JPS60263802A - Optical measuring method of displacement - Google Patents

Optical measuring method of displacement

Info

Publication number
JPS60263802A
JPS60263802A JP12024284A JP12024284A JPS60263802A JP S60263802 A JPS60263802 A JP S60263802A JP 12024284 A JP12024284 A JP 12024284A JP 12024284 A JP12024284 A JP 12024284A JP S60263802 A JPS60263802 A JP S60263802A
Authority
JP
Japan
Prior art keywords
optical path
path length
voltage
displacement
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12024284A
Other languages
Japanese (ja)
Inventor
Sadao Mori
貞雄 森
Toshio Akatsu
赤津 利雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12024284A priority Critical patent/JPS60263802A/en
Publication of JPS60263802A publication Critical patent/JPS60263802A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/266Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light by interferometric means

Abstract

PURPOSE:To obtain an optical and an electric system which both have a fast response speed and take a fast measurement of displacement by using an element of electrooptic crystal, etc., to adjusts the optical path length of reflected light. CONSTITUTION:Light from a laser oscillator 1 is reflected partially by the surface of the wavelength plate 4 of a beam splitter cube BSC2, and ther remainder is reflected by a body 13 to be measured. Those reflected light beams rech a BSC26 through the BSC2 and electrooptic crystal (element varying in refractive index on the lateral and longitudinal axes when impressed with a voltage) and is split into two thereat, and they interfere with each other after passing through polarizing plates 27 and 28. Then, interference signals are converted by photodetectors 29 and 30 into electrical signals, whose difference is amplified by a DC differential amplifier 31. The levels of the interference signals relat to the optical length difference between the two interfering light beams B1 and B2 and a negative and a positive voltage are developed accoring to the displacement of the body 13 to be measure, so the voltage is amplified by an amplifier 32 and fed back to the crystal 25. For the purpose, the relation between the impressed voltage to the crystal 25 and the optical path length difference is calibrated previously and then the displacement of the objective body 13 is obtained by measuring the voltage to the crystal 25.

Description

【発明の詳細な説明】 〔発明の利用分野〕 この発明は、被測定物の変位を光学的に測定する方法に
係り、特に半導体製造装置、座標測定器などの正確な位
置決めを必要とする装置の変位計測に利用される変位の
光学的測定方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for optically measuring the displacement of an object to be measured, and in particular to devices that require accurate positioning such as semiconductor manufacturing equipment and coordinate measuring instruments. This invention relates to an optical displacement measurement method used for displacement measurement.

〔発明の背景〕[Background of the invention]

被測定物の変位?光学的に測定する方法として、被測定
物の変位を光路差の変化としてとらえ、光路差が常に一
定となるように光路長全フィードバック制御し、このと
きのフィードバック制御量から変位量全測定するように
したものが提案されている。(特開昭58−15850
6号公報)前記従来の測定方法は、基準面と被測定面に
それぞれ光音照射し、その反射光を合成して得られる干
渉光を利用して、反射光の光路途中に設けられた電わい
索子を干渉光の明るさが常に最大または最小になるよう
に制御し、このときの電わい素子の制御量から被測定面
の変位をめるものである。この従来方法について、第4
図を用いて説明する。まず、被測定物の変位が小さい(
電わい素子の動作範囲内)場合、レーザ発振器1から発
したレーザ光は、ビームスプリッタキューブ(B、S)
2で反射して1/4波長板4に入射する、このレーザ光
の一部CB+)は1/4波長板4の表面で反射し、他の
レーザ光(B2)は被測定物13の表面で反射する。B
l+B2はビームスプリッタキューブ2を透過して偏光
ビームスプリッタ(P、 B、 S)3に入射する。B
1はP、 B、 S 3 ’e透過するが、B2は1/
4波長板4を一往復することによυ振動面が図面と垂直
になっているためP、 B、 Sで反射する。B I 
+ 82が偏光板11に達すると、BlとB2はその振
動面が互いに90°ずれているため干渉しないが、偏光
板の透過軸方向の成分のみが透過するので偏光板の後で
は干渉を起す。この干渉光の強度FiB rとB2の光
路長の差、即ち被測定物13の変位に依存する。前記干
渉光の強度を光検器12で電気信号に変換し、増幅器1
6で増幅した後、同期検波回路17で高周波発振器14
の出力全参照信号として同期検波する。この検波信号全
ローパスフィルタ18に介して直流増幅器24で増幅し
て電わい素子7に印加する。また、高周波発振器14の
出力は増幅器15で増幅し、電わい素子8に印加して鏡
面lO全高周波で振動させ、常に一定振幅の光路長差を
発生させておく、このようにすると、被測定物13が変
位してB1とB2の光路長差が変化しても光学系全体と
しての光路長差は常に一定となるように動作する。この
動作全第5図に基づいて説明すると、電わい素子7.8
に電圧全印加しないときの反射光の光路長差と干渉光の
強度の関係は第5図(1)に示されている。
Displacement of the object to be measured? As an optical measurement method, the displacement of the object to be measured is interpreted as a change in the optical path difference, the optical path length is fully feedback controlled so that the optical path difference is always constant, and the total displacement is measured from the feedback control amount at this time. It has been proposed that (Unexamined Japanese Patent Publication No. 58-15850
Publication No. 6) The conventional measurement method uses interference light obtained by irradiating a reference surface and a surface to be measured with optical sound and combining the reflected lights, and then using an electric light provided in the middle of the optical path of the reflected light. The electric flexure element is controlled so that the brightness of the interference light is always maximized or minimized, and the displacement of the surface to be measured is calculated from the control amount of the electric flexure element at this time. Regarding this conventional method, the fourth
This will be explained using figures. First, the displacement of the measured object is small (
(within the operating range of the electric flexure element), the laser beam emitted from the laser oscillator 1 passes through the beam splitter cube (B, S).
A part of this laser beam (CB+) reflected by the 1/4 wavelength plate 4 is reflected by the 1/4 wavelength plate 4, and the other laser beam (B2) is reflected by the surface of the object to be measured 13. reflect. B
l+B2 passes through the beam splitter cube 2 and enters the polarizing beam splitter (P, B, S) 3. B
1 is transparent to P, B, S 3 'e, but B2 is 1/
When the four-wave plate 4 moves back and forth once, the υ vibration plane is perpendicular to the drawing, so it is reflected at P, B, and S. B I
When +82 reaches the polarizing plate 11, Bl and B2 do not interfere because their vibration planes are 90 degrees apart from each other, but only the component in the direction of the transmission axis of the polarizing plate is transmitted, so interference occurs after the polarizing plate. . It depends on the difference in the optical path length between the intensity FiBr of this interference light and B2, that is, the displacement of the object to be measured 13. The intensity of the interference light is converted into an electrical signal by a photodetector 12, and the intensity is converted into an electrical signal by an amplifier 1.
After amplification in step 6, the synchronous detection circuit 17 outputs the high frequency oscillator 14.
Synchronous detection is performed as all output reference signals. This detected signal is passed through a total low-pass filter 18, amplified by a DC amplifier 24, and applied to the electric distortion element 7. In addition, the output of the high frequency oscillator 14 is amplified by the amplifier 15 and applied to the electric flexure element 8 to cause it to vibrate at the full high frequency of the specular lO to always generate an optical path length difference of constant amplitude. Even if the object 13 is displaced and the optical path length difference between B1 and B2 changes, the optical system operates so that the optical path length difference as a whole remains constant. To explain this operation based on FIG. 5, the electric flexi element 7.8
The relationship between the optical path length difference of reflected light and the intensity of interference light when no full voltage is applied to is shown in FIG. 5 (1).

ここで電わい素子8に高周波電圧全印加し、光路長差を
一定振幅Δlで変動させると、動作点がa、b、cのど
こにあるかによって干渉光強度、同期検波回路17の出
力電圧は第5図(II)、(■)、(IV)に示された
変化をする。即ち、同期検波回路の出力電圧のば流分は
、動作点がa−b、cにあるとき、各々正、零、負とな
る。したがって、同期検波回路の出力電圧の直流分全ロ
ーパスフィルタ18で取り出して増幅し、電わい素子7
にフィードバックすると、被測定物が変位して反射光の
光路長差が変化しても、電わい素子7がそれを補償する
方向に動き光学系全体としての光路長差は常に一定に保
たれる。
When the full high-frequency voltage is applied to the electric flexure element 8 and the optical path length difference is varied with a constant amplitude Δl, the interference light intensity and the output voltage of the synchronous detection circuit 17 will vary depending on where the operating point is located among a, b, and c. The changes shown in FIGS. 5(II), (■), and (IV) are made. That is, the flux components of the output voltage of the synchronous detection circuit are positive, zero, and negative when the operating points are at a-b and c, respectively. Therefore, the direct current component of the output voltage of the synchronous detection circuit is extracted and amplified by the low-pass filter 18, and the voltage skew element 7
When the object to be measured is displaced and the optical path length difference of the reflected light changes, the electric skew element 7 moves in a direction to compensate for it, and the optical path length difference of the optical system as a whole is always kept constant. .

したがって、電わい素子7の印加電圧と変位の関係を予
じめ校正しておけば電わい素子への印加電圧を測定する
ことにより被測定物の変位を知ることができる。
Therefore, if the relationship between the voltage applied to the electric flexure element 7 and the displacement is calibrated in advance, the displacement of the object to be measured can be determined by measuring the voltage applied to the electric flexure element 7.

つぎに、被測定物が犬きく変位した場合について述べる
。第6図(イ)は光路長差と干渉光の強度の関係、第6
図(「1)は光路長差と電わい素7への印加′電圧の関
係、會示したものである。被測定物13が原点にあると
きの光路長差kXoとし、装置が動作する前では装置の
動作点はa点にあったとする。この状態で装置が動作す
ると、電わい素子7には第6図(ロ)に示したようにE
oの電圧が印加されXl−Xoだけの光路長差がここで
補償され動作点は第6図(イ)のb点に移る。この状態
から被測定物の変位が増加して光路長差がX】を経てX
2に達したとすると電わい素子7への印加電圧は第6図
(ロ)に示したように変位計の大きさに応じて変化する
。このとき電圧比較回路190基準電圧kEmに設定し
ておくと、電圧比較回路19の出力′電圧は常時Oであ
ったものが、ローパスフィルタ18の出力電圧がEmに
達すると1になり、オア回路22′(ll−介して、竺
子スイッチ23が動作する。この結果、直流増幅器24
の出力電圧が0となり、装置は第6図(イ)の0点でバ
ランスする。被測定物13がさらに変位し光路長差がふ
えると同様にしてバランス点na点に移り、光路長差が
X4になると電わい素子7にはB4の電圧が印加されd
点でバランスする。
Next, a case will be described in which the object to be measured is significantly displaced. Figure 6 (a) shows the relationship between the optical path length difference and the intensity of interference light.
Figure (1) shows the relationship between the optical path length difference and the voltage applied to the electrolytic element 7.The optical path length difference when the object to be measured 13 is at the origin is kXo, and before the device operates. Now, let us assume that the operating point of the device is at point a. When the device operates in this state, the electric flexure element 7 has E as shown in Fig. 6 (b).
A voltage of o is applied, the optical path length difference of Xl-Xo is compensated here, and the operating point moves to point b in FIG. 6(a). From this state, the displacement of the object to be measured increases and the optical path length difference becomes
2, the voltage applied to the electric flexure element 7 changes depending on the size of the displacement meter, as shown in FIG. 6(b). At this time, if the reference voltage kEm of the voltage comparison circuit 190 is set, the output voltage of the voltage comparison circuit 19 is always O, but when the output voltage of the low-pass filter 18 reaches Em, it becomes 1, and the OR circuit 22'(ll-, the wire switch 23 operates. As a result, the DC amplifier 24
The output voltage of becomes 0, and the device is balanced at the 0 point in FIG. 6(a). When the object to be measured 13 is further displaced and the optical path length difference increases, it moves to the balance point na in the same way, and when the optical path length difference becomes X4, a voltage of B4 is applied to the electric flexure element 7 and d
balance on points.

したがって被測定物の原点位置からの変位量はつきの工
9にしてめることができる。電圧比較回路19の出力電
圧は被測定物13がλ/2変位する毎に(光路長差がλ
増加する毎に)0から1に変化するためこれ會アップダ
ウンカウンタ21でプラスに計数して、その結果をλ/
2倍し、さらにその時の電わい素子印加電圧E4から被
測定物が原点にあったときの印加電圧Foヶ引いてこれ
ヲEmで割ったものを272倍したもの、即ち、B4−
E0×↓を加えればよい。被測定物が原点からEm 2 逆方向に変位した場合は、電圧比較回路20の基準電圧
k Emに設ていし、前記電圧比較回路20の出力がO
から1に変化したときこれをアップダウンカウンタ21
でマイナスに計数し、そのい。(ただし、E’4<O) しかし、上記従来の方法には次のような欠点がある。
Therefore, the amount of displacement of the object to be measured from the origin position can be determined using the cutting tool 9. The output voltage of the voltage comparison circuit 19 changes every time the object to be measured 13 is displaced by λ/2 (when the optical path length difference is λ)
Each time it increases, it changes from 0 to 1, so the up-down counter 21 counts the positive numbers, and the result is expressed as λ/
2, and then subtract the voltage Fo applied when the object to be measured is at the origin from the voltage E4 applied to the electric force element at that time, and divide this by Em, multiplied by 272, that is, B4-
Just add E0×↓. When the object to be measured is displaced in the opposite direction Em 2 from the origin, the reference voltage k Em of the voltage comparison circuit 20 is set, and the output of the voltage comparison circuit 20 is set to O.
When the value changes from 1 to 1, the up/down counter 21
Count the negative number with . (However, E'4<O) However, the above conventional method has the following drawbacks.

1、光学系が複雑である。1. The optical system is complicated.

2、電わい素子で機械的にミラー會変位させ光路長を制
御しているので、電わい素子の機械的共振周波数より低
い速度でしか応答しない。
2. Since the optical path length is controlled by mechanically displacing the mirror using an electric flexure element, it responds only at a speed lower than the mechanical resonance frequency of the electric flexure element.

3、周波数が高くなると、周期検波回路を構成すること
が困難となシ、測定可能な変位の最大速度が限定される
3. As the frequency increases, it becomes difficult to construct a periodic detection circuit, and the maximum speed of displacement that can be measured is limited.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、基準面および被測定面からの反射光
の光路長全直接電気的に制御し、両者の光路長差によっ
て生ずる干渉信号から被測定面の変位ケ求める光学的測
定方法を提供することにある。
An object of the present invention is to provide an optical measurement method in which the optical path length of reflected light from a reference surface and a surface to be measured is completely directly electrically controlled, and the displacement of the surface to be measured is determined from an interference signal generated by the difference in optical path length between the two. It's about doing.

〔発明の概要〕[Summary of the invention]

この発明に係る変位の光学的測定方法は、基準面と被測
定面に光を照射し、各々の反射光の光路途中に電圧を印
加するとその屈折率が変化する素子全利用した光路長制
御手段を設け、前記手段全通過した反射光から逆位相の
電気的干渉信号を作り、この電気的干渉信号?光路長制
御手段にフィードバックして反射光の光路長差が常に一
定となるように制御し、このときの制御量から被測定面
の変位をめるもので、光路長調節手段として従来の電わ
b素子の代りに電気光学結晶などの電圧を印加すると屈
折率が変化する素子を用いており、機械的にミラーを変
位させて光路長を制御するのではたく純粋に電気的に屈
折率を変化させて光路長全制御するようにしているから
、光学系が簡単となり且つ応答速度が速く々る。また、
2つの光検出器に逆位相の干渉信号を発生させ、その差
をとることにより、光路長差を高周波で一定振幅で変動
させなくとも変位の方向が判別できるようにしたので、
高周波を扱う必要がなく々す、電気回路が簡単になると
共に応答速度も向上できる。
The optical displacement measurement method according to the present invention includes an optical path length control means that makes full use of elements that irradiate light onto a reference surface and a surface to be measured, and apply a voltage to the optical path of each reflected light to change its refractive index. is provided, an electrical interference signal of opposite phase is generated from the reflected light that has passed through the means, and this electrical interference signal ? Feedback is sent to the optical path length control means to control the optical path length difference of the reflected light so that it is always constant, and the displacement of the surface to be measured is calculated from the control amount at this time. Instead of a b-element, an element such as an electro-optic crystal whose refractive index changes when a voltage is applied is used, and instead of mechanically displacing a mirror to control the optical path length, the refractive index can be changed purely electrically. Since the optical path length is fully controlled by adjusting the optical path length, the optical system is simple and the response speed is fast. Also,
By generating interference signals with opposite phases on two photodetectors and taking the difference, the direction of displacement can be determined without changing the optical path length difference at high frequency with a constant amplitude.
It eliminates the need to handle high frequencies, simplifies the electrical circuit, and improves response speed.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第1図乃至第3図に基いて説明
する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 3.

第1図において第4図と同一符号のものは同一のものを
表す。25は電圧全印加するとその屈折率が変化する素
子、例えばLF’、 NbO3等の電気光学結晶である
。前記電気光学結晶に電圧全印加すると紙面に垂直な振
動面を持つ光に対する屈折率nr と、紙面と平行な振
動面を持つ光に対する屈折率nuが変化する。前記電気
光学結晶の光軸方向の幾何学的長さ?rJとすると、一
般に光路長は(幾何学的距離)×(屈折率)で与えられ
るので前記2つの光が電気光学結晶中を伝る間に発生す
る光路長の差Δは次式で与えられる。
In FIG. 1, the same reference numerals as in FIG. 4 represent the same components. 25 is an element whose refractive index changes when a full voltage is applied, such as an electro-optic crystal such as LF' or NbO3. When a full voltage is applied to the electro-optic crystal, the refractive index nr for light having a vibration plane perpendicular to the plane of the paper and the refractive index nu for light having a vibration plane parallel to the plane of the paper change. What is the geometric length of the electro-optic crystal in the optical axis direction? Assuming rJ, the optical path length is generally given by (geometric distance) x (refractive index), so the difference Δ in the optical path length that occurs while the two lights travel through the electro-optic crystal is given by the following equation. .

Δ= Cn、 −y′llF> 1 したがって、印加電圧によってP/−グ1.の値を変化
させることによジ光路長差Δを調節することができる。
Δ=Cn, -y'llF>1 Therefore, depending on the applied voltage, P/-G1. By changing the value of , the optical path length difference Δ can be adjusted.

26は電気光学結晶25からの出射光をその振動面にか
かわりなく2分割するビームスプリッタキューブ(B、
 S、 C,)、27.28け偏光板、29.30は光
検出器、31け直流差動増幅器、32は差動増幅器31
の出力電圧全増幅して電気光学結晶25に印加するため
の直流増幅器である。
26 is a beam splitter cube (B,
S, C,), 27.28 polarizing plate, 29.30 photodetector, 31 DC differential amplifier, 32 differential amplifier 31
This is a DC amplifier for amplifying the entire output voltage of and applying it to the electro-optic crystal 25.

まず初めに変位の小さい場合の動作全説明する。First, the entire operation when the displacement is small will be explained.

第3図においてレーザ発振器1奮発した光はビームスプ
リッタキューブ2 (B、 S、 C,2)で反射す! る。この光の一部は一波長板4の表面で反射し(この光
を81と呼ぶ)、残υは被測定物13に至りここで反射
する(この光iB2と呼ぶ)。
In Figure 3, the light emitted by laser oscillator 1 is reflected by beam splitter cube 2 (B, S, C, 2)! Ru. A part of this light is reflected on the surface of the single-wavelength plate 4 (this light is called 81), and the remaining light reaches the object to be measured 13 and is reflected there (this light is called iB2).

Blは紙面と平行な振動面を持つが、B2は一波長板4
を一往復しているので紙面と垂直な振動面?持つ。これ
らの光は共に、B、 S、 C’、 2、電気光学結晶
25を経てB、 S、 C,26に至りここで2分割さ
れ、それぞれ偏光板27.28を通過後干渉奮起す。そ
の干渉信号を光検出器29.30で電気信号に変換し、
その差をM流差動増幅器31で増幅する。ここで、干渉
信号の強度、即ち、光検出2メ29.30の出力電圧は
干渉する2つの光B1、B2の光路長差Δに関連するが
、この光路長差Δは1/4波長板4の表面と被測定物1
3の光学的距離(=光路長)11rA、電気光学結晶2
5の印加m電圧が零のときにB1、B2に対して結晶中
で発生する光路長差をΔ0とすると、次式で表わされる
Bl has a vibration plane parallel to the plane of the paper, but B2 has a single-wavelength plate 4.
Is the vibration surface perpendicular to the paper surface because it goes back and forth once? have Both of these lights pass through an electro-optic crystal 25, B, S, and C, 26, where they are split into two, and after passing through polarizing plates 27 and 28, interference occurs. The interference signal is converted into an electrical signal by a photodetector 29.30,
The difference is amplified by the M-flow differential amplifier 31. Here, the intensity of the interference signal, that is, the output voltage of the two photodetectors 29.30, is related to the optical path length difference Δ between the two interfering lights B1 and B2, and this optical path length difference Δ is 4 surface and object to be measured 1
3 optical distance (=optical path length) 11 rA, electro-optic crystal 2
If the optical path length difference that occurs in the crystal between B1 and B2 when the applied m voltage of 5 is zero is Δ0, it is expressed by the following equation.

Δ=21+Δ0 ここで被測定物13がΔlだけ変位すると、上記の式で
示される光路長差は、2Δlだけ変化し、これに応じて
干渉光強度が変化する。
Δ=21+Δ0 Here, when the object to be measured 13 is displaced by Δl, the optical path length difference expressed by the above equation changes by 2Δl, and the interference light intensity changes accordingly.

ここで、偏光板27.28の透過軸の方向金それぞれ紙
面に対して45°及び−45°に設置′すると、偏光板
27の後の干渉光強度の変化と偏光板28の後の干渉光
強度変化は位相が逆に碌る。従、って横軸に反射光Bl
とB2の光路長差Δt、縦軸に光検出器29.30の出
力電圧をとると第2図(イ)、(ロ)に示すようになる
。そこで、光検出器29.30の出力電圧の差を直流差
動増幅器31でめると第2図(ハ)に示すようになる。
Here, if the transmission axes of the polarizing plates 27 and 28 are set at 45° and -45° with respect to the plane of the paper, respectively, the change in the intensity of the interference light after the polarizing plate 27 and the interference light after the polarizing plate 28 will be explained. The intensity changes occur in opposite phases. Therefore, the horizontal axis represents the reflected light Bl
If the optical path length difference Δt between and B2 and the output voltage of the photodetector 29.30 are plotted on the vertical axis, the result will be as shown in FIGS. 2(a) and 2(b). Therefore, when the difference between the output voltages of the photodetectors 29 and 30 is calculated by the DC differential amplifier 31, it becomes as shown in FIG. 2 (c).

従って、電気光学結晶25に%圧を印加しないときは、
例えば動作点がa点にあり反射光Bl(!:B、2の光
路長差がXaにあるときには直流差動増幅器31の出力
電圧は零であるが動作点がb点又flc点にあり光路長
差がXb又はXCにあるときはそれぞれ正1近圧、負電
圧が発生する。この電圧全直流増幅器32で増幅し、電
気光学結晶25にフィードバックすると被測定物13が
変位して光路長差が変化しても電気光学績n25の屈折
率が変化して、光路長差がXa となってバランスする
。電気光学結晶25の印加電圧と結晶中で発生する光路
長差の関係を予め校正しておけは、電気光学結晶25へ
の印加電圧を測定することにより被測定物13の変位を
めることができる。
Therefore, when no % pressure is applied to the electro-optic crystal 25,
For example, when the operating point is at point a and the optical path length difference between reflected light Bl (!: B, 2 is Xa), the output voltage of the DC differential amplifier 31 is zero, but the operating point is at point b or flc, and the optical path When the length difference is Xb or XC, a positive near voltage and a negative voltage are generated, respectively. When this voltage is amplified by the all-DC amplifier 32 and fed back to the electro-optic crystal 25, the object to be measured 13 is displaced and the optical path length difference is increased. Even if the electro-optic crystal 25 changes, the refractive index of the electro-optic crystal n25 changes, and the optical path length difference becomes Xa, which is balanced.The relationship between the voltage applied to the electro-optic crystal 25 and the optical path length difference that occurs in the crystal is calibrated in advance. The displacement of the object to be measured 13 can be determined by measuring the voltage applied to the electro-optic crystal 25.

つぎに、被測定物13が大きく変位する場合の動作を第
3図を用いて説明する。
Next, the operation when the object to be measured 13 is largely displaced will be explained using FIG. 3.

第3図(イ)は光路長差と直流差動増幅器31の出力電
圧の関係を示したものである。また、第3図(ロ)は光
路長差と電気光学結晶25への印加電圧との関係合示し
たものである。被測定物13が原点にあるときの光路長
差をXOとし、装置が動作する前では動作点はa点にあ
ったとする。この状態で装置が動作すると電気光学結晶
25には第3図(ロ)に示し、たようにEoL7)電圧
が印加されX1Xnだけの光路長差がここで補償され動
作点は第3図(イ)のb点に移る。この状態から被測定
物の変位が増加して、光路長差がX1’r経てX2に達
したとすると電気光学結晶25への印加′電圧は第3図
(ロ)に示したように変位の大きさに応じて変化する。
FIG. 3(a) shows the relationship between the optical path length difference and the output voltage of the DC differential amplifier 31. Further, FIG. 3(b) shows the relationship between the optical path length difference and the voltage applied to the electro-optic crystal 25. It is assumed that the optical path length difference when the object to be measured 13 is at the origin is XO, and that the operating point is at point a before the device starts operating. When the device operates in this state, a voltage (EoL7) is applied to the electro-optic crystal 25 as shown in FIG. ) move to point b. If the displacement of the object to be measured increases from this state and the optical path length difference reaches X2 through X1'r, the voltage applied to the electro-optic crystal 25 will change as shown in Figure 3 (b). Varies depending on size.

このとき、電圧比較回路19の参照電圧kEmに設定し
ておくと、電圧比較回路19の出力電圧は常時零であっ
たものが直流差力増幅器31の出力電圧がE+iに達す
ると1になり、オア回路22を介して電子スイッチ23
が動作する、この結果、直流増幅器32の出力電圧が零
とかり装置は第3図(イ)の0点でバランスする。被測
定物がさらに変位し光路長差がXaになると同様にして
バランス点はd点に移り、光路長差がX4になると電気
光学結晶25にはB4の電圧が印加されd点でバランス
する。
At this time, if the reference voltage kEm of the voltage comparison circuit 19 is set, the output voltage of the voltage comparison circuit 19 is always zero, but becomes 1 when the output voltage of the DC differential power amplifier 31 reaches E+i. Electronic switch 23 via OR circuit 22
As a result, the output voltage of the DC amplifier 32 becomes zero, and the device is balanced at the zero point in FIG. 3(a). When the object to be measured further displaces and the optical path length difference becomes Xa, the balance point similarly moves to point d, and when the optical path length difference becomes X4, voltage B4 is applied to the electro-optic crystal 25 and balance is achieved at point d.

したがって被測定物の原点位置からの変位量はつき゛の
ようにしてめることができる。電圧比較回路19の出力
電圧は被測定物13がλ/2変位する毎に(光路長差が
λ増加する毎に)0から1に変化するためこれ葡アツノ
ダウンカウンタ21でプラスに計数して、その結果をλ
/2倍し、さらにその時の電気光学結晶印加電圧E4か
ら被測定物が原点にりったときの印加′電圧−Eat引
いてこれをEmで割ったもの2272倍したもの、即ち
、” 4 ” Ox ’ 、を加えれはよい。被測定物
F、rn 2 が原点から逆方向に変位しfc場合しよ、電圧比較回路
20の基準電圧を−Emに設ていし、前6[;電圧比較
回路20の出力が0からlVC変化したときこれケアン
プダウンカウンタ21でマイナスに計数λ E’4 E
n λ し、その結果全−倍し、さらに□×−ヲ2 Em 2 加えればよい。(ただしE’4 < 0 )〔発明の効
果〕 上述のとおり、本発明によれば、光路長の調節奮雷気光
学結晶などの電圧を印加するとその屈折率が変化する7
子を用いfCから、光学系・電気系が井に簡単になり且
つ応答速IWが速く、萬速の変位測定が可能である。
Therefore, the amount of displacement of the object to be measured from the origin position can be determined as follows. The output voltage of the voltage comparison circuit 19 changes from 0 to 1 every time the object to be measured 13 moves by λ/2 (every time the optical path length difference increases by λ), so this is counted as a positive value by the down counter 21. , the result is λ
/2 times the voltage E4 applied to the electro-optic crystal at that time, minus the voltage applied when the object to be measured reaches the origin -Eat, divided by Em, multiplied by 2272, that is, "4" It is good to add Ox'. Suppose that the object to be measured F, rn 2 is displaced from the origin in the opposite direction fc, the reference voltage of the voltage comparator circuit 20 is set to -Em, and the output of the voltage comparator circuit 20 changes from 0 to lVC. When this happens, the amplifier down counter 21 counts negative λ E'4 E
n λ , multiply the result by all times, and then add □×-wo2 Em 2 . (However, E'4 < 0) [Effects of the Invention] As described above, according to the present invention, when a voltage is applied to an optical crystal that adjusts the optical path length, the refractive index changes.
By using fC, the optical system and electrical system are much simpler and the response speed IW is faster, making it possible to measure displacement at tens of thousands of speeds.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る変位の光学的測定方法を示すJf
;i、理図、第2図(イ)(ロ)(ハ)および第3図(
イ)(ロ)は本発明方法の動作原理の説明図、第4図は
、従来の変位の光学的測定方法光示す原理図、第5 [
G41 (1)乃至(IV) オJ:び第6図(イ)(
ロ)ハ、従来方法の動作M理の説明図である。 4・・・1/4波長板、13・・・棟側定面。 25・・・光路長制御手段、26・・・ビームスプリッ
タキューブ、27.28・・・偏光板、29.30・・
・光検出器、31・・・直流差動増幅器。 代理人 鵜 沼 辰 之 第1図 第5図 □光路差 −◆貯量 (I) 光路差−千万光の強度 (■)0黙動作時の信
号(イ) □ 稿1送用高閤)皮瞥圧 (ロ) −−−−−一 千漆尤の強度と、ヤのt負信号
(八)−m−用事U會澁した製形 呻吟間 →時間
FIG. 1 shows the method for optically measuring displacement according to the present invention.
;i, Rizu, Figure 2 (A) (B) (C) and Figure 3 (
(a) and (b) are explanatory diagrams of the operating principle of the method of the present invention; FIG. 4 is a diagram of the principle of the conventional optical measurement method for displacement;
G41 (1) to (IV) OJ: and Figure 6 (A) (
B) C. It is an explanatory diagram of the operation principle of the conventional method. 4...1/4 wavelength plate, 13...Building side fixed surface. 25... Optical path length control means, 26... Beam splitter cube, 27.28... Polarizing plate, 29.30...
- Photodetector, 31...DC differential amplifier. Agent Tatsuyuki Unuma Figure 1 Figure 5 □ Optical path difference - ◆ Storage capacity (I) Optical path difference - Intensity of 10 million lights (■) Signal at 0 silent operation (A) □ Takako for sending draft 1) Skin pressure (b) -------1 thousand lacquer strength and t negative signal (8) -m-m-meeting U-meeting shaping process → time

Claims (1)

【特許請求の範囲】[Claims] (1)基準面と被測定面に光を照射して、それぞれの反
射光全合成して得られる反射光の光路長差に対応した干
渉信号を利用して被測定面の変位音測定する方法におい
て、前記反射光の光路途中に電圧を印加するとその屈折
率が変化する素子金利用した光路長制御手段全設置し、
前記光路長制御手段全通過した反射光全2分割手段に入
射し、2分割された光から逆位相の電気的干渉信号全偏
光干渉手段によって取り出し、この電気的干渉信号全増
幅して前記光路長制御手段にフィードバックして反射光
の光路長差が常に一定となるように制御し、前記光路長
制御手段の制御量が一定値を越える毎に制御を零に戻す
とともに、前記制御量が一定値を越えた回数を計数し且
つ前記一定値以内の制御量全測定し、両者の合成値から
被測定物の変位量全測定する変位の光学的測定方法。
(1) A method of measuring the displacement sound of the surface to be measured by irradiating light onto the reference surface and the surface to be measured and using an interference signal corresponding to the optical path length difference of the reflected light obtained by total synthesis of each reflected light. All optical path length control means using a gold element whose refractive index changes when a voltage is applied in the middle of the optical path of the reflected light,
The reflected light that has completely passed through the optical path length control means is incident on the total two-splitting means, and an electrical interference signal with an opposite phase is extracted from the two-split light by the total polarization interference means, and this electrical interference signal is fully amplified to determine the optical path length. Feedback is given to the control means so that the optical path length difference of the reflected light is always constant, and each time the control amount of the optical path length control means exceeds a certain value, the control is returned to zero, and the control amount is set to a constant value. An optical method for measuring displacement, in which the number of times the amount exceeds the specified value is counted, all controlled variables within the certain value are measured, and the total amount of displacement of the object to be measured is measured from the composite value of both.
JP12024284A 1984-06-12 1984-06-12 Optical measuring method of displacement Pending JPS60263802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12024284A JPS60263802A (en) 1984-06-12 1984-06-12 Optical measuring method of displacement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12024284A JPS60263802A (en) 1984-06-12 1984-06-12 Optical measuring method of displacement

Publications (1)

Publication Number Publication Date
JPS60263802A true JPS60263802A (en) 1985-12-27

Family

ID=14781356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12024284A Pending JPS60263802A (en) 1984-06-12 1984-06-12 Optical measuring method of displacement

Country Status (1)

Country Link
JP (1) JPS60263802A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03227865A (en) * 1989-11-07 1991-10-08 E I Du Pont De Nemours & Co Method and device for linearly conveying material in roll or sheet form
CN107884950A (en) * 2016-09-30 2018-04-06 美国科视数字系统公司 A kind of device for reducing laser beam coherence

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567006A (en) * 1979-06-22 1981-01-24 Ibm Method of extending measurement range of interference
JPS58158506A (en) * 1982-03-17 1983-09-20 Hitachi Ltd Optical measuring method of displacement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567006A (en) * 1979-06-22 1981-01-24 Ibm Method of extending measurement range of interference
JPS58158506A (en) * 1982-03-17 1983-09-20 Hitachi Ltd Optical measuring method of displacement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03227865A (en) * 1989-11-07 1991-10-08 E I Du Pont De Nemours & Co Method and device for linearly conveying material in roll or sheet form
CN107884950A (en) * 2016-09-30 2018-04-06 美国科视数字系统公司 A kind of device for reducing laser beam coherence
CN107884950B (en) * 2016-09-30 2021-12-21 美国科视数字系统公司 Device for reducing coherence of laser beam

Similar Documents

Publication Publication Date Title
US4688940A (en) Heterodyne interferometer system
US3715165A (en) Investigating the topography of reflecting surfaces
US4759627A (en) Fibre-optic interferometer
CN109164663A (en) Source and preparation method thereof and the unrelated quantum random number generator of equipment are tangled in a kind of miniaturization
JPS61214490A (en) Apparatus for transforming linearly polarized laser beam of single frequency into double frequency orthogonally polarized beam
US4180328A (en) Interferometer which corrects for spurious vibrations
CA2048049C (en) Nonintrusive electro-optic field sensor
JPH06229922A (en) Very accurate air refractometer
US3529894A (en) Interferometer employing a plurality of pairs of interfering beams
US3708229A (en) System for measuring optical path length across layers of small thickness
JPS60263802A (en) Optical measuring method of displacement
Lizunov et al. Development of a multichannel dispersion interferometer at TEXTOR
US3563664A (en) Method and apparatus for resolving transducer ambiguity
US4632556A (en) Method and apparatus for optically measuring clearance change
JPH0460538B2 (en)
JPS60100707A (en) High-sensitivity interferometer
US5416578A (en) Waveguide type wavelength measuring apparatus
JP7284741B2 (en) Interferometers and optics
JPH06194189A (en) Optical encoder
CN211669852U (en) Double-refraction interferometer and quantum optical experimental device based on double-refraction interferometer
JPS63128211A (en) Spacing measuring method
JP3301324B2 (en) Optical voltage / electric field sensor
Wang et al. Nonlinear error in eight-pass heterodyne interferometers
JP2787345B2 (en) Two-wavelength light source element
JPH0345761B2 (en)