JPH0620969Y2 - Grating interference displacement detector - Google Patents

Grating interference displacement detector

Info

Publication number
JPH0620969Y2
JPH0620969Y2 JP1988006587U JP658788U JPH0620969Y2 JP H0620969 Y2 JPH0620969 Y2 JP H0620969Y2 JP 1988006587 U JP1988006587 U JP 1988006587U JP 658788 U JP658788 U JP 658788U JP H0620969 Y2 JPH0620969 Y2 JP H0620969Y2
Authority
JP
Japan
Prior art keywords
light
diffraction grating
grating
light receiving
scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988006587U
Other languages
Japanese (ja)
Other versions
JPH01112416U (en
Inventor
暢久 西沖
龍夫 板橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to JP1988006587U priority Critical patent/JPH0620969Y2/en
Publication of JPH01112416U publication Critical patent/JPH01112416U/ja
Application granted granted Critical
Publication of JPH0620969Y2 publication Critical patent/JPH0620969Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed description of the device] 【産業上の利用分野】[Industrial applications]

本考案は、格子干渉型変位検出装置に係り、特に、半導
体レーザを光源としてX−Yテーブル等に組込む際に用
いるのに好適な、回折格子が形成されたスケールと、前
記回折格子に光束を照射する光源、及び、前記回折格子
によつて生成された複数の光束の混合波を光電変換する
受光素子を含む検出器とを備え、前記スケールと検出器
の相対変位に応じて、周期的に変化する検出信号を生成
する格子干渉型変位検出装置の改良に関する。
The present invention relates to a grating interference type displacement detector, and particularly to a scale having a diffraction grating formed thereon, which is suitable for use when a semiconductor laser is used as a light source in an XY table or the like, and a light beam to the diffraction grating. A light source that emits light, and a detector that includes a light receiving element that photoelectrically converts a mixed wave of a plurality of light fluxes generated by the diffraction grating, and periodically according to relative displacement between the scale and the detector. The present invention relates to an improvement of a grating interference type displacement detection device that generates a changing detection signal.

【従来の技術】[Prior art]

一定ピツチの光学的な目盛の形成されたスケールを用い
て、周期的な検出信号を生成する光電型エンコーダが普
及している。この光電型エンコーダの分解能は、光学格
子の幅及びピツチと、光電変換後の信号を分割する電子
回路の特性により定まる。一般に、光学格子は、エツチ
ング法により製造されるので、4μm前後の光学格子が
最終測定精度上限界に近く、又、電子回路も大幅なコス
トアツプを伴わない範囲で用いるとなると、最終的な分
解能は1μm前後であり、これを更に高精度化するのは
困難であつた。 一方、光電型エンコーダが普及するにつれて、より高分
解能で高精度な検出信号を生成するものが求められてい
る。 光電型エンコーダの高分解能化を図つたものの1つとし
て、スケールにホログラフイの技術を用いて微細なピツ
チ(通常1μm程度)の目盛を形成し、その目盛を回折
格子として積極的に回折を生じさせて検出信号を得る格
子干渉型変位検出装置が提案されている。 第3図は、特開昭47−10034で提案された格子干
渉型変位検出装置を示すものである。この格子干渉型変
位検出装置は、ピツチdの回折格子が形成されたスケー
ル10と、該回折格子に光束としてのレーザビーム14
(波長λ)を照射するHe−Neレーザ光源12と、前
記回折格子によつて生成された0次と1次の回折光(光
束)をそれぞれ反射するミラー16、18と、ミラー1
8で反射された1次光の0次光と、ミラー16で反射さ
れた0次光の1次光との混合波を3分するビームスプリ
ツタ(粗い回折格子)20と、該ビームスプリツタ20
で3分された混合波をそれぞれ光電変換する受光素子2
2A、22B、22Cとを含んで構成されている。ここ
で、前記スケール10を除く各要素は、検出器を構成し
ている。 なお、第3図において、0次光及び1次光の光路中にそ
れぞれ挿入された偏光子24、26の偏光方向は、互い
に直交するように設定されており、3分された中央の混
合波を受光する受光素子22Aでは干渉縞が生じないよ
うにされている。従つて、この受光素子22Aでは、干
渉縞ではなく、単なる和信号が得られるので、参照信号
とする。 又、受光素子22Bの直前には干渉縞生成用の検光子2
8Bが配置され、この受光素子22Bからは干渉縞によ
る第1の検出信号aが生成される。 又、受光素子22Cの直前には1/4波長板30と検光子
28Cが配置され、この受光素子22Cからは、前記第
1の検出信号aと90°位相の異なる第2の検出信号b
が生成される。 ここで、レーザビーム14の入射角θと、1次光の回折
角φとは、次式で関係付けられる。 d(sinθ+sinφ)=λ ………(1) このような格子干渉型変位検出装置によれば、例えばス
ケール10をホログラム方式で製造することによつて、
1μm以下の光学格子を形成することができるので、
0.01μmの分解能を達成することも可能である。
2. Description of the Related Art Photoelectric encoders that generate a periodic detection signal by using a scale having a fixed pitch of optical scales are widely used. The resolution of this photoelectric encoder is determined by the width and pitch of the optical grating and the characteristics of the electronic circuit that divides the photoelectrically converted signal. In general, since the optical grating is manufactured by the etching method, the optical grating of about 4 μm is close to the limit of the accuracy of the final measurement, and if the electronic circuit is used within a range without a large cost up, the final resolution is It was around 1 μm, and it was difficult to further improve the precision. On the other hand, with the spread of photoelectric encoders, there is a demand for those that generate detection signals with higher resolution and higher accuracy. As one of the efforts to improve the resolution of the photoelectric encoder, a fine pitch (usually about 1 μm) scale is formed on the scale using holographic technology, and the scale is used as a diffraction grating to actively generate diffraction. There has been proposed a grating interference type displacement detection device that obtains a detection signal by using the above method. FIG. 3 shows a grating interference type displacement detection device proposed in Japanese Patent Laid-Open No. 47-10034. This grating interference type displacement detection device includes a scale 10 on which a diffraction grating of pitch d is formed and a laser beam 14 as a light beam on the diffraction grating.
He-Ne laser light source 12 for irradiating (wavelength λ), mirrors 16 and 18 for respectively reflecting 0th-order and 1st-order diffracted light (light flux) generated by the diffraction grating, and mirror 1.
A beam splitter (coarse diffraction grating) 20 that divides a mixed wave of the 0th-order light of the 1st-order light reflected by 8 and the 1st-order light of the 0th-order light reflected by the mirror 16 into three, and the beam splitter 20
Light receiving element 2 for photoelectrically converting each of the mixed waves divided into three
2A, 22B, and 22C. Here, each element except the scale 10 constitutes a detector. In FIG. 3, the polarization directions of the polarizers 24 and 26 inserted in the optical paths of the 0th-order light and the 1st-order light are set to be orthogonal to each other, and the central mixed wave divided into three parts is divided. The light receiving element 22A that receives the light does not generate interference fringes. Therefore, in the light receiving element 22A, not a fringe pattern but a mere sum signal is obtained, and therefore the reference signal v r is used. In addition, immediately before the light receiving element 22B, the analyzer 2 for generating the interference fringes is formed.
8B is arranged, and the light receiving element 22B generates a first detection signal a by interference fringes. Further, a 1/4 wavelength plate 30 and an analyzer 28C are arranged immediately in front of the light receiving element 22C, and from this light receiving element 22C, a second detection signal b which is 90 ° out of phase with the first detection signal a.
Is generated. Here, the incident angle θ of the laser beam 14 and the diffraction angle φ of the primary light are related by the following equation. d (sin θ + sin φ) = λ (1) According to such a grating interference type displacement detection device, for example, by manufacturing the scale 10 by a hologram method,
Since an optical grating of 1 μm or less can be formed,
It is also possible to achieve a resolution of 0.01 μm.

【考案が解決しようとする問題点】[Problems to be solved by the device]

しかしながら、前記中央の受光素子22Aで光電交換さ
れる中央の混合波は、本来、偏光方向の直交している2
光束の混合波で干渉信号はなく、参照信号vは直流レ
ベルとなるはずであるが、(1)スケール10やビームス
プリツタ20が検光子の作用を多少有するため、更に、
(2)偏光方向の直交が完全ではないため、検光子が無い
にもかかわらず干渉信号が重畳し、参照信号vに交流
成分が含まれてしまうという問題点があつた。
However, the central mixed wave, which is photoelectrically exchanged by the central light receiving element 22A, originally has a polarization direction orthogonal to each other.
The reference signal v r should be at the DC level because there is no interference signal in the mixed wave of the light flux, but (1) since the scale 10 and the beam splitter 20 have some effect of an analyzer,
(2) Since the polarization directions are not orthogonal to each other, there is a problem that an interference signal is superposed even if there is no analyzer and an AC component is included in the reference signal v r .

【考案の目的】[The purpose of the device]

本考案は、前記従来の問題点を解消するべくなされたも
ので、参照信号に混合波の干渉による交流成分が含まれ
ることがなく、従つて、安定した検出信号が得られる格
子干渉型変位検出装置を提供することを目的とする。
The present invention has been made to solve the above-mentioned conventional problems, and the reference signal does not include an AC component due to the interference of mixed waves, and accordingly, the grating interference type displacement detection that can obtain a stable detection signal. The purpose is to provide a device.

【問題点を解決するための手段】[Means for solving problems]

本考案は、回折格子が形成されたスケールと、前記回折
格子に光束を照射する光源、及び、前記回折格子によつ
て生成された複数の光束の混合波を光電交換する受光素
子を含む検出器とを備え、前記スケールと検出器の相対
変位に応じて、周期的に変化する検出信号を生成する格
子干渉型変位検出装置において、前記回折格子で生成さ
れた複数の回折光束を混合する前に、個々の回折光束の
一部をそれぞれ抽出又は分離する光学要素と、該抽出又
は分離された回折光をそれぞれ光電変換する2つの受光
素子と、該2つの受光素子の出力を加算して参照信号を
得るための加算器と、該参照信号で前記検出信号のレベ
ル変動の補償を行う回路とを備えることにより、前記目
的を達成したものである。 又、前記回折格子で生成された光束の一部を抽出する光
学要素を、前記回折格子自体とし、前記2つの受光素子
が、0次回折光を検出するようにしたものである。
The present invention provides a detector including a scale having a diffraction grating, a light source for irradiating the diffraction grating with a light beam, and a light receiving element for photoelectrically converting a mixed wave of a plurality of light beams generated by the diffraction grating. In a grating interference type displacement detection device that generates a detection signal that periodically changes according to relative displacement between the scale and the detector, before mixing a plurality of diffracted light beams generated by the diffraction grating. , An optical element that extracts or separates a part of each diffracted light beam, two light receiving elements that photoelectrically convert the extracted or separated diffracted light beams, and a reference signal by adding the outputs of the two light receiving elements The above-mentioned object is achieved by including an adder for obtaining the above and a circuit for compensating the level fluctuation of the detection signal with the reference signal. Further, the optical element for extracting a part of the light beam generated by the diffraction grating is the diffraction grating itself, and the two light receiving elements detect the 0th order diffracted light.

【作用】[Action]

本考案は、前記のような格子干渉型変位検出装置におい
て、回折格子で生成された複数の回折光束を混合する前
に、個々の回折光束の一部を抽出又は分離し、それぞれ
光電変換した後に加算して参照信号を得るようにしてい
る。従つて、参照信号に混合波の干渉による交流成分が
含まれることがなく、安定した検出信号を得ることがで
きる。
The present invention is, in the above-mentioned grating interference type displacement detection device, before mixing a plurality of diffracted light beams generated by a diffraction grating, after extracting or separating a part of each diffracted light beam, and after photoelectrically converting each part. The reference signal is obtained by addition. Therefore, the reference signal does not include an AC component due to the interference of the mixed waves, and a stable detection signal can be obtained.

【実施例】【Example】

以下、図面を参照して、本考案の実施例を詳細に説明す
る。 本考案の第1実施例は、第1図に示す如く、回折格子が
形成されたスケール10と、前記回折格子に波長λのレ
ーザビーム14を照射する、レーザダイオード32及び
コリメータレンズ34からなる光源31、及び、前記回
折格子によつて生成された複数の光束の混合波を光電変
換する受光素子22B、22C、検光子28B、28
C、1/4波長板30を含む検出器とを備え、前記スケー
ル10と検出器の相対変位に応じて周期的に変化する検
出信号a、bを生成する格子干渉型変位検出装置におい
て、前記光源31からのレーザビーム14を2分して、
偏光子42A、42Bで互いに直交する偏光方向とした
後、ほぼ対称(入射角θθ)に回折格子上の2つ
の回折点A、Bに入射する光学要素としてのハーフミラ
ー40と、前記異なる回折点A、Bで生成された回折光
束の一部(入射ビームaの0次光と入射ビームbの0次
光)をそれぞれ抽出する光学要素としての前記回折格子
(スケール10)と、該抽出された回折光束をそれぞれ
光電変換し、加算して参照信号vを得るための2つの
受光素子44A、44B及び加算器45と、該参照信号
で前記検出信号a、bのレベル変動の補償を行う回
路としての差演算器46A、46Bとを設けたものであ
る。 前記2つの回折点A、Bでほぼ対称に生成された2つの
1次(回折)光a、bの混合波は、ハーフミラー48に
より、それぞれ検光子28B又は検光子28Cと1/4波
長板30を介して従来例と同様の受光素子22B、22
Cに入射される。 図において、50は、前記受光素子44A、44B、2
2B、22Cの出力をそれぞれ増幅するためのプリアン
プである。 なお前記スケール10上方のハーフミラー40と2個の
偏光子42A、42Bは、1個の偏光ビームスプリツタ
で置換することも可能である。 他の構成は、従来例と同様であるので説明は省略する。 以下、第1実施例の作用を説明する。 スケール10上の回折格子自体によつて抽出された光束
は、0次(回折)光aと0次(回折)光bであり、受光
素子44A、44Bの出力はプリアンプ50で増幅され
た後、加算器45で和演算されて参照信号vとなる。 一方、受光素子22B、22C及びプリアンプ50によ
つて得られた、位相が90°異なる検出信号a、bは、
レベル変動の補償を行う回路としての差演算器46A、
46Bで参照信号vを減算されて、検出信号a′、
b′が生成される。 レーザダイオード14の出力変動や、スケール10の汚
れによるレーザビームの強度の減衰に対しては、検出信
号a、bと参照信号vとは同じ傾向で減衰するため、
最終的な信号a′、b′の直流レベルは安定で、良好な
計数処理ができる。 この際、回折格子で生成された複数の回折光束を混合す
る前に、個々の回折光束の一部を抽出して参照信号v
としているので、混合波の干渉信号によつて参照信号に
交流成分が含まれてしまうことがなく、安定した参照信
号v、従つて検出信号a′、b′を得ることができ
る。 本実施例においては、本来無駄となる0次光a、bを活
用するので効率が良い。又、回折光束の一部を抽出する
光学要素を回折格子自体としているので、構成が簡略で
ある。 又、レーザダイオード32の波長λが変化しても、1次
光aと1次光bとは、共に対称に回折角φ、φが小
さくなるので、受光素子22B、22Cに入射する方向
と位置はほぼ一定であり、検出信号は安定である。又、
レーザダイオード32に戻るバツクトークが存在しな
い。更に、スケール10表面での反射光も、直接受光素
子に入射することがない。 次に、第2図を参照して、本考案の第2実施例を詳細に
説明する。 この第2実施例は、前記従来例と同様の、スケール10
と、レーザダイオード32及びコリメータレンズ34か
らなる光源31と、受光素子22B、22C、検光子2
8B、28C、1/4波長板30を含む検出器とを備え、
前記スケール10と検出器の相対変位に応じて周期的に
変化する検出信号を生成する格子干渉型変位検出装置に
おいて、前記光源31からのレーザビーム14を2分す
る光学要素としてのハーフミラー60と、該2分された
光束を同一の入射角θでそれぞれ対称に前記回折格子上
の同一の回折点Cに入射させる光学要素である。一対の
ミラー62A、62Bと、1次(回折)光b、aをそれ
ぞれ偏光子64A、64Bで互いに直交する偏光方向と
し、一対のミラー66A、66Bで反射し、更に、その
一部を分離する光学要素としてのハーフミラー68A、
68Bと、該分離された回折光を光電変換して参照信号
を得るための、前記第1実施例と同様の受光素子4
4A、44B及び加算器45と、該参照信号vで前記
検出信号a、bのレベル変動の補償を行うための、同じ
く前記第1実施例と同様の差演算器46A、46Bとを
備えたものである。 前記入射角θ及び回折角φは、例えば回折格子のピツチ
dが0.5μm、レーザビーム14の波長λが0.78
μmの場合、入射角θ=58.5°、回折角φ=45°
と大きく異なる値に設定されている。これは、入射角θ
と回折角φが近い値とされていると、0次光と1次光が
重畳されるようになつて、検出信号のS/N比が悪化す
るためである。 他の構成及び作用は、前記第1実施例と同様であるの
で、説明は省略する。 本実施例においては、ハーフミラー68A、68Bによ
つて分離した回折光の一部から参照信号vを作成して
いるので、レーザダイオード32の出力変動やスケール
10の汚れによるレーザビームの強度の減衰の他に、ス
ケール10の回折効率の場所による変動によるレーザビ
ームの強度変化があつても、回折光自体の一部の光を参
照信号vに変換しているため、検出信号a′、b′の
直流レベルが安定に保たれる。 又、レーザダイオード32の波長λが変化しても、1次
光aと1次光bとは、共に回折角φが共通であるため、
対称に回折角φが小さくなる。従つて、各受光素子22
B、22Cに入射する方向と位置はほぼ一定であり、検
出信号a、bは安定である。又、スケール10表面での
反射光も直接受光素子に入射することがない。更に、回
折点Cが一致しているので、回折格子面の傾きによる誤
差を生じることもない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. As shown in FIG. 1, the first embodiment of the present invention is a light source comprising a scale 10 having a diffraction grating and a laser diode 32 and a collimator lens 34 for irradiating the diffraction grating with a laser beam 14 having a wavelength λ. 31 and light receiving elements 22B and 22C for photoelectrically converting a mixed wave of a plurality of light fluxes generated by the diffraction grating, and analyzers 28B and 28.
C, a detector including a 1/4 wavelength plate 30, and a grating interference type displacement detection device that generates detection signals a and b that periodically change according to the relative displacement between the scale 10 and the detector, The laser beam 14 from the light source 31 is divided into two,
After the polarization directions are made orthogonal to each other by the polarizers 42A and 42B, the half mirror 40 as an optical element that is incident on two diffraction points A and B on the diffraction grating substantially symmetrically (incident angle θ 1 θ 2 ), The diffraction grating (scale 10) as an optical element for extracting a part of the diffracted light beams (0th order light of the incident beam a and 0th order of the incident beam b) generated at different diffraction points A and B, and Two light receiving elements 44A, 44B and an adder 45 for photoelectrically converting the extracted diffracted light fluxes and adding them to obtain a reference signal v r , and level fluctuations of the detection signals a, b with the reference signal v r The difference calculators 46A and 46B are provided as circuits for compensating the above. The mixed wave of the two first-order (diffraction) lights a and b generated substantially symmetrically at the two diffraction points A and B is analyzed by the half mirror 48 to the analyzer 28B or the analyzer 28C and the quarter-wave plate, respectively. The light receiving elements 22B and 22 similar to the conventional example
It is incident on C. In the figure, 50 is the light receiving elements 44A, 44B, 2
It is a preamplifier for amplifying the outputs of 2B and 22C, respectively. The half mirror 40 above the scale 10 and the two polarizers 42A and 42B can be replaced by one polarization beam splitter. The other configurations are similar to those of the conventional example, and thus the description thereof is omitted. The operation of the first embodiment will be described below. The light beams extracted by the diffraction grating itself on the scale 10 are the 0th order (diffraction) light a and the 0th order (diffraction) light b, and the outputs of the light receiving elements 44A and 44B are amplified by the preamplifier 50, The adder 45 performs a sum operation to obtain the reference signal v r . On the other hand, the detection signals a and b which are obtained by the light receiving elements 22B and 22C and the preamplifier 50 and have a phase difference of 90 ° are
A difference calculator 46A as a circuit for compensating for level fluctuations,
46B, the reference signal v r is subtracted, and the detection signal a ′,
b'is generated. With respect to the output fluctuation of the laser diode 14 and the attenuation of the intensity of the laser beam due to the contamination of the scale 10, the detection signals a and b and the reference signal v r are attenuated with the same tendency.
The final DC levels of the signals a'and b'are stable, and good counting processing can be performed. At this time, before mixing the plurality of diffracted light beams generated by the diffraction grating, a part of each diffracted light beam is extracted and the reference signal v r is extracted.
Therefore, the reference signal does not include an AC component due to the interference signal of the mixed wave, and the stable reference signal v r , and accordingly, the detection signals a ′ and b ′ can be obtained. In the present embodiment, the 0th-order lights a and b, which are originally wasted, are utilized, which is efficient. Further, since the optical element for extracting a part of the diffracted light flux is the diffraction grating itself, the configuration is simple. Further, even if the wavelength λ of the laser diode 32 changes, the diffraction angles φ 1 and φ 2 of both the primary light a and the primary light b become symmetrically small, so that they are incident on the light receiving elements 22B and 22C. The position is almost constant, and the detection signal is stable. or,
There is no back talk back to the laser diode 32. Further, the reflected light on the surface of the scale 10 does not directly enter the light receiving element. Next, a second embodiment of the present invention will be described in detail with reference to FIG. The second embodiment is similar to the above-mentioned conventional example in that the scale 10
A light source 31 including a laser diode 32 and a collimator lens 34, light receiving elements 22B and 22C, and an analyzer 2.
8B, 28C, a detector including a quarter wave plate 30,
A half-mirror 60 as an optical element that divides the laser beam 14 from the light source 31 into two in a grating interference type displacement detection device that generates a detection signal that periodically changes according to relative displacement between the scale 10 and the detector. , Which is an optical element that causes the divided light beams to enter the same diffraction point C on the diffraction grating symmetrically at the same incident angle θ. The pair of mirrors 62A and 62B and the first-order (diffracted) lights b and a are made to have polarization directions orthogonal to each other by the polarizers 64A and 64B, respectively, are reflected by the pair of mirrors 66A and 66B, and are further separated. Half mirror 68A as an optical element,
68B and a light receiving element 4 similar to that of the first embodiment for photoelectrically converting the separated diffracted light to obtain a reference signal v r.
4A and 44B and an adder 45, and difference calculators 46A and 46B similar to those in the first embodiment for compensating the level fluctuation of the detection signals a and b with the reference signal v r . It is a thing. Regarding the incident angle θ and the diffraction angle φ, for example, the pitch d of the diffraction grating is 0.5 μm, and the wavelength λ of the laser beam 14 is 0.78.
In the case of μm, incident angle θ = 58.5 °, diffraction angle φ = 45 °
Is set to a value that is significantly different from. This is the incident angle θ
This is because when the diffraction angle φ is close to 0, the 0th-order light and the 1st-order light are superposed and the S / N ratio of the detection signal deteriorates. The rest of the configuration and operation are the same as those of the first embodiment, so description will be omitted. In the present embodiment, since the reference signal v r is created from a part of the diffracted light separated by the half mirrors 68A and 68B, the output fluctuation of the laser diode 32 and the intensity of the laser beam due to the contamination of the scale 10 are reduced. In addition to the attenuation, even if there is a change in the intensity of the laser beam due to a change in the diffraction efficiency of the scale 10 depending on the location, a part of the diffracted light itself is converted into the reference signal v r , so the detection signal a ′, The DC level of b'is kept stable. Further, even if the wavelength λ of the laser diode 32 changes, both the primary light a and the primary light b have the same diffraction angle φ.
The diffraction angle φ decreases symmetrically. Therefore, each light receiving element 22
The incident directions and positions on B and 22C are almost constant, and the detection signals a and b are stable. Also, the reflected light on the surface of the scale 10 does not directly enter the light receiving element. Further, since the diffraction points C coincide with each other, an error due to the inclination of the diffraction grating surface does not occur.

【考案の効果】[Effect of device]

以上説明した通り、本考案によれば、混合波への干渉信
号の重畳の有無にかかわらず、参照信号に交流成分が含
まれてしまうことがない。従つて、安定した検出信号を
得ることができるという優れた効果を有する。
As described above, according to the present invention, the reference signal does not include an AC component regardless of whether or not the interference signal is superimposed on the mixed wave. Therefore, it has an excellent effect that a stable detection signal can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本考案に係る格子干渉型変位検出装置の第1
実施例の構成を示す断面図、第2図は、同じく第2実施
例の構成を示す断面図、第3図は、従来の格子干渉型変
位検出装置の一例の構成を示す断面図である。 10……スケール、 A、B、C……回折点、 14……レーザビーム、 22B、22C、44A、44B……受光素子、 31……光源、 42A、42B、62A、62B……偏光子、 45……加算器、 46A、46B……差演算器、 60、68A、68B……ハーフミラー、 62A、62B……ミラー、 a、b……入射ビーム。
FIG. 1 is a first view of a grating interference type displacement detection device according to the present invention.
FIG. 2 is a sectional view showing the structure of the embodiment, FIG. 2 is a sectional view showing the structure of the second embodiment, and FIG. 3 is a sectional view showing the structure of an example of a conventional grating interference type displacement detection device. 10 ... Scale, A, B, C ... Diffraction point, 14 ... Laser beam, 22B, 22C, 44A, 44B ... Light receiving element, 31 ... Light source, 42A, 42B, 62A, 62B ... Polarizer, 45 ... Adder, 46A, 46B ... Difference calculator, 60, 68A, 68B ... Half mirror, 62A, 62B ... Mirror, a, b ... Incident beam.

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】回折格子が形成されたスケールと、 前記回折格子に光束を照射する光源、及び、前記回折格
子によつて生成された複数の光束の混合波を光電変換す
る受光素子を含む検出器とを備え、 前記スケールと検出器の相対変位に応じて、周期的に変
化する検出信号を生成する格子干渉型変位検出装置にお
いて、 前記回折格子で生成された複数の回折光束を混合する前
に、個々の回折光束の一部をそれぞれ抽出又は分離する
光学要素と、 該抽出又は分離された回折光をそれぞれ光電変換する2
つの受光素子と、 該2つの受光素子の出力を加算して参照信号を得るため
の加算器と、 該参照信号で前記検出信号のレベル変動の補償を行う回
路と、 を備えたことを特徴とする格子干渉型変位検出装置。
1. A detection including a scale having a diffraction grating, a light source for irradiating the diffraction grating with a light beam, and a light receiving element for photoelectrically converting a mixed wave of a plurality of light beams generated by the diffraction grating. And a grating interference type displacement detection device that generates a detection signal that periodically changes according to relative displacement between the scale and the detector, before mixing a plurality of diffracted light beams generated by the diffraction grating. And an optical element for extracting or separating a part of each diffracted light beam, and photoelectrically converting the extracted or separated diffracted light respectively 2.
One light receiving element, an adder for adding the outputs of the two light receiving elements to obtain a reference signal, and a circuit for compensating the level fluctuation of the detection signal with the reference signal, Displacement detection device of grating interference type.
【請求項2】前記回折格子で生成された光束の一部を抽
出する光学要素が、前記回折格子自体とされ、前記2つ
の受光素子が、0次回折光を検出するようにされている
実用新案登録請求の範囲第1項記載の格子干渉型変位検
出装置。
2. A utility model in which the optical element for extracting a part of the light beam generated by the diffraction grating is the diffraction grating itself, and the two light receiving elements are adapted to detect 0th-order diffracted light. The grating interference type displacement detection device according to claim 1.
JP1988006587U 1988-01-21 1988-01-21 Grating interference displacement detector Expired - Lifetime JPH0620969Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988006587U JPH0620969Y2 (en) 1988-01-21 1988-01-21 Grating interference displacement detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988006587U JPH0620969Y2 (en) 1988-01-21 1988-01-21 Grating interference displacement detector

Publications (2)

Publication Number Publication Date
JPH01112416U JPH01112416U (en) 1989-07-28
JPH0620969Y2 true JPH0620969Y2 (en) 1994-06-01

Family

ID=31210894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988006587U Expired - Lifetime JPH0620969Y2 (en) 1988-01-21 1988-01-21 Grating interference displacement detector

Country Status (1)

Country Link
JP (1) JPH0620969Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5380887B2 (en) * 2008-04-04 2014-01-08 株式会社ニコン Exposure method, device manufacturing method, and exposure apparatus
JP5734484B2 (en) * 2014-03-12 2015-06-17 太陽誘電株式会社 Displacement measuring device and displacement measuring method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939683A (en) * 1982-08-27 1984-03-05 株式会社日立製作所 Hanger

Also Published As

Publication number Publication date
JPH01112416U (en) 1989-07-28

Similar Documents

Publication Publication Date Title
US4970388A (en) Encoder with diffraction grating and multiply diffracted light
US7573581B2 (en) Position-measuring device
JP6732543B2 (en) Displacement detection device
US5000572A (en) Distance measuring system
JPS6391515A (en) Photoelectric angle gage
US20110235051A1 (en) Device for interferential distance measurement
JPH04270920A (en) Position detector and position detecting method
CN110360931B (en) Symmetrical compact heterodyne interference grating displacement measurement system
JP4077637B2 (en) Grating interference displacement measuring device
JPH08105708A (en) Interferometer
CN113701640B (en) Three-axis grating ruler
EP2743651A2 (en) Illumination portion for an adaptable resolution optical encoder
JPS58191907A (en) Method for measuring extent of movement
JPH0620969Y2 (en) Grating interference displacement detector
JP2001336952A (en) Measuring apparatus
JPH08178613A (en) Photodetector for interferometer
JPH046884B2 (en)
JP2718440B2 (en) Length measuring or angle measuring device
JPS59163517A (en) Optical scale reader
JPH0781817B2 (en) Position measuring device
JPH0235248B2 (en)
JP2557967B2 (en) Grating interference displacement meter
JPH0638050B2 (en) Grating interference displacement detector
JPH02298804A (en) Interferometer
JP2718439B2 (en) Length measuring or angle measuring device