JPH03115922A - Signal processing circuit and displacement measuring instrument equipped with the same - Google Patents

Signal processing circuit and displacement measuring instrument equipped with the same

Info

Publication number
JPH03115922A
JPH03115922A JP25551789A JP25551789A JPH03115922A JP H03115922 A JPH03115922 A JP H03115922A JP 25551789 A JP25551789 A JP 25551789A JP 25551789 A JP25551789 A JP 25551789A JP H03115922 A JPH03115922 A JP H03115922A
Authority
JP
Japan
Prior art keywords
signal
light
scale
difference
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25551789A
Other languages
Japanese (ja)
Inventor
Satoru Ishii
哲 石井
Yoichi Kubota
洋一 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP25551789A priority Critical patent/JPH03115922A/en
Publication of JPH03115922A publication Critical patent/JPH03115922A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To improve the measurement accuracy by detecting the difference between a 1st and a 2nd signal whose phases are different from each other by 180 deg. and almost eliminating the DC component of a 3rd signal corresponding to the difference. CONSTITUTION:Photocurrent signals from photodetector 14 and 15 are converted into voltage signals whose phases are different from each other by 180 deg. by operational amplifiers 41 and 42 and the phase difference is detected by an operational amplifier 43 to send an output V0 from an output terminal 44. At this time, a variable resistor 61 is added to the amplifier 42 and variations of the DC components of sine wave signals from the elements 14 and 15 and a DC component attending on the rotation are canceled.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、信号処理回路に関するものであり、特に被検
物体の移動(並進移動又は回転)量や移動速度を測定す
る変位測定装置などに使用される信号処理回路に関する
ものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a signal processing circuit, and is particularly used in a displacement measuring device that measures the amount of movement (translational movement or rotation) and movement speed of an object to be examined. This invention relates to signal processing circuits.

〔従来技術〕[Prior art]

近年、NC工作機械や半導体焼付装置等の精密機械にお
いては1μm以下(サブミクロン)の分解能で、被検物
体の位置を測定することができる精密な測定器が要求さ
れている。
2. Description of the Related Art In recent years, precision machines such as NC machine tools and semiconductor printing equipment require precision measuring instruments that can measure the position of an object to be inspected with a resolution of 1 μm or less (submicron).

サブミクロンの分解能で変位を測定することのできる測
定器としては、レーザー等の可干渉性光束を用い、移動
物体からの一対の回折光を干渉させて干渉光を形成し、
該干渉光を光電変換するロータリーエンコーダーやリニ
アエンコーダーが良く知られている。
A measuring instrument that can measure displacement with submicron resolution uses a coherent beam of light such as a laser, and forms interference light by interfering with a pair of diffracted lights from a moving object.
Rotary encoders and linear encoders that photoelectrically convert the interference light are well known.

この種のエンコーダーは、例えば、本件出願人による特
開昭62−193922号公報や特開昭6219392
3号公報等で提案されており、これらの公報の装置では
、レーザーからのレーザー光を2つに分割し、各レーザ
ー光を回転物体や並進移動物体に連結されている回折格
子上の2箇所に入射させている。
This type of encoder is disclosed in, for example, Japanese Patent Application Laid-Open No. 62-193922 and Japanese Patent Application Laid-open No. 6219392 by the applicant.
3, etc., and the devices in these publications split the laser beam from the laser into two, and each laser beam is split into two parts on a diffraction grating connected to a rotating object or a translational object. It is input to.

そして該回折格子から生ずる一対の正負同次数の回折光
を互いに干渉させることにより干渉光を形成し、該干渉
光を受光手段により検出し、電気信号に変換することに
より、該回折格子の移動状態を高精度に求めている。
A pair of positive and negative diffraction lights of the same order generated from the diffraction grating are made to interfere with each other to form interference light, and the interference light is detected by a light receiving means and converted into an electric signal, thereby controlling the movement of the diffraction grating. is required with high precision.

受光手段は、通常、一対若しくはそれ以」二の数の受光
素子より構成され、例えば一対の受光素子に対して、互
いに位相が】80°異なる干渉光を入射させ、これらの
受光素子からの電気信号を処理して、回折格子の移動量
を求める。この処理を行うための回路は差動増幅器を含
み、この増幅器によって、これらの受光素子からの互い
に位相が180゜異なる信号の差を検出し、検出により
得られた信号をコンパレーターに入力してパルスに変換
し、このパルスを計数することにより移動量を求めるよ
う構成されている。この処理回路では、各受光素子から
の信号の直流成分が減算されるため、レーザーの発光強
度の変化等の影響で測定精度が劣化することがあまりな
い。しかしながら、各受光素子から出力される信号の直
流成分のレベルは互いに異なっているため、従来の回路
では、差動増幅器からの信号に直流成分が含まれており
、この直流成分の影響で、測定精度の更なる向上を達成
することが困難であった。
The light-receiving means is usually composed of a pair or two or more light-receiving elements. For example, interference light beams having phases different by 80 degrees are made incident on the pair of light-receiving elements, and the electricity from these light-receiving elements is detected. The signal is processed to determine the amount of movement of the diffraction grating. The circuit for performing this processing includes a differential amplifier, which detects the difference between the signals from these light-receiving elements that are 180 degrees out of phase with each other, and inputs the detected signal to a comparator. It is configured to calculate the amount of movement by converting it into pulses and counting the pulses. In this processing circuit, since the DC component of the signal from each light receiving element is subtracted, the measurement accuracy is less likely to deteriorate due to changes in laser emission intensity or the like. However, since the level of the DC component of the signal output from each photodetector is different from each other, in conventional circuits, the signal from the differential amplifier contains a DC component, and due to the influence of this DC component, the measurement Further improvements in accuracy were difficult to achieve.

〔発明の概要〕[Summary of the invention]

本発明の第1の目的は、上記問題を解消することができ
る、改良された信号処理回路を提供することにある。
A first object of the present invention is to provide an improved signal processing circuit that can solve the above problems.

また、本発明の第2の目的は、上記問題を解消すること
ができる、改良された信号処理回路を備えた変位測定装
置を提供することにある。
A second object of the present invention is to provide a displacement measuring device equipped with an improved signal processing circuit that can solve the above problems.

上記第1の目的を達成するために、本発明の信号処理回
路は、互いに位相が180’異なる第1と第2の信号を
生成する生成手段と、該生成手段からの第1信号と第2
信号の差を検出し、検出した差に応じた第3信号を出力
する減算手段とを備え、上記生成手段及び/又は減算手
段が、上記減算手段からの第3信号の直流成分をほぼ零
にするための調整手段を有しており、このような構成と
することにより、例えばリニアエンコーダーやロータリ
ーエンコーダーなどの変位測定装置に使用して、装置の
測定精度を更に向上させることができる。
In order to achieve the above-mentioned first object, the signal processing circuit of the present invention includes a generating means for generating first and second signals having a phase difference of 180' from each other, and a first signal from the generating means and a second signal.
and subtraction means for detecting a difference between the signals and outputting a third signal according to the detected difference, wherein the generation means and/or subtraction means reduce the DC component of the third signal from the subtraction means to approximately zero. By having such a configuration, it can be used in a displacement measuring device such as a linear encoder or a rotary encoder to further improve the measuring accuracy of the device.

また、上記第2の目的を達成するために、本発明の変位
測定装置は、回転若しくは並進移動する、可動スケール
に形成された目盛りを読取って、スケールの変位応じた
、互いに位相が180°異なる第1と第2信号を出力す
るスケール読取手段と、該読取手段からの第1と第2信
号の差を検出し、検出した差に応じた第3信号を出力す
る減算手段とを有し、該第3信号に基づいてスケールの
変位を測定する変位測定装置において、上記読取手段及
び/又は上記減算手段が、上記減算手段からの第3信号
の直流成分をほぼ零にするための調整手段を有すること
を特徴としている。そして、このような調整手段を備え
ることにより、直流成分がほぼ零に近い第3信号に基づ
いて測定ができるので、測定精度が向上する。
In addition, in order to achieve the above second object, the displacement measuring device of the present invention reads scales formed on a movable scale that rotates or translates, and has a phase difference of 180° from each other according to the displacement of the scale. It has a scale reading means for outputting a first and a second signal, and a subtraction means for detecting a difference between the first and second signals from the reading means and outputting a third signal according to the detected difference, In the displacement measuring device that measures the displacement of a scale based on the third signal, the reading means and/or the subtracting means includes an adjusting means for reducing the DC component of the third signal from the subtracting means to approximately zero. It is characterized by having By providing such an adjustment means, measurement can be performed based on the third signal in which the DC component is nearly zero, thereby improving measurement accuracy.

本発明のいくつかの特徴と具体的形態例は、後述する実
施例に記載されている。
Some features and specific embodiments of the invention are described in the Examples below.

第1図は変位測定装置の一例を示すブロック図、第2図
及び第3図は第1図の装置を具体的に示す、本信号処理
回路が備えられた変位測定装置を示す。
FIG. 1 is a block diagram showing an example of a displacement measuring device, and FIGS. 2 and 3 specifically illustrate the device shown in FIG. 1, and show a displacement measuring device equipped with the present signal processing circuit.

第1図、第2図において、1は半導体レーザー2はレー
ザーlから出射する光束を平行光束にするコリメータレ
ンズ、3は2個の台形プリズム31゜3□を貼合わせて
なる光学部品、4は第1光分割手段であり、光学部品3
のプリズム3□、3゜の貼合わせ面より成り、この手段
4は偏光ビームスプリッタ−と同機能の光分割を行なう
。5及び7は第1光学手段としての反射鏡、6は被測定
回転物体としての回転円板」二に設けた放射格子(回折
格子タイプのスケール)、8及びIOは174波長板で
ある。9及び11は反射手段であり、例えばキャッツア
イ光学系から成っている。
In Figs. 1 and 2, 1 is a semiconductor laser 2, a collimator lens that converts the light beam emitted from the laser l into a parallel light beam, 3 is an optical component made by bonding two trapezoidal prisms 31°3□, and 4 is a collimator lens that converts the light beam emitted from the laser l into a parallel light beam. The optical component 3 is a first light splitting means.
This means 4 consists of a prism 3□ and a 3° bonded surface, and this means 4 performs light division with the same function as a polarizing beam splitter. 5 and 7 are reflecting mirrors as first optical means, 6 is a rotating disk as a rotating object to be measured, a radiation grating (a diffraction grating type scale) is provided at 2, and 8 and IO are 174 wavelength plates. Reference numerals 9 and 11 are reflecting means, which are comprised of, for example, a cat's eye optical system.

12は1/4波長板、13は偏光ビームスプリッタ−1
4および15は受光素子である。また、○は放射格子6
の中心、M、、M2は放射格子6上の任意の点を示す。
12 is a quarter wavelength plate, 13 is a polarizing beam splitter-1
4 and 15 are light receiving elements. Also, ○ indicates radiation grating 6
The center, M, , M2 indicates an arbitrary point on the radiation grating 6.

コリメータレンズ2から1/4波長板12までの各要素
を1つにまとめてブロック化したものを、第1図に示す
如く、回折光干渉手段21と称することにする。尚、第
2図で示す回折光干渉手段21は、−例にすぎず、例の
公知の様々な形態が採り得ることは言うまでもない。
A block in which each element from the collimator lens 2 to the quarter-wave plate 12 is combined into one block will be referred to as a diffracted light interference means 21, as shown in FIG. Incidentally, the diffracted light interference means 21 shown in FIG. 2 is merely an example, and it goes without saying that various known forms of examples may be adopted.

本実施例では、レーザー1より放射されるレーザー光を
コリメークレンズ2によって平行光束とし、この光束を
光学部品3をなす台形プリズム3.の斜面で反射した後
、光分割面4へ所定の角度で入射するように、光学部品
3へ指向する。光分割面4に入射した光束は、略1:1
の比率で、反射光束と透過光束の2つの直線偏光光束に
分割される。尚、レーザー1から光束は、光分割面4の
直交偏波面に対して45°の方位へ偏光した直線偏光光
より成る。
In this embodiment, a laser beam emitted from a laser 1 is converted into a parallel beam by a collimating lens 2, and this beam is converted into a parallel beam by a trapezoidal prism 3. After being reflected on the slope of the beam, the beam is directed toward the optical component 3 so as to be incident on the light splitting surface 4 at a predetermined angle. The luminous flux incident on the light splitting surface 4 is approximately 1:1
It is divided into two linearly polarized beams, a reflected beam and a transmitted beam, at a ratio of . Incidentally, the light beam from the laser 1 is composed of linearly polarized light polarized in a direction of 45° with respect to the orthogonal polarization plane of the light splitting plane 4.

光分割面4で分割された2光束は、各々、台形プリズム
30,3゜内で2度反射し、光学部品3から出射し、反
射鏡5,7により、放射格子6の所定の位置M1及びM
2へ所定の入射角で入射する。放射格子6で回折した透
過回折光のうち、+1次の回折光を、1/4波長板8,
10を介して反射手段9゜11により反射し、同一光路
を逆行させる。そして、放射格子6の略同−位置M1及
びM2へ再入射させ、ここで再回折された+1次の回折
光を反射鏡5゜7で反射し、同一光路を逆行させ、光学
部品3の内面で反射せしめて、光分割面4へ導光してい
る。ここでの各光束(±1次回折光)は、反射手段9.
】1で反射される前後で2度1/4波長板を通過する為
、それらの偏光方位は、放射格子6へ入射する前とは各
々90°異なっている。従って、第2光学手段を兼ねる
光分割面4で先に反射した光であった光束が今度は透過
し、先・に透過した光であった光束が今度は反射して重
なり合い、光学部品3で内面反射して1/4波長板12
へ入射する。1/4波長板12を通過した各光束は、互
いに逆回りの円偏光となる。
The two beams split by the light splitting plane 4 are each reflected twice within the trapezoidal prisms 30 and 3 degrees, exit from the optical component 3, and are directed to predetermined positions M1 and M1 of the radiation grating 6 by the reflecting mirrors 5 and 7. M
2 at a predetermined angle of incidence. Of the transmitted diffracted light diffracted by the radiation grating 6, the +1st-order diffracted light is transferred to a quarter-wave plate 8,
10, the light is reflected by the reflecting means 9.degree. 11, and the same optical path is caused to travel backward. The +1st-order diffracted light is then re-injected into substantially the same positions M1 and M2 of the radiation grating 6, and the +1st-order diffracted light re-diffracted here is reflected by the reflecting mirror 5°7, and the same optical path is reversed. The light is reflected and guided to the light splitting surface 4. Each luminous flux (±first-order diffracted light) here is transmitted to the reflecting means 9.
] Since the light beams pass through the quarter-wave plate twice before and after being reflected by the radiation grating 6, their polarization directions differ by 90 degrees from those before entering the radiation grating 6. Therefore, the light beam that was reflected earlier on the light splitting surface 4, which also serves as the second optical means, is transmitted this time, and the light beam that was transmitted earlier is now reflected and overlaps, and the optical component 3 Internal reflection and 1/4 wavelength plate 12
incident on the Each light beam passing through the quarter-wave plate 12 becomes circularly polarized light in opposite directions.

この光束は、偏光ビームスプリッタ−13によって、偏
光方位の直交する2つの光に分割され、受光素子14、
 15に入射する。そして、受光素子14. 15が、
各々対応する干渉光を光電変換し、電気信号を出力する
This light beam is split by a polarizing beam splitter 13 into two beams with orthogonal polarization directions, and a light receiving element 14,
15. Then, the light receiving element 14. 15 is
Each corresponding interference light is photoelectrically converted and an electrical signal is output.

本実施例において、被測定回転物体が放射格子6の1ピ
ツチ分だけ回転すると、+1次の再回折光の位相は2π
だけ変化する。同様に放射格子6により再回折された一
1次の回折光の位相は一2πだけ変化する。これにより
全体として受光素子14. 15からは(2−(−2)
=4個の正弦波信号が得られる。本実施例ではこのとき
の各正弦波信号を検出することにより、放射格子6の回
転量を測定している。
In this example, when the rotating object to be measured rotates by one pitch of the radiation grating 6, the phase of the +1st order re-diffracted light is 2π
only changes. Similarly, the phase of the 11th order diffracted light re-diffracted by the radiation grating 6 changes by 12π. As a result, the light receiving element 14 as a whole. From 15 (2-(-2)
=4 sinusoidal signals are obtained. In this embodiment, the amount of rotation of the radiation grating 6 is measured by detecting each sine wave signal at this time.

例えば放射格子6のピッチが3.2μmだとすれば、回
転物体が3.2μm分だけ回転したとき、受光素子14
. 15からは4個の正弦波形が得られるから、正弦波
形1個当たりの分解能として、回折格子1ピツチの1/
4の3.2/4=0.8μmが得られる。
For example, if the pitch of the radiation grating 6 is 3.2 μm, when the rotating object rotates by 3.2 μm, the light receiving element 14
.. Since four sine waveforms can be obtained from 15, the resolution per sine waveform is 1/1 of the pitch of one diffraction grating.
3.2/4 of 4=0.8 μm is obtained.

本実施例では、1/4波長板12からの±1次回目折光
より成る光を、偏光ビームスプリッタ−13により、偏
光方位が互いに90°異なる2つの干渉光に分割してい
るので、受光素子14. 15からは、位相が互いに1
80°ずれた一対の正弦波信号が出力される。
In this embodiment, the light consisting of the ±1st-order diffracted light from the quarter-wave plate 12 is split by the polarizing beam splitter 13 into two interference lights whose polarization directions are different from each other by 90°. 14. From 15, the phases are 1 to each other.
A pair of sine wave signals shifted by 80° are output.

尚、被測定回転物体の角度検出や回転方向検出のために
、別の位相を持つ信号を得る必要があるときは、光分割
手段や偏光板などを適宜用いて所望の位相の干渉光を取
り出せば良い。
If it is necessary to obtain a signal with a different phase to detect the angle or direction of rotation of the rotating object to be measured, use a light splitting means or polarizing plate as appropriate to extract the interference light with the desired phase. Good.

次に、第2図の装置に備えられる信号処理回路について
説明する。第3図は、信号処理回路の一例を示す回路図
である。第3図において、14. 15は第1図と第2
図で同じ符号で示した受光素子であり、ここではフォト
ダイオードを用いている。41.42゜43は演算増幅
器、51〜55は抵抗器、61は可変抵抗器、C,、C
2はコンデンサである。また、44は本回路の出力端子
である。
Next, the signal processing circuit provided in the apparatus shown in FIG. 2 will be explained. FIG. 3 is a circuit diagram showing an example of a signal processing circuit. In FIG. 3, 14. 15 is Figure 1 and 2
The light-receiving elements are shown with the same reference numerals in the figure, and here a photodiode is used. 41.42° 43 is an operational amplifier, 51 to 55 are resistors, 61 is a variable resistor, C,, C
2 is a capacitor. Further, 44 is an output terminal of this circuit.

受光素子14.15により得られた光電流(信号)は、
演算増幅器41.42で各々互いに位相が180゜異な
る電圧信号に変換され、演算増幅器43(減算手段)で
それらの電圧信号の差が検出されて増幅される。コンデ
ンサC,,C2は高周波領域での回路の動作の安定を図
るものであり、異常発振を防止している。
The photocurrent (signal) obtained by the photodetector 14.15 is
Operational amplifiers 41 and 42 convert the signals into voltage signals having a phase difference of 180 degrees, and an operational amplifier 43 (subtraction means) detects and amplifies the difference between these voltage signals. The capacitors C, , C2 are intended to stabilize the operation of the circuit in a high frequency region and prevent abnormal oscillations.

いま、受光素子14.15で得られる光電流(信号)を
’+4+’15とし、各抵抗値をR+(抵抗器51)、
R2(可変抵抗器61)、R3(抵抗器52. 54)
、R4(抵抗器53.55)とすると、出力端子44に
得られる出力電圧V。は、 Vo ”= (I14R+  ll5R2) R4/R
3−(1)で表わされる。
Now, the photocurrent (signal) obtained by the photodetector 14.15 is '+4+'15, and each resistance value is R+ (resistor 51),
R2 (variable resistor 61), R3 (resistor 52.54)
, R4 (resistor 53.55), the output voltage V obtained at the output terminal 44. is Vo ”= (I14R+ ll5R2) R4/R
3-(1).

■!41 11!lは理想的には、一定の正弦波信号で
あるが、実際には次に述べるような理由により、複雑な
信号となっている。第一に、放射格子6のピッチや線幅
にばらつきがあったり、格子のエツジに乱れがあったり
すると、そこを通過する光の強度が変化する。第二に、
干渉光形成のための本来の光路以外を通ってきて受光素
子]、4.,15に混入する光束(ゴースト成分と称す
ることにする)が存在する。しかもこれらは被測定回転
物体の回転に伴って微妙に変動する。
■! 41 11! Ideally, l is a constant sine wave signal, but in reality it is a complex signal for the following reasons. First, if there are variations in the pitch or line width of the radiation grating 6, or if the edges of the grating are disturbed, the intensity of light passing therethrough will change. Secondly,
light-receiving element passing through a path other than the original optical path for forming interference light], 4. , 15 (referred to as a ghost component) exists. Furthermore, these vary slightly with the rotation of the rotating object to be measured.

これらを加味すると、一定速度で回転しているときの’
+4+115は、一般に次のような式で表わされる。
Taking these into account, when rotating at a constant speed, '
+4+115 is generally expressed by the following formula.

1 、、 =a+bsin ωt         ・
= (2)116 ” <Z a−βbsin (IJ
 t       −(3)ここでα、βは定数、a、
bは回転に応じて若干変動する係数である。一般にαと
βは近い値をとるが、受光素子14. 15までの±1
次回目折光の光路長の差や、互いの偏光方位の違いなど
により多少異なる。又、ωは信号の角周波数、tは時間
である。これらを(1)式に代入すると、出力端子44
に出力される出力電圧V。は、 ・・・(4) となる。本実施例の特徴は、ここでR1−αR20とな
るような調整手段を設けることにある。これは、演算増
幅器42に可変抵抗器61を付加することによってR2
= Rl /αに調整できるようにして、達成している
1,, =a+bsin ωt・
= (2) 116 ” <Z a−βbsin (IJ
t - (3) where α and β are constants, a,
b is a coefficient that varies slightly depending on rotation. In general, α and β take close values, but the light receiving element 14. ±1 up to 15
It differs somewhat due to the difference in the optical path length of the next diffracted light and the difference in the mutual polarization direction. Further, ω is the angular frequency of the signal, and t is the time. Substituting these into equation (1), the output terminal 44
Output voltage V output to. is...(4). The feature of this embodiment is that an adjusting means is provided so that R1-αR20 is obtained here. This can be achieved by adding a variable resistor 61 to the operational amplifier 42.
This is achieved by making it possible to adjust to = Rl /α.

この可変抵抗器61の作用によって、2つの受光素子1
4.15によって得られた各正弦波信号の直流成分及び
回転に伴う直流成分の変動分をキャンセルすることがで
き、出力端子44からの出力信号の直流成分をほぼ零に
してオフセットの非常に安定な正弦波信号を得ることが
できる。
By the action of this variable resistor 61, the two light receiving elements 1
The DC component of each sine wave signal obtained by 4.15 and the fluctuation of the DC component due to rotation can be canceled, and the DC component of the output signal from the output terminal 44 is made almost zero, making the offset extremely stable. A sine wave signal can be obtained.

第4図に波形の例を示す。第4図(A)、  (B)は
、それぞれ信号工14+IISの例である。第4図(C
)は従来の同一比率で減算したとき(すなわちR2=R
2としたとき)の端子44からの出力波形であり、若干
のオフセット変動が残っている。一方、第4図(D)は
本実施例の場合の端子44からの出力波形を示す。第4
図(D)に示すように、本実施例では、正負対称でオフ
セットの安定した波形を具えた信号を端子44から得る
ことができる。
FIG. 4 shows an example of the waveform. FIGS. 4(A) and 4(B) are examples of the signal engineer 14+IIS, respectively. Figure 4 (C
) is subtracted using the same conventional ratio (i.e. R2=R
2) is the output waveform from the terminal 44, and some offset fluctuation remains. On the other hand, FIG. 4(D) shows the output waveform from the terminal 44 in this embodiment. Fourth
As shown in Figure (D), in this embodiment, a signal having a waveform with positive and negative symmetry and a stable offset can be obtained from the terminal 44.

従って、本実施例の出力端子44からの信号を用いて測
定を行なうようにすれば、正確に被検回転物体の回転量
を測定することができる。
Therefore, if the signal from the output terminal 44 of this embodiment is used for measurement, the amount of rotation of the rotating object to be tested can be accurately measured.

なお、上記実施例では可変抵抗器61を用いて、演算増
幅器43に入力される信号114+III+に相当する
各電圧の比率を調整しているが、これに限ることはなく
、たとえば、61を抵抗値R8の抵抗器として、抵抗5
4または抵抗55を可変抵抗器とすること及び抵抗61
と抵抗54又は55を可変抵抗器とすることも出来る。
In the above embodiment, the variable resistor 61 is used to adjust the ratio of each voltage corresponding to the signal 114+III+ input to the operational amplifier 43, but the invention is not limited to this. For example, 61 is set to a resistance value. As the resistor of R8, resistor 5
4 or resistor 55 as a variable resistor and resistor 61
The resistor 54 or 55 can also be a variable resistor.

また、回路構成は、上記実施例に限定されることなく、
信号f14+11Bの直流成分の差を実質的にキャンセ
ルできるような構成になっていればよい。
In addition, the circuit configuration is not limited to the above embodiment,
Any configuration is sufficient as long as it can substantially cancel the difference in the DC components of the signal f14+11B.

また、光分割器、偏光板、偏光ビームスプリッタ、波長
板などの各種光学部分を用いて、上記の0°、180°
に対応する信号だけでなく、任意の位相角の、例えば9
0°の信号を取出す手段が併用されていても、この発明
の主旨を逸脱するものではない。さらに、この任意の位
相角の、例えば90゜の信号と、これに対して位相が1
80’ ずれた別の信号、例えば270°の信号とを取
出す手段を設け、上記実施例の考え方を用いて合成し、
オフセットの安定な信号を作り出すことも可能である。
In addition, by using various optical parts such as light splitters, polarizing plates, polarizing beam splitters, and wavelength plates,
Not only the signal corresponding to , but also the signal of any phase angle, e.g.
Even if a means for extracting a 0° signal is also used, this does not depart from the spirit of the invention. Furthermore, a signal with an arbitrary phase angle, for example, 90°, and a signal with a phase of 1
A means is provided for extracting another signal shifted by 80', for example, a signal at 270°, and is synthesized using the idea of the above embodiment,
It is also possible to create a stable signal with an offset.

この場合、第3図に示した回路を更に1個付加し、位相
角90° と270°の信号を処理して、出力端子44
から、上記実施例において出力端子44から出力される
信号と位相が90°異なる信号を出力させることができ
、この位相角0° と位相角90°の信号を使って、被
検回転移動物体の回転方向の判別や、信号の内挿による
高分解能化などを実施できる。
In this case, one more circuit shown in Fig. 3 is added to process signals with phase angles of 90° and 270°, and output terminal 44
Therefore, in the above embodiment, it is possible to output a signal whose phase is 90° different from the signal output from the output terminal 44, and by using the signals with a phase angle of 0° and a phase angle of 90°, the rotational moving object to be tested can be detected. It is possible to determine the direction of rotation and improve resolution by interpolating signals.

また、上記実施例と同様な考え方は、従来からある固定
スケールと移動スケールとを組合わせて成る光学式エン
コーダーにも用いることが可能である。そして、ここで
は、ロータリーエンコーダーを例に」二げたが、リニア
エンコーダーにも応用できることは言うまでもなく、光
学式のエンコーダーに限らず、磁気式エンコーダーなど
の他タイプのエンコーダーに対しても応用できる。
Furthermore, the same concept as in the above embodiment can also be used for an optical encoder that combines a conventional fixed scale and a moving scale. Here, we have used a rotary encoder as an example, but it goes without saying that it can also be applied to linear encoders, and it can also be applied not only to optical encoders but also to other types of encoders such as magnetic encoders.

〔発明の効果〕〔Effect of the invention〕

以上、本発明では、互いに位相が180°異なる信号間
の差を検出する減算手段からの信号の直流成分がほぼ零
となるように、回路を調整する調整手段を備えたので、
減算手段からオフセットが安定した信号を得ることがで
きる。従って、正確に被検物体の変位(並進移動や回転
)を測定することができる変位測定装置の提供も可能に
なる。
As described above, the present invention includes an adjusting means that adjusts the circuit so that the DC component of the signal from the subtracting means that detects the difference between signals whose phases are different from each other by 180 degrees becomes almost zero.
A signal with a stable offset can be obtained from the subtraction means. Therefore, it is also possible to provide a displacement measuring device that can accurately measure the displacement (translational movement or rotation) of the object to be tested.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は変位測定装置の一例を示すブロック図。 第2図及び第3図は第1図の装置を具体的に示す、本信
号処理回路を備えた変位測定装置の説明図。 第4図(A)〜(D)は第3図に示す回路における信号
波形と従来のものの信号波形を示す波形図。 l・・・レーザー 6・・・放射格子(スケール) 14、 15・・・受光素子 21・・・回折光干渉手段 41、 42.43・・・演算増幅器 51、 52. 53. 54・・・抵抗器61・・・
可変抵抗器 44・・・出力端子 O
FIG. 1 is a block diagram showing an example of a displacement measuring device. 2 and 3 are explanatory diagrams of a displacement measuring device equipped with the present signal processing circuit, specifically showing the device of FIG. 1. FIG. 4(A) to 4(D) are waveform diagrams showing signal waveforms in the circuit shown in FIG. 3 and signal waveforms in the conventional circuit. l... Laser 6... Radiation grating (scale) 14, 15... Light receiving element 21... Diffracted light interference means 41, 42.43... Operational amplifier 51, 52. 53. 54...Resistor 61...
Variable resistor 44...output terminal O

Claims (3)

【特許請求の範囲】[Claims] (1)互いに位相が180゜異なる第1と第2の信号を
生成する生成手段と、該生成手段からの第1信号と第2
信号の差を検出し、検出した差に応じた第3信号を出力
する減算手段とを備え、上記生成手段及び/又は上記減
算手段が、上記減算手段からの第3信号の直流成分をほ
ぼ零にするための調整手段を有する信号処理回路。
(1) A generating means for generating first and second signals having phases different from each other by 180 degrees, and a first signal and a second signal from the generating means.
subtraction means for detecting a difference between the signals and outputting a third signal according to the detected difference, wherein the generation means and/or the subtraction means reduce the direct current component of the third signal from the subtraction means to approximately zero. A signal processing circuit having adjustment means for
(2)可動スケールに形成された目盛りを読取って、ス
ケールの変位に応じた、互いに位相が180゜異なる第
1と第2信号を出力するスケール読取手段と、該読取手
段からの第1と第2信号の差を検出し、検出した差に応
じた第3信号を出力する減算手段とを有し、該第3信号
に基づいてスケールの変位を測定する変位測定装置にお
いて、上記読取手段及び/又は減算手段が、上記減算手
段からの第3信号の直流成分をほぼ零にするための調整
手段を有することを特徴とする変位測定装置。
(2) A scale reading means for reading the scale formed on the movable scale and outputting first and second signals having a phase difference of 180 degrees from each other according to the displacement of the scale; A displacement measuring device that detects a difference between two signals and outputs a third signal according to the detected difference, and measures displacement of a scale based on the third signal, the reading means and/or Alternatively, a displacement measuring device characterized in that the subtracting means has an adjusting means for making the DC component of the third signal from the subtracting means substantially zero.
(3)上記スケール読取手段は、上記スケールからの互
いに位相が180゜異なる第1光束と第2光束とを受光
する第1受光素子と第2受光素子と、該第1受光素子か
らの信号を増幅し前記第1信号を出力する第1演算増幅
器と、該第2受光素子からの信号を増幅し前記第2信号
を出力する第2演算増幅器とを有し、前記調整手段が、
該第2演算増幅器の可変抵抗を含むことを特徴とする特
許請求の範囲第(2)項記載の変位測定装置。
(3) The scale reading means includes a first light-receiving element and a second light-receiving element that receive a first light beam and a second light beam having a phase difference of 180 degrees from each other from the scale, and a signal from the first light-receiving element. The adjustment means includes a first operational amplifier that amplifies and outputs the first signal, and a second operational amplifier that amplifies the signal from the second light receiving element and outputs the second signal.
The displacement measuring device according to claim 2, characterized in that the second operational amplifier includes a variable resistor.
JP25551789A 1989-09-29 1989-09-29 Signal processing circuit and displacement measuring instrument equipped with the same Pending JPH03115922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25551789A JPH03115922A (en) 1989-09-29 1989-09-29 Signal processing circuit and displacement measuring instrument equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25551789A JPH03115922A (en) 1989-09-29 1989-09-29 Signal processing circuit and displacement measuring instrument equipped with the same

Publications (1)

Publication Number Publication Date
JPH03115922A true JPH03115922A (en) 1991-05-16

Family

ID=17279851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25551789A Pending JPH03115922A (en) 1989-09-29 1989-09-29 Signal processing circuit and displacement measuring instrument equipped with the same

Country Status (1)

Country Link
JP (1) JPH03115922A (en)

Similar Documents

Publication Publication Date Title
JP3791620B2 (en) Scanning monochromator
CN102192784B (en) Interferometer step scanning system and method
JPH0682313A (en) Method and apparatus for determinnig phase difference between optical beams, which are differently polarized, in interference way
CN109883362B (en) Straightness measurement system based on grating interference principle
CN102878938A (en) Optical reading head based on diffraction grating
JP2004144581A (en) Displacement detecting apparatus
US5067089A (en) Device having signal interpolation circuit and displacement measuring apparatus comprising the device
JPH06229922A (en) Very accurate air refractometer
US5541729A (en) Measuring apparatus utilizing diffraction of reflected and transmitted light
US5067813A (en) Optical apparatus for measuring displacement of an object
CN108627084B (en) Laser instrument wavelength calibration system based on static michelson interferometer
JPS59163517A (en) Optical scale reader
JPH03115922A (en) Signal processing circuit and displacement measuring instrument equipped with the same
Ban et al. Two-dimensional grating interferometer with nanometer accuracy
JP4404184B2 (en) Displacement detector
WO1999005471A1 (en) Length measuring instrument
JPH02298804A (en) Interferometer
JPH05126603A (en) Grating interference measuring device
Usuda et al. Development of laser interferometer for a sine-approximation method
JPH0620969Y2 (en) Grating interference displacement detector
JPH0342401B2 (en)
Fan et al. A diffraction grating scale for long range and nanometer resolution
JP3384097B2 (en) Fixed point detector
JPH0579815A (en) Semiconductor-laser length measuring machine
JPS6097215A (en) Length measuring device