JPS6128925A - Optical modulating device - Google Patents

Optical modulating device

Info

Publication number
JPS6128925A
JPS6128925A JP15008584A JP15008584A JPS6128925A JP S6128925 A JPS6128925 A JP S6128925A JP 15008584 A JP15008584 A JP 15008584A JP 15008584 A JP15008584 A JP 15008584A JP S6128925 A JPS6128925 A JP S6128925A
Authority
JP
Japan
Prior art keywords
axial direction
substrate
axial
temperature
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15008584A
Other languages
Japanese (ja)
Inventor
Akira Miura
明 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIDO KEISOKU GIJUTSU KENKIYUUKUMIAI
Original Assignee
JIDO KEISOKU GIJUTSU KENKIYUUKUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIDO KEISOKU GIJUTSU KENKIYUUKUMIAI filed Critical JIDO KEISOKU GIJUTSU KENKIYUUKUMIAI
Priority to JP15008584A priority Critical patent/JPS6128925A/en
Publication of JPS6128925A publication Critical patent/JPS6128925A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the optical modulating device which has small variation in characteristics with temperature by providing a branch interference type light guide through which light is transmitted in the Z-axial direction on the surface of a substrate of lithium niobate which is cut having horizontal planes in the X-and Z-axial directions and a vertical plane in the Y-axial direction. CONSTITUTION:The substrate 10 uses lithium niobate cut so as to have the horizontal surfaces in the X-axial and Z-axial directions and the vertical surface in the Y-axial direction, and the branch type interference light guide 20 is formed on the surface of the substrate 10 in one body so that light is passed in the Z-axial direction different from the conventional direction. Paying attention to the characteristics of this substrate 10, the refractive index (no) in the X-axial direction is 2.25 and the electrooptic coefficient r00 in the X-axial direction is 6-8X10<-12>m/V, so the sensitivity decreases slightly, but the temperature coefficient of the refractive index (no) in the X-axial direction is -1.4X10<-6>/ deg.C and the temperature coefficient of the electrooptic coefficient r22 in the X-axial direction is nearly 0, thereby reducing variation in sensitivity with temperature. Further, the branch type light guide 20 is formed on the surface of the substrate 10, so variation in characteristics due to angular deviation in the directivity of crystal is suppressed by performing differential output.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、光変調装置に関するものであって、詳しくは
、先導波路を通過する光を強度変調するように構成され
たニオブ酸リチウム(LiNbOl)基板を用いた光変
調装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an optical modulation device, and more particularly, a lithium niobate (LiNbOl) substrate configured to intensity-modulate light passing through a guiding waveguide. This paper relates to improvements to the optical modulation device used.

〔従来技術〕[Prior art]

ニオブ酸リチウム(LjNbO0)のような電気光学材
料よりなる基板にチタン(Ti)などの金属不純物を熱
拡散することにより基板よりも屈折率の高い光導波路が
形成され、電気光学効果の効率の極めて高い6光導波路
体が得られる。このような先導波路に電界を加えると、
光導波路を通過する光は電気光学効果により強度変調さ
れる。
By thermally diffusing metal impurities such as titanium (Ti) into a substrate made of an electro-optic material such as lithium niobate (LjNbO0), an optical waveguide with a higher refractive index than the substrate is formed, making the electro-optic effect extremely efficient. A high 6 optical waveguide body can be obtained. When an electric field is applied to such a leading wavepath,
The light passing through the optical waveguide is intensity-modulated by the electro-optic effect.

このような光導波路体の一種に、第2図に示すような分
岐干渉形光導波路体がある。
One type of such an optical waveguide body is a branching interference type optical waveguide body as shown in FIG.

第2図において、10は基板、20は分岐干渉形光導波
路、30は電極、40は信号源である。
In FIG. 2, 10 is a substrate, 20 is a branched interference type optical waveguide, 30 is an electrode, and 40 is a signal source.

基板10は電気光学効果を有するニオブ酸リチウム(L
jNbO,)で構成されたものであり、第3図に示すよ
うにX、z軸が水平面となりY軸が垂直面となるように
カットされている。分岐干渉形光導波路20は基板10
にチタン(T1)のような金属不純物を熱拡散すること
により線状に形成され基板10よりも高い屈折率を有す
るものであり、Y字形の分岐部21.互い一平行な位相
推移Y$22及びY字形の結合部23がX軸方向に光を
通すようにして連続的に一体化されている。
The substrate 10 is made of lithium niobate (L), which has an electro-optic effect.
As shown in FIG. 3, it is cut so that the X and Z axes are horizontal planes and the Y axis is a vertical plane. The branch interference type optical waveguide 20 is connected to the substrate 10
It is formed into a linear shape by thermally diffusing a metal impurity such as titanium (T1) into the substrate 10, and has a higher refractive index than the substrate 10, and has a Y-shaped branch portion 21. The mutually parallel phase shift Y$22 and the Y-shaped coupling portion 23 are continuously integrated so as to transmit light in the X-axis direction.

電極30は分岐干渉形光導波路20を通過する光を強度
変調するために分岐干渉形光導波路20に電界を・印加
するものであり、位相推移部22を挟むようにして第1
の電極31および第2の電極32が基板10上に設けら
れている。信号源40は電界を供給するものであり、第
1の電極31と第2の電極32との間に接続されている
。なお、分岐干渉形光導波路20の7字形の分岐部21
の端部にはレーザダイオードなどの光源からの光を伝送
するための光ファイバーが接続され、7字形の結合部2
3の端部には強度変調された光をフォトトランジスタな
どの受光素子に伝送するための光ファイバーが接続され
るが図示しない。
The electrodes 30 apply an electric field to the branching interference type optical waveguide 20 in order to intensity-modulate the light passing through the branching interference type optical waveguide 20.
An electrode 31 and a second electrode 32 are provided on the substrate 10. The signal source 40 supplies an electric field and is connected between the first electrode 31 and the second electrode 32. Note that the figure 7-shaped branch portion 21 of the branch interference type optical waveguide 20
An optical fiber for transmitting light from a light source such as a laser diode is connected to the end of the figure-7 coupling part 2.
An optical fiber for transmitting intensity-modulated light to a light-receiving element such as a phototransistor is connected to the end of 3, but is not shown.

このような構成において、分岐干渉形光導波路20の7
字形の分岐部21の端部に光源からの光が加えらると、
光は分岐部21で2分割されて位相推移部22に伝送さ
れる。位相推移部22では2分割された光の間に電極3
0を介して加えられる信号[40の出力の大きさに応じ
た位相差が与えられる。そして、位相差を有するこれら
光は結合部23で再び結合される。これにより、結合部
23の端部から強度変調された光が送出されることにな
る。ここで、位相推移部22にλ/4の位相差を与えて
強度変調された光を受光素子に加えることにより電極3
0を介して加えられる信号源40の出力の大きさに応じ
た電気信号を得ることができる。
In such a configuration, 7 of the branching interference type optical waveguide 20
When light from a light source is applied to the end of the branch part 21 of the letter,
The light is split into two by the branching section 21 and transmitted to the phase shifting section 22 . In the phase shift section 22, an electrode 3 is placed between the two divided lights.
A phase difference is given according to the magnitude of the output of the signal [40] applied through the signal [40]. Then, these lights having a phase difference are combined again at the coupling part 23. As a result, intensity-modulated light is sent out from the end of the coupling section 23. Here, by applying a phase difference of λ/4 to the phase shift section 22 and applying intensity-modulated light to the light receiving element, the electrode 3
It is possible to obtain an electrical signal depending on the magnitude of the output of the signal source 40 applied via the signal source 40.

このような構成において、基板10の特性に着目すると
、Z軸方向の屈折率Tlcは2.17となって2軸方向
の電気光学係数r、、は30X10−’5III/Vと
なることから高感度特性が得られるものの、2軸方向の
屈折率TIcの温度係数は−6,0X10−’/’0と
なって2軸方向の電気光学係数resの温度係数は4.
9×10−’/ ”Oになることから感度が温度変化に
応じて大きく変化するという欠点がある。
In such a configuration, focusing on the characteristics of the substrate 10, the refractive index Tlc in the Z-axis direction is 2.17, and the electro-optic coefficient r, in the two-axis directions is 30X10-'5III/V, so it is high. Although sensitivity characteristics are obtained, the temperature coefficient of the refractive index TIc in the biaxial direction is -6.0X10-'/'0, and the temperature coefficient of the electro-optic coefficient res in the biaxial direction is 4.0.
9 x 10-'/''O, which has the disadvantage that the sensitivity changes greatly in response to temperature changes.

〔発明の目的〕[Purpose of the invention]

本発明は、このような従来の欠点を解決したものであり
、その目的は、温度変化による特性変化の小さな光変調
装置を提供することにある。
The present invention solves these conventional drawbacks, and an object of the present invention is to provide an optical modulation device whose characteristics change little due to temperature changes.

〔発明の概要〕[Summary of the invention]

このような目的を達成する本発明は、X、z軸が水平面
となりY軸が垂直面となるようにカットされたニオブ酷
リチウム(LiNbO,)よりなる基板の表面に、Z軸
方向に光を通すように分岐干渉形光導波路を設けたこと
を特徴とする。
The present invention, which achieves these objectives, irradiates light in the Z-axis direction onto the surface of a substrate made of lithium niobium (LiNbO,) cut so that the X and Z axes are horizontal planes and the Y axis is a vertical plane. It is characterized in that a branching interference type optical waveguide is provided so as to pass through the optical waveguide.

〔実施例〕〔Example〕

以下、図面を用いて詳細に説明する。 Hereinafter, a detailed explanation will be given using the drawings.

第1図は本発明の一実施例を示す構成説明図であり、第
2図と同等部分には同一符号を付けている。第1図にお
いて、基板10としては第2図の装置と同様に第3図に
示すようにx、z軸が水平面となりY軸が垂直面となる
ようにカットされたニオブ酌リチウム(LiNbO,)
を用いるが、基板10の表面には分岐干渉形光導波路2
0を第2図の装置とは異なる2軸方向に光を通すように
して連続的に一体化する。
FIG. 1 is a configuration explanatory diagram showing one embodiment of the present invention, and parts equivalent to those in FIG. 2 are given the same reference numerals. In FIG. 1, the substrate 10 is made of niobium-dipped lithium (LiNbO), which is cut so that the x and z axes are horizontal planes and the Y axis is a vertical plane, as shown in FIG.
However, on the surface of the substrate 10 there is a branched interference type optical waveguide 2.
0 is continuously integrated in such a way that light passes in two axial directions different from that of the device shown in FIG.

このような構成において、基板10の特性に着目すると
、X軸方向の屈折率noは2.25となってX軸方向の
電気光学係l#r @@は6〜8 XIO−”m/Vと
なることから第3図の装置よりは多少感度が低下するも
のの、X軸方向の屈折率noの温度係数は−1,4X1
0−”PCとなってX軸方向の電気光学係数r■の温度
係数はほぼ0になることから感度の温度変化による変動
を小さくすることができる。また、基板lOの表面に分
岐干渉形光導波路20を設けているので、結晶の方向性
の角度のずれに起因する特性の変動を差動出力をとるこ
とによって補償できる。
In such a configuration, focusing on the characteristics of the substrate 10, the refractive index no in the X-axis direction is 2.25, and the electro-optic index l#r@@ in the X-axis direction is 6 to 8 XIO-''m/V. Therefore, although the sensitivity is somewhat lower than that of the device in Figure 3, the temperature coefficient of the refractive index no in the X-axis direction is -1.4X1
0-" PC, and the temperature coefficient of the electro-optic coefficient r in the Since the wave path 20 is provided, it is possible to compensate for variations in characteristics caused by angular deviations in crystal orientation by providing differential outputs.

このような構成によれば、例えば信号源の出力信号の大
きさを電気的に完全に絶縁した状態で測定できる光電圧
計が実現できるのをはじめ、光通信システムにおける各
種の光信号処理装置に用いることができる。
According to such a configuration, for example, it is possible to realize an optical voltmeter that can measure the magnitude of the output signal of a signal source in a completely electrically isolated state, and it can also be used in various optical signal processing devices in optical communication systems. be able to.

〔発明の効果〕 これらから明らかなように、本発明によれば、温度変化
による特性変化の小さな光変調装置が実現できる。
[Effects of the Invention] As is clear from the above, according to the present invention, an optical modulation device whose characteristics change little due to temperature changes can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成説明図、第2図は
従来の装置の一例を示す構成説明図、第3図は本発明で
用いる基板の結晶方位説明図である。 10・・・基板、20・・・先導波路、30・・・電極
、40・・・信号源。 第1図 第2図 第3図
FIG. 1 is an explanatory diagram of the configuration of an embodiment of the present invention, FIG. 2 is an explanatory diagram of the configuration of an example of a conventional device, and FIG. 3 is an explanatory diagram of the crystal orientation of a substrate used in the present invention. DESCRIPTION OF SYMBOLS 10... Substrate, 20... Leading wave path, 30... Electrode, 40... Signal source. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 X、Z軸が水平面となりY軸が垂直面となるようにカッ
トされたニオブ酸リチウム〔LiNbO_■〕よりなる
基板の表面に、Z軸方向に光を通すように分岐干渉形光
導波路を設けたことを特徴とする光変調装置。
[Claims] Branching interference is applied to the surface of a substrate made of lithium niobate [LiNbO_■], which is cut so that the X and Z axes are horizontal planes and the Y axis is a vertical plane, so that light passes in the Z-axis direction. An optical modulation device characterized by being provided with a shaped optical waveguide.
JP15008584A 1984-07-19 1984-07-19 Optical modulating device Pending JPS6128925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15008584A JPS6128925A (en) 1984-07-19 1984-07-19 Optical modulating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15008584A JPS6128925A (en) 1984-07-19 1984-07-19 Optical modulating device

Publications (1)

Publication Number Publication Date
JPS6128925A true JPS6128925A (en) 1986-02-08

Family

ID=15489182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15008584A Pending JPS6128925A (en) 1984-07-19 1984-07-19 Optical modulating device

Country Status (1)

Country Link
JP (1) JPS6128925A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170728U (en) * 1987-04-28 1988-11-07
JPH0324505A (en) * 1989-06-21 1991-02-01 Hitachi Metals Ltd Lithium niobate optical element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891434A (en) * 1981-11-26 1983-05-31 Omron Tateisi Electronics Co Light deflection element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891434A (en) * 1981-11-26 1983-05-31 Omron Tateisi Electronics Co Light deflection element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170728U (en) * 1987-04-28 1988-11-07
JPH0324505A (en) * 1989-06-21 1991-02-01 Hitachi Metals Ltd Lithium niobate optical element

Similar Documents

Publication Publication Date Title
US5015053A (en) Reduction of modulator non-linearities with independent bias angle control
US7447389B2 (en) Optical modulator
EP1918761A1 (en) Light fsk/ssb modulator having intensity balance function
JPS6261123B2 (en)
US4856094A (en) Arrangement for polarization control, such as for an optical heterodyne or homodyne receiver
JPH0758375B2 (en) Polarization independent photoelectron directional coupler
US4904038A (en) Guided wave optical frequency shifter
US20180284352A1 (en) Optical modulator
EP0165555B1 (en) Method for modulating a carrier wave
CA2130825C (en) Method and sensor for measuring electric voltages and/or electric field intensities
JPH0422246B2 (en)
JPS6128925A (en) Optical modulating device
CN206178309U (en) Light modulator and light modulating system
CN214375657U (en) Hybrid integrated photoelectric chip, optical modulator and fiber-optic gyroscope
JPS6147929A (en) Photovoltage sensor
JP4793550B2 (en) Optical carrier suppressed double sideband (DSB-SC) modulation system capable of high extinction ratio modulation
JPH019933Y2 (en)
JPS60257325A (en) Photovoltage sensor
JPH0354283B2 (en)
JPS59197012A (en) Optical modulator
JP2673485B2 (en) Electric field detection method
EP0211113A1 (en) Guided wave optical frequency shifter
JP2841863B2 (en) Ring interferometer
JPH0422245B2 (en)
CA1254642A (en) Guided wave optical frequency shifter