変換されて信号処理回路80
に加えられている。
B is provided. These two voltage measurement systems A and B
Output light is applied from the same light f150 and measurement voltage is applied from the same signal 'a40, and the measurement light output No. 4n of each voltage measurement system A and B is converted into an electric signal by the light receiving element 60, 70, respectively. The converted signal processing circuit 80
has been added to.

このように構成された装置の動作を第2図を用いて説明
する。
The operation of the apparatus configured in this way will be explained using FIG. 2.

第2図は、第1図の各電圧測定系A、Hの測定光出力信
号例図である。第2図において、実線は電圧測定系Aの
測定光出力信号P、を示し、llJ線は電圧測定系Bの
測定光出力信号P8を示していている。第2図に示すよ
うに、これら測定光出力信号r’、 、 P、間には、
先導波路体の長さの差に基づく位相差d+(本実施例で
は90度)が発生している。なお、以下の説明において
、測定光出力信号P、の測定電圧成分をP、sとしてノ
イズ成分をP、nとし、測定光出力信号P、の測定電圧
成分をP、sとしてノイズ成分をP、nとし、測定光出
力信号P、の平均的をP、avとし、測定光出力信号P
、の平均的をP、avとする。
FIG. 2 is a diagram showing an example of the measurement light output signal of each of the voltage measurement systems A and H in FIG. 1. In FIG. 2, the solid line indicates the measurement light output signal P of the voltage measurement system A, and the llJ line indicates the measurement light output signal P8 of the voltage measurement system B. As shown in FIG. 2, between these measurement optical output signals r', , P,
A phase difference d+ (90 degrees in this embodiment) is generated based on the difference in length of the leading waveguide body. In the following description, the measurement voltage components of the measurement light output signal P, are P, s, the noise components are P, n, the measurement voltage components of the measurement light output signal P, P, s, and the noise components are P, Let n be the average of the measurement light output signal P, and let P and av be the average of the measurement light output signal P.
, let P and av be the average of .

例えば、信号源40から加えられる測定電圧Vinがゝ
1′:波長電圧Vwよりも低いものとすると、電ITE
 71111電系Bの測定先出力信号P、の測定電圧成
分P。
For example, if the measurement voltage Vin applied from the signal source 40 is lower than the wavelength voltage Vw, then the
Measured voltage component P of the measurement destination output signal P of the 71111 electrical system B.

Sは測定電圧Vinにほぼ比例することになる。一方、
電圧測定系Aの測定先出力信号P、のノイズ成分P、n
は、 P、n −(P、av/P、av )4.nになる。従
って、信号処理回路80においてPout= J−に4
m −(P、s+P、n)−(P、av/P*av l(P
、s+P、n)=P+5−(F’+av/Lav )4
.sを演算して測定出力Poutを求めることにより、
ノイズP、nを打ち消すことができ、SlN比の優れた
電用測宏が行える。
S is approximately proportional to the measured voltage Vin. on the other hand,
Noise components P, n of the measurement destination output signal P of the voltage measurement system A
is P, n −(P, av/P, av)4. It becomes n. Therefore, in the signal processing circuit 80, Pout=J-4
m − (P, s + P, n) − (P, av / P * av l (P
,s+P,n)=P+5-(F'+av/Lav)4
.. By calculating s and finding the measurement output Pout,
Noises P and n can be canceled, and electrical measurements with an excellent SIN ratio can be performed.

これに対し、信号源40から加えられる測定電圧Vin
が半波長電圧■τよりも高いものとすると、信号処理回
路80において電圧測定系Aの測定光出力信号P、と電
圧測定系Bの測定光出力信号P3を比較して測定光出力
信号P、の増減を判断するとともに測定光出力(A号P
1のピーク数を旧iIりする。なお、ピーク間の測定電
圧Vinと測定光出力信号P1との関係Vdについては
予めテーブル化しておくものとする。これにより、測定
光出力(+! ’j P 、をNf、1計数した場合に
は、測定電圧Vinは、Vin=2Vw+Vd どなり、従来に比べて十分高い測定電圧Vinを測定す
ることができる。
On the other hand, the measurement voltage Vin applied from the signal source 40
is higher than the half-wavelength voltage ■τ, the signal processing circuit 80 compares the measurement optical output signal P of the voltage measurement system A and the measurement optical output signal P3 of the voltage measurement system B to obtain the measurement optical output signal P, In addition to determining the increase or decrease of the measured light output (A No. P
The number of peaks of 1 is decreased by the old iI. Note that the relationship Vd between the peak-to-peak measurement voltage Vin and the measurement optical output signal P1 is prepared in advance in a table. As a result, when the measurement optical output (+!'j P ) is counted by Nf, the measurement voltage Vin becomes Vin=2Vw+Vd, and it is possible to measure the measurement voltage Vin which is sufficiently higher than that of the conventional method.

なお、基板としては、例えばタンタル酸リチウム(Li
TaO,)で416成されたものを用いてもよい。
Note that as the substrate, for example, lithium tantalate (Li
A material made of TaO, ) may also be used.

(発明の効果〕 これらから明らかなように、本発明によれば、先導波路
体を用いた光電圧センサにおいて、電圧測定範囲の拡大
を図るとともに測定出力信号に含まれている光源の出力
変動などに起因するノイズを打ち消して分解能および精
度を高めることができ、特性のfiれた光電圧センサが
実現できる。
(Effects of the Invention) As is clear from the above, according to the present invention, in an optical voltage sensor using a guiding waveguide, the voltage measurement range can be expanded, and output fluctuations of the light source included in the measurement output signal can be suppressed. The resolution and accuracy can be improved by canceling the noise caused by the noise, and an optical voltage sensor with excellent characteristics can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す114成説明図、第2
図は第1図の動作説明図、第3図は従来の光電圧センサ
の−・例を示す構成説明図、第4図は第3図の動作説明
図である。 10・・・基板、20・・・先導波路、3o・・・電極
、40・・・信号源、50・・・光源、60.70・・
・受光素子、80・・・信号処理回路、A、B・・・電
圧測定系。
Fig. 1 is an explanatory diagram showing one embodiment of the present invention;
1 is an explanatory diagram of the operation of FIG. 1, FIG. 3 is an explanatory diagram of the configuration of an example of a conventional optical voltage sensor, and FIG. 4 is an explanatory diagram of the operation of FIG. 3. DESCRIPTION OF SYMBOLS 10... Substrate, 20... Leading wave path, 3o... Electrode, 40... Signal source, 50... Light source, 60.70...
- Light receiving element, 80... Signal processing circuit, A, B... Voltage measurement system.

Claims (1)

【特許請求の範囲】[Claims] 電気光学材料よりなる基板に光導波路体とこの光導波路
体に測定電界を印加する電極が形成され、前記光導波路
体を通過する光を測定電界で強度変調するように構成さ
れた光電圧センサにおいて、同一基板上に半波長電圧が
等しく位相差が異なり同一の電圧を測定する2系統の電
圧測定系を設け、これら電圧測定系の測定信号に基づい
て測定電圧を演算処理することを特徴とする光電圧セン
サ。
In a photovoltage sensor, an optical waveguide body and an electrode for applying a measurement electric field to the optical waveguide body are formed on a substrate made of an electro-optic material, and the light passing through the optical waveguide body is intensity-modulated by the measurement electric field. , is characterized in that two voltage measurement systems that measure the same voltage with equal half-wavelength voltages and different phase differences are provided on the same substrate, and the measured voltage is processed based on the measurement signals of these voltage measurement systems. Optical voltage sensor.
JP59190256A 1984-09-11 1984-09-11 Optical voltage sensor Pending JPS6166969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59190256A JPS6166969A (en) 1984-09-11 1984-09-11 Optical voltage sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59190256A JPS6166969A (en) 1984-09-11 1984-09-11 Optical voltage sensor

Publications (1)

Publication Number Publication Date
JPS6166969A true JPS6166969A (en) 1986-04-05

Family

ID=16255108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59190256A Pending JPS6166969A (en) 1984-09-11 1984-09-11 Optical voltage sensor

Country Status (1)

Country Link
JP (1) JPS6166969A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271160A (en) * 1988-09-06 1990-03-09 Anritsu Corp Electro-optic sampler and electric signal waveform measurement device using said sampler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271160A (en) * 1988-09-06 1990-03-09 Anritsu Corp Electro-optic sampler and electric signal waveform measurement device using said sampler

Similar Documents

Publication Publication Date Title
JP3422913B2 (en) Optical sampling waveform measuring device
US5116129A (en) Digital phase ramp type fiber optic gyro
GB2276449A (en) Interferometer strain sensor
JPH0238889A (en) Laser doppler speedometer
JPS6166969A (en) Optical voltage sensor
EP0199137A1 (en) Method of and apparatus for optically measuring displacement
JPS59218915A (en) Light guide type sensor
JP3063138B2 (en) Waveguide type wavelength measuring device
JPH03259203A (en) Optical waveguide device
JPS6212811A (en) Angular speed meter using optical interference
JPS60257325A (en) Photovoltage sensor
JPH0550710B2 (en)
Porte et al. Linear phase tracking in a coherence modulation electrical sensor system using integrated LiNbO/sub 3/modulator/demodulator
JPH10197570A (en) Current measuring device with optical fiber
JPH085687A (en) Field sensor
JPS61235719A (en) Fiber interferometer
JPS60170723A (en) Optical transducer
JPS59206817A (en) Optical modulating device
JPH0670593B2 (en) Optical frequency modulation characteristic measuring device
JPS59168328A (en) Optical-temperature measuring device
JP3424103B2 (en) Signal converter
JPS60263802A (en) Optical measuring method of displacement
JP2004212136A (en) Electric field sensing device and its manufacturing method
JP2000230955A (en) Waveguide-type electric field sensor head, and electric field sensor
JPS6128925A (en) Optical modulating device