JPS58158506A - Optical measuring method of displacement - Google Patents

Optical measuring method of displacement

Info

Publication number
JPS58158506A
JPS58158506A JP4077082A JP4077082A JPS58158506A JP S58158506 A JPS58158506 A JP S58158506A JP 4077082 A JP4077082 A JP 4077082A JP 4077082 A JP4077082 A JP 4077082A JP S58158506 A JPS58158506 A JP S58158506A
Authority
JP
Japan
Prior art keywords
measured
reflected
displacement
light
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4077082A
Other languages
Japanese (ja)
Other versions
JPH0342401B2 (en
Inventor
Toshio Akatsu
赤津 利雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4077082A priority Critical patent/JPS58158506A/en
Publication of JPS58158506A publication Critical patent/JPS58158506A/en
Publication of JPH0342401B2 publication Critical patent/JPH0342401B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To make it possible to perform highly accurate measurement, by changing the length of a light path of reflected light; when the light is irradiated on a reference material and a material to be measured, respectively, the interference light obtained by synthesizing the reflected light beams is utilized, and the displacement is measured. CONSTITUTION:The laser beam emitted from a laser oscillator 1 is reflected by a beam splitter 2 and inputted into a 1/4 wavelength plate which is the reference material. A part of the laser beam is reflected by the surface of the 1/4 wavelength plate, and the other part is reflected by the surface of the material to be measured 13. The respective reflected light beams are inputted into a polarization beam splitter 3 through a beam splitter cube 2. The light beam reflected by the 1/4 wavelength plate passes a 1/4 wavelength plate 6, and is reflected by a mirror surface 10 and also by the polarization beam splitter 3, and then the beam is inputted into a polarizing plate 11. The light beam reflected by the material to be measured 13 passes a 1/4 wavelength plate 5, and is reflected by a mirror surface 9, and then the beam is inputted into the polarizing plate 11. The mirror 9 is controlled so that the interference light which has passed the polarizing plate 11 becomes the maximum or minimum.

Description

【発明の詳細な説明】 本発明は例えばNC工作機械や座標測定器のように正確
な位置決めを必要とする機械の変位計測などに利用され
る変位の光学的測定方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical displacement measuring method used for measuring the displacement of machines that require accurate positioning, such as NC machine tools and coordinate measuring instruments.

被測定物の微小隙間や変位を光学的に測定する方法とし
ては、被測定物の変位を光路差の変化としてとらえ、光
路差が常に一定なるように光路長をフィードバック制御
し、このときのフィードバック制御量から変化量を測定
するようにしたものが提案されている。こf′Lは本田
願人が特願昭55−4591号としてすでに提案してい
るものでおる。
A method for optically measuring minute gaps and displacements of the object to be measured is to treat the displacement of the object as a change in the optical path difference, and to feedback control the optical path length so that the optical path difference is always constant. A method has been proposed in which the amount of change is measured from the controlled amount. This f'L has already been proposed by Ganto Honda in Japanese Patent Application No. 55-4591.

しかし、上記の制御方法では、測定範囲が制御素子の動
作範囲によって決定されるので、被測定物の変位が大き
い場合には測定が困難になる。
However, in the above control method, since the measurement range is determined by the operating range of the control element, measurement becomes difficult when the displacement of the object to be measured is large.

本発明は上記の点に鑑み、被測定物の変位が大きい場合
でも高梢度で変位の測定全可能とした変位の光学的測定
方法を提供することを目的とする。
In view of the above points, an object of the present invention is to provide an optical method for measuring displacement, which makes it possible to measure displacement at a high degree of accuracy even when the displacement of an object to be measured is large.

以下、本発明の一笑施例を第1図により説明する。1は
波長λの直線偏光されたレーザビームを発振するレーザ
発振器、2は入射するV−ザビームの振動面に関係なく
レーザビームを透過または反射させるビームスプリッタ
キューブ、3は入射するレーザビームの振動面に応じて
V−ザビームを透過または反射させる偏光ビームスプリ
ッタ、4.5.6はl/4波長板、7.8はレーザビー
ムの光軸方向に対して鏡面9.10’(i=変位きせる
ことによって光路長を可変にする調節器、例えば電わい
素子で、電わい素子7は検出される干渉光の明るさに応
じて鏡面9を変位させ、亀わい素子8は鏡面10を後述
する高周波発振器からの高周波電圧で変位させ光路差の
符合を判別する機能を有している。11は偏光板、12
は光電変換素子、13は被測定物、工4は高周波発振器
、工5゜16は交流増幅器、17は同期検波回路、18
はローパスフィルター、19.20は電圧比較回路、2
1はアップダウンカウンタ、22はオア回路、23はア
ナログスイッチ、24は直流増幅器を示−ザ発振器lか
ら発振されたレーザビームはピー入射する。このレーザ
ビームの一部分は1/4波長板4の表面で反射式れ、他
の一部分は被測定物13の表面で反射される。このそれ
ぞれの反射光はビームスプリッタキューブ2を介して偏
光ヒームスプリツタ3に入射する。ここで、1/4波長
板4の表面で反射された一方の光に偏光ビームスプリッ
タ3を透過し、被測定物13から反射した光は偏光ビー
ムスプリッタ3で反射する。偏光ビームスプリッタ3を
透過した光は1/4波長板6を透過し、鏡面10で反射
し、再びl/4波長板6を透過して、偏光ビームスプリ
ッタ3で反射して偏光板11に入射する。このとき入射
する光は1/4波長板6を一往復するため振動面が90
゜回転する。また、被測雑物13で反射した他方の光は
、偏光ビームスプリッタ3で反射し、1/4波長板5を
透過し、鏡面9で反射して、再び1/4波長板5を透過
し、偏光ビームスプリッタ3を透過して、偏光板11に
入射する。ここで、1/4波長板40表面で反射して、
偏光板11に達した光と被測定物13で反射して偏光板
11に達した光とは振動面が互いに90°異なるため、
お互いの元は干渉しない。偏光板11の透過軸を例えば
被測定物13から反射した光の振動面に対してFi賃 度に設定しておくと、被測定物13から反射した光と1
/4波長板4から反射した光のそnぞれ偏光板11の透
過軸方向成分が偏光板11′jk透過して干渉を起す。
Hereinafter, a simple embodiment of the present invention will be explained with reference to FIG. 1 is a laser oscillator that oscillates a linearly polarized laser beam with wavelength λ, 2 is a beam splitter cube that transmits or reflects the laser beam regardless of the vibration plane of the incident V-beam, and 3 is the vibration plane of the incident laser beam. 4.5.6 is a l/4 wavelength plate, 7.8 is a mirror surface 9.10' (i = displacement An adjuster that varies the optical path length by adjusting the length of the optical path, for example, an electric flexure element.The electric flexure element 7 displaces the mirror surface 9 according to the brightness of the detected interference light, and the electric flexure element 8 displaces the mirror surface 10 with a high frequency wave as described below. It has a function of determining the sign of the optical path difference by displacing it with a high frequency voltage from an oscillator. 11 is a polarizing plate; 12
13 is a photoelectric conversion element, 13 is an object to be measured, 4 is a high-frequency oscillator, 5 is an AC amplifier, 17 is a synchronous detection circuit, 18
is a low-pass filter, 19.20 is a voltage comparison circuit, 2
1 is an up/down counter, 22 is an OR circuit, 23 is an analog switch, and 24 is a DC amplifier.The laser beam oscillated from the laser oscillator I is incident on the laser beam. A portion of this laser beam is reflected by the surface of the quarter-wave plate 4, and another portion is reflected by the surface of the object to be measured 13. Each of the reflected lights enters the polarizing heam splitter 3 via the beam splitter cube 2. Here, one of the lights reflected on the surface of the quarter-wave plate 4 is transmitted through the polarizing beam splitter 3, and the light reflected from the object to be measured 13 is reflected by the polarizing beam splitter 3. The light that has passed through the polarizing beam splitter 3 passes through the 1/4 wavelength plate 6, is reflected by the mirror surface 10, passes through the 1/4 wavelength plate 6 again, is reflected by the polarizing beam splitter 3, and enters the polarizing plate 11. do. At this time, the incident light makes one round trip through the 1/4 wavelength plate 6, so the vibration plane is 90°.
゜Rotate. The other light reflected by the object to be measured 13 is reflected by the polarizing beam splitter 3, transmitted through the 1/4 wavelength plate 5, reflected by the mirror surface 9, and transmitted through the 1/4 wavelength plate 5 again. , passes through the polarizing beam splitter 3 and enters the polarizing plate 11. Here, it is reflected on the surface of the 1/4 wavelength plate 40,
Since the vibration planes of the light that reached the polarizing plate 11 and the light that was reflected by the object to be measured 13 and reached the polarizing plate 11 are different from each other by 90 degrees,
Each other's ex doesn't interfere. For example, if the transmission axis of the polarizing plate 11 is set to Fi relative to the vibration plane of the light reflected from the object to be measured 13, the light reflected from the object to be measured 13 and 1
Each n component of the light reflected from the /4 wavelength plate 4 in the transmission axis direction of the polarizing plate 11 is transmitted through the polarizing plate 11'jk and causes interference.

この干渉光の明るさケ元電変換素子により電気信号に変
換する。
The brightness of this interference light is converted into an electric signal by an electric conversion element.

12に達するまでの光路長と被測定物13の次面で反射
されて光電変換素子12に達するまでの光路長との差に
よって生じるが、つぎにこの光路差について説明する。
This optical path difference is caused by the difference between the optical path length until reaching the photoelectric conversion element 12 and the optical path length until reaching the photoelectric conversion element 12 after being reflected by the next surface of the object to be measured 13. Next, this optical path difference will be explained.

第1図において、t+ = t2.1 / 4波長板4
の表面から被測定物13の表向までの光路長をXとする
と、前記光路差rl 2 Xとなる。ここで、1/4波
長板4の表面から反射され、光電変換素子12に達する
レーザビームの明るさと被測定物13の表面で反射場れ
て光′亀変換素子12に達するレーザビームの明るさは
等しく共にIとすると、干渉光の明るさITは(1)式
で示される。
In FIG. 1, t+ = t2.1/4 wavelength plate 4
Letting X be the optical path length from the surface of the object 13 to the front surface of the object to be measured 13, the optical path difference rl 2 X is obtained. Here, the brightness of the laser beam that is reflected from the surface of the quarter-wave plate 4 and reaches the photoelectric conversion element 12, and the brightness of the laser beam that is reflected from the surface of the object to be measured 13 and reaches the optical conversion element 12. are both equal to I, then the brightness IT of the interference light is expressed by equation (1).

IT=21 (1−cO89’ )        −
(1)但し位相差ψハ(2)式で示される。
IT=21 (1-cO89') -
(1) However, the phase difference ψ is expressed by equation (2).

4π 、−−X            ・・・ (2)λ 第2図(イ)は前記光路差と干渉光の明るさとの関係を
示したものでめる。
4π, -X... (2) λ Figure 2 (a) shows the relationship between the optical path difference and the brightness of the interference light.

前にもどって、電わい素子8に高周波発振器14から高
周波の正弦波電圧を印加すると、鏡面10は微小変位す
る。このときの変位fを±Δ!7/2とする。いま、鏡
面10を変位させる前の前記光路差2Xがa点にあった
とする。この状愈で鏡面10を高周波振動させると、干
渉光の明るさは第2図(o)の点線のように変化する。
Returning to the front, when a high frequency sinusoidal voltage is applied to the electric flexure element 8 from the high frequency oscillator 14, the mirror surface 10 is slightly displaced. The displacement f at this time is ±Δ! It will be 7/2. Now, assume that the optical path difference 2X is at point a before the mirror surface 10 is displaced. When the mirror surface 10 is vibrated at high frequency in this state, the brightness of the interference light changes as shown by the dotted line in FIG. 2(o).

また第2図(o)において、火線は篭わい素子8に印加
した電圧を示す。前記干渉光の明るさの変化を光を変換
素子12によって電気信号に変換し、交流増幅器16で
増幅した後、同期検波回路17で検波する。この検波信
号をさらにローパスフィルター18を介して直流増幅器
24で増幅して電わい素子7に印力口すると、ミラー9
が微小変位すると共に、前記光路差が変化する。一方、
前記光路差が、第2図(イ)において、b点にめったと
すると、この状態で鏡面10を高周波振動させると、干
渉光の明るさは第2図(ハ)の点耐で示すように変化す
る。捻だ第2図Piにおいて実If#rj、篭わい索子
8に印加した電圧を示す。干渉光の明るさを光電変換素
子12で電気信号に変換して、同様にして同期検波をし
てローパスフィルターを通すと出力電圧はOになる。
Further, in FIG. 2(o), the caustic line indicates the voltage applied to the gage element 8. The change in brightness of the interference light is converted into an electrical signal by the conversion element 12, amplified by the AC amplifier 16, and then detected by the synchronous detection circuit 17. This detected signal is further amplified by the DC amplifier 24 via the low-pass filter 18 and is applied to the electric flexure element 7.
is slightly displaced, and the optical path difference changes. on the other hand,
Assuming that the optical path difference is almost at point b in FIG. 2(A), when the mirror surface 10 is vibrated at high frequency in this state, the brightness of the interference light will be as shown by the point resistance in FIG. 2(C). Change. In FIG. 2 Pi, the voltage applied to the actual If#rj and the cage rope 8 is shown. When the brightness of the interference light is converted into an electrical signal by the photoelectric conversion element 12, synchronous detection is performed in the same manner, and the signal is passed through a low-pass filter, the output voltage becomes O.

すなわち、第2図(イ)において、最初光路差がa点に
あったとすると、このときの干渉光の明るさを電気信号
に変換して、同期検波回路17、ローパスフィルター1
8、直流増幅器24を介して電わい索子7に印加してや
ると、ミラー9が微小変位して光路差がb点に来てバラ
ンスする。以後、同様にして被測定物13が変位すると
、これに従ってミラー9が変位して、光路差が常に第2
図(イ)において、b点にくるように動作する。このと
き電わい素子7について、印加電圧と変位との関係をあ
らかじめ校正しておけば、′魁わい索子7への印加電圧
を測定することによって、被測定物13の変位を測定す
ることができる。このときの測定範1ffil−j:電
わい索子7の動作範囲によって決まる。また、測定梢度
f″i、奄わい索子の印加電圧と変位との関係によって
決まるため、高n度の測定ができる。
That is, in FIG. 2(a), if the optical path difference is initially at point a, the brightness of the interference light at this time is converted into an electrical signal, and the synchronous detection circuit 17 and the low-pass filter 1
8. When an electric current is applied to the wire 7 through the DC amplifier 24, the mirror 9 is slightly displaced and the optical path difference reaches point b, resulting in balance. Thereafter, when the object to be measured 13 is displaced in the same way, the mirror 9 is also displaced accordingly, so that the optical path difference is always the second.
In the figure (a), it moves to point b. At this time, if the relationship between the applied voltage and the displacement of the electric flexure element 7 is calibrated in advance, the displacement of the object to be measured 13 can be measured by measuring the voltage applied to the electric flexure element 7. can. Measurement range 1ffil-j at this time: Determined by the operating range of the electric cable 7. In addition, since the measurement angle f″i is determined by the relationship between the applied voltage and the displacement of the wavy wire, high n-degree measurements can be performed.

つぎに被測定物13が大きく変化しfc場合について述
べる。
Next, a case where the object to be measured 13 changes significantly and fc will be described.

第3図(イ)は被測定物13の変位Xと干渉光の明るさ
との関係を示したものである。また第3図(ロ)は変位
と電わい索子7に印加される電圧との関係を示したもの
である。被測定物13の原点の位置iX。とじ、このと
き光路差がa点にあったとする。この状態で第1区の装
置が動作すると、電わい素子7には第3図(ロ)の実線
で示すように−E0の電圧が印加されて、第3図(イ)
のb点でバランスする。この状態から、被測定物13の
変位Xが増加してXlに達したとすると、電わい索子7
に印加される電圧は第3図(ロ)に示すように変位量の
大@芒に応じて変化する。このとき電圧比較回路19の
比軟電圧1肌に設定しておくと、電圧比較回路19の出
力′電圧は常時0であったものが、ローパスフィルター
18の出力電圧がE、に達すると1となり、オア回路2
2を介して電子スイッチ23が動作する。この結果、直
流増幅器24の出力電圧が0となり、第3図(イ)の0
点でバランスする。さらに変位Xが大きくなると、同様
にしてd点でバランスし、変位がX、になると、電わい
素子7にはE、の電圧が印加されd点でバランスする。
FIG. 3(A) shows the relationship between the displacement X of the object to be measured 13 and the brightness of the interference light. Further, FIG. 3(b) shows the relationship between the displacement and the voltage applied to the electric wire 7. Position iX of the origin of the object to be measured 13. Suppose that the optical path difference is at point a at this time. When the device in the first section operates in this state, a voltage of -E0 is applied to the electric flexure element 7 as shown by the solid line in Figure 3 (B), and as shown in Figure 3 (A).
Balance at point b. From this state, if the displacement X of the object to be measured 13 increases and reaches Xl, then the electric wire 7
As shown in FIG. 3 (b), the voltage applied to the awn changes depending on the amount of displacement. At this time, if the soft voltage of the voltage comparison circuit 19 is set to 1, the output voltage of the voltage comparison circuit 19 is always 0, but becomes 1 when the output voltage of the low-pass filter 18 reaches E. , OR circuit 2
An electronic switch 23 is operated via 2. As a result, the output voltage of the DC amplifier 24 becomes 0, and 0 as shown in FIG.
balance on points. When the displacement X further increases, balance is achieved at point d in the same way, and when the displacement becomes X, a voltage of E is applied to the electric skew element 7, resulting in balance at point d.

したがって、被測定物13の原点位置X。Therefore, the origin position X of the object to be measured 13.

からX、までの変位Xはつぎのようにして測定すること
ができる。電圧比較回路工9の出力電圧は被測定物13
がλ/2変位する毎に0から1に変化するためこれをア
ップダウンカフ/ター21で計数して、その針数結果を
λ/2倍し、さらにつき゛に被測定物13が原点X。の
位置から変位Xが減少する方向に変化しfC場合につい
て説明する。
The displacement X from to X can be measured as follows. The output voltage of the voltage comparator circuit 9 is the object to be measured 13
Since it changes from 0 to 1 every time the needle is displaced by λ/2, this is counted by the up/down cuff/ter 21, and the result of the number of stitches is multiplied by λ/2. A case where the displacement X changes in a decreasing direction from the position fC will be described.

(9) この場合は予め′屯わい素子7には−Eoの電圧が印加
されてb点でバランスしている。この状態から、変位X
が小さくなる方向に被測定物13が変位したとすると、
電わい素子7には第3図(ロ)に示すように負の電圧が
印〃nさnる。ここで電圧比較回路2oの比軟電圧’に
−E、、に設定しておくと、電圧比較回路20の出力電
圧に常時0がら1に変化してb′点でバランスする。し
たがって電圧比較回路20の出力電圧の変化をアップダ
ウンカラXI′までの変位量が求まる。
(9) In this case, a voltage of -Eo is applied to the balance element 7 in advance, and the voltage is balanced at point b. From this state, the displacement
Assuming that the object to be measured 13 is displaced in the direction in which
A negative voltage is applied to the voltage distortion element 7 as shown in FIG. 3(b). If the specific soft voltage ' of the voltage comparator circuit 2o is set to -E, the output voltage of the voltage comparator circuit 20 always changes from 0 to 1 and is balanced at point b'. Therefore, the amount of displacement of the output voltage of the voltage comparison circuit 20 to the up/down column XI' can be determined.

本発明測定によれば、微小変位の測定は勿論、変位が大
きい場合にも縄!*度の測定が可能になる。
According to the measurement of the present invention, it is possible to measure not only small displacements but also large displacements. *It becomes possible to measure degrees.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の変位の光学的測定方法を示す原理図、
第2図(イ)、(ロ)、C→および第3図(イ)、(0
)は本発明方法の動作原理を説明するための図である。 l・・・ンーザ発振器、3・・・偏光ビームスプリッタ
、7.8・・・軍わい索子、12・・・光1変換素子、
13(10) ・・・被測定物、21・・・アップダウンカウンター、
23・・・電子スイッチ。 茅 2 図 (イノ 一几l 蔦 3  図 (<) (ロノ
FIG. 1 is a principle diagram showing the optical displacement measurement method of the present invention;
Figure 2 (a), (b), C → and Figure 3 (a), (0
) is a diagram for explaining the operating principle of the method of the present invention. 1...Nuza oscillator, 3...Polarizing beam splitter, 7.8...Military beam splitter, 12...Light 1 conversion element,
13 (10) ... Object to be measured, 21 ... Up-down counter,
23...Electronic switch. Thatch 2 fig.

Claims (1)

【特許請求の範囲】[Claims] 基準物と被測定物にそれぞれ光を照射して、それぞれの
反射光を合成して侍られる干渉″21利用して被測定物
の変位を測定する方法において、前記反射光のいずれ刀
・一方の光路の途中に光路長全可変にする調節器を設置
し、光路差によって発生する干渉光の明るさを検出し、
この検出した信号により前記調節器を干渉光の明るさが
常に最大または最小になるように制御し、前記調節器の
制御量が一定値を越える母に前記調節器を元にもどすよ
うにし、制御量が一定値を越えたときの回数を計数する
と共に前記一定値以内の制御量を測定す懺≠4両者の合
成値から被測定物の変位量を測定するようにしたことを
特徴とする変位の光学的測定方法。
In a method of measuring the displacement of an object to be measured by irradiating the reference object and the object to be measured with light and combining the respective reflected lights, the displacement of the object to be measured is measured using interference. A regulator that makes the optical path length fully variable is installed in the middle of the optical path, and the brightness of the interference light generated due to the optical path difference is detected.
The detected signal controls the adjuster so that the brightness of the interference light is always at the maximum or minimum, and when the control amount of the adjuster exceeds a certain value, the adjuster is returned to its original state. A displacement method characterized in that the number of times the amount exceeds a certain value is counted, and the controlled amount within the certain value is measured.≠4 The amount of displacement of the object to be measured is measured from the composite value of both. optical measurement method.
JP4077082A 1982-03-17 1982-03-17 Optical measuring method of displacement Granted JPS58158506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4077082A JPS58158506A (en) 1982-03-17 1982-03-17 Optical measuring method of displacement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4077082A JPS58158506A (en) 1982-03-17 1982-03-17 Optical measuring method of displacement

Publications (2)

Publication Number Publication Date
JPS58158506A true JPS58158506A (en) 1983-09-20
JPH0342401B2 JPH0342401B2 (en) 1991-06-27

Family

ID=12589862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4077082A Granted JPS58158506A (en) 1982-03-17 1982-03-17 Optical measuring method of displacement

Country Status (1)

Country Link
JP (1) JPS58158506A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60263802A (en) * 1984-06-12 1985-12-27 Hitachi Ltd Optical measuring method of displacement
JPS61219802A (en) * 1985-03-27 1986-09-30 Hitachi Ltd Apparatus for optical measurement of displacement
JP2006275910A (en) * 2005-03-30 2006-10-12 Canon Inc System and method for position sensing
US7990318B2 (en) 2007-03-22 2011-08-02 Brother Kogyo Kabushiki Kaisha Radio-frequency telephone set

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60263802A (en) * 1984-06-12 1985-12-27 Hitachi Ltd Optical measuring method of displacement
JPS61219802A (en) * 1985-03-27 1986-09-30 Hitachi Ltd Apparatus for optical measurement of displacement
JPH0375041B2 (en) * 1985-03-27 1991-11-28
JP2006275910A (en) * 2005-03-30 2006-10-12 Canon Inc System and method for position sensing
US7990318B2 (en) 2007-03-22 2011-08-02 Brother Kogyo Kabushiki Kaisha Radio-frequency telephone set

Also Published As

Publication number Publication date
JPH0342401B2 (en) 1991-06-27

Similar Documents

Publication Publication Date Title
EP0250306B1 (en) Angle measuring interferometer
JP2673086B2 (en) Method and apparatus for interferometrically determining the phase difference between differently polarized light beams
US3881823A (en) Apparatus for measuring the variation of an optical path length with the aid of an interferometer
US4717250A (en) Angle measuring interferometer
JPH05119284A (en) Polarization device
US5493395A (en) Wavelength variation measuring apparatus
WO1988001044A1 (en) Improvements in or relating to measuring
JPS60256079A (en) Minute displacement measuring apparatus using semiconductor laser
EP0704685B1 (en) Angle detecting apparatus for detecting angle of inclination of scanning mirror provided on Michelson interferometer
US4807997A (en) Angular displacement measuring interferometer
JPS58158506A (en) Optical measuring method of displacement
CN108627084B (en) Laser instrument wavelength calibration system based on static michelson interferometer
US5067813A (en) Optical apparatus for measuring displacement of an object
JPH0222503A (en) Laser interference measuring instrument
JPH07190712A (en) Interferometer
JPH0466804A (en) Absolute length measuring device
JPH0472163B2 (en)
Usuda et al. Development of laser interferometer for a sine-approximation method
JPH02298804A (en) Interferometer
JPH11257915A (en) Interferometer for measuring displacement
JP2001343222A (en) Method and apparatus for measuring three-dimensional shape
JPH06117810A (en) Absolute type length measuring equipment with correcting function of external disturbance
JP2610349B2 (en) Differential laser interferometer
JPH0283422A (en) Laser frequency meter
JPH03115922A (en) Signal processing circuit and displacement measuring instrument equipped with the same