JPS6165953A - Sealing construction of v-belt type non-stage transmission - Google Patents

Sealing construction of v-belt type non-stage transmission

Info

Publication number
JPS6165953A
JPS6165953A JP18859184A JP18859184A JPS6165953A JP S6165953 A JPS6165953 A JP S6165953A JP 18859184 A JP18859184 A JP 18859184A JP 18859184 A JP18859184 A JP 18859184A JP S6165953 A JPS6165953 A JP S6165953A
Authority
JP
Japan
Prior art keywords
chamber
hydraulic
diaphragm
pulley
hydraulic working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18859184A
Other languages
Japanese (ja)
Inventor
Takumi Honda
匠 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP18859184A priority Critical patent/JPS6165953A/en
Publication of JPS6165953A publication Critical patent/JPS6165953A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmissions By Endless Flexible Members (AREA)

Abstract

PURPOSE:To prevent oil from leaking by disposing diaphragms between the end part and the shaft part of a cylinder which surrounds the hydraulic working chamber of a V-belt type non-stage speed change gear. CONSTITUTION:The hydraulic working chamber 19 of a non-stage speed change gear having a V-belt 50 has sub chambers 20 and 21 positioned at the inner diameter side and at the back of said chamber 19. The hydraulic working chamber 19 and the sub chamber 20 placed at the inner diameter side thereof are separated by a primary diaphragm 22 and the hydraulic working chamber 19 and the other sub chamber 21 placed at the back thereof are separated by a fixed and bent piston 23 which is stuck to a driven shaft 11. In addition, the back side sub chamber 21 is separated from the outside by a secondary diaphragm 24. Oil will thereby be prevented from leaking to the outside.

Description

【発明の詳細な説明】 発明の分野 本発明は自動車用変速機として好適なVベルト式無段変
速機、特に無段変速機の作動油の漏れを防止するシール
構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a V-belt continuously variable transmission suitable as an automobile transmission, and more particularly to a seal structure for preventing leakage of hydraulic fluid in the continuously variable transmission.

従来技術とその問題点 従来、例えば特開昭58−42862号公報に記載のよ
うに、Vベルトを巻装した駆動側プーリおよび従動側プ
ーリの可動シーブの背後に、可動シーブを軸方向に移動
させる油圧作動室を一体に設けた無段変速機が知られて
いる。そして、上記油圧作動室への油圧を制御すること
により、可動シーブを軸方向に移動させ、駆動側プーリ
と従動側プーリとのプーリ比(変速比)を無段階に変化
させることができる。
Conventional technology and its problems Conventionally, as described in Japanese Patent Laid-Open No. 58-42862, a movable sheave is moved in the axial direction behind the movable sheave of a driving pulley and a driven pulley around which a V-belt is wound. Continuously variable transmissions are known that are integrally provided with a hydraulic operating chamber for the purpose of By controlling the hydraulic pressure to the hydraulic working chamber, the movable sheave can be moved in the axial direction, and the pulley ratio (speed ratio) between the driving pulley and the driven pulley can be changed steplessly.

ところで、金属1vベルトを使用した無段変速機におい
ては、Vベルトを常時潤滑させる必要があるため、油圧
作動室から油が漏れ出ても何ら支障はないが、樹脂製V
ベルトやゴム製Vヘルドを使用した無段変速機において
は、Vベルトに油が付着するとVベルトとベルト転送面
との摩擦抵抗が極端に低下し、必要な伝達トルクが得ら
れなくなるため、Vベルトを油の付着しないギヤヶー/
ス外部に設けるとともに、油圧作動室からの油漏れを完
全になくす必要がある。そこで、油圧作動室の内外をオ
イルシールや0リング等でシールすることが考えられる
が、オイルシールや。リングは軸部に対して摺動するた
め、この摺動部分に油膜ができて完全なシールにはなら
ず、漏れ出た油がブーりの回転に伴う遠心力により飛び
敗ってVヘルドに付着したり、エンジンルームを汚損す
るという問題がある。
By the way, in a continuously variable transmission that uses a metal 1V belt, it is necessary to constantly lubricate the V belt, so there is no problem even if oil leaks from the hydraulic operating chamber.
In continuously variable transmissions that use belts or rubber V-healds, if oil adheres to the V-belt, the frictional resistance between the V-belt and the belt transfer surface will be extremely reduced, making it impossible to obtain the necessary transmission torque. Protect the belt from oil and gear/
It is necessary to completely eliminate oil leakage from the hydraulic working chamber. Therefore, it is conceivable to seal the inside and outside of the hydraulic operating chamber with an oil seal or an O-ring. Since the ring slides against the shaft, an oil film forms on this sliding part and does not create a perfect seal, causing the leaked oil to fly away due to the centrifugal force caused by the rotation of the boob and enter the V-heald. There is a problem that it sticks and stains the engine room.

発明の目的 本発明はかかる従来の問題点に鑑みてなされたもので、
その目的は、油圧作動室からの油漏れを完全に防止でき
るVヘルド式無段変速機のシール構造を提供することに
ある。
Purpose of the Invention The present invention has been made in view of such conventional problems.
The purpose is to provide a seal structure for a V-held continuously variable transmission that can completely prevent oil leakage from a hydraulic chamber.

発明の構成 上記目的を達成するために、本発明は、油圧作動室を包
囲するシリンダの端部と軸部との間にダイヤフラムを設
け、このダイヤフラムでシリンダの内外をシールしたも
のである。すなわち、ダイヤフラムはオイルシールやO
リングと異なり摺動部分を有しないため、油圧作動室か
らの油漏れを完全に防止できるものである。
Structure of the Invention In order to achieve the above object, the present invention provides a diaphragm between the end of the cylinder surrounding the hydraulic chamber and the shaft, and seals the inside and outside of the cylinder with this diaphragm. In other words, the diaphragm is an oil seal or
Unlike a ring, it does not have any sliding parts, so it can completely prevent oil leakage from the hydraulic chamber.

実施例の説明 第1図は本発明にかかる無段変速機の一例を示し、この
無段変速機は駆動側プーリ1と従動側プーリ10とこれ
らプーリ間に巻装された無端■ベルト50とを備えてお
り、これらブーU1.10はギヤケース6(第2図参照
)の外部に設けられている。
DESCRIPTION OF EMBODIMENTS FIG. 1 shows an example of a continuously variable transmission according to the present invention. This continuously variable transmission includes a driving pulley 1, a driven pulley 10, and an endless belt 50 wound between these pulleys. These boots U1.10 are provided outside the gear case 6 (see FIG. 2).

駆動側プーリ1は駆動軸2に固定された固定シーブ3と
、駆動軸2に対し移動自在な可動シーブ4とを有してお
り、可動シーブ4を背後から作動手段5で押圧すること
により、プーリ径を可変としである。この作動手段5と
しては、後記する油圧作動室を備えた油圧式プーリ比制
御手段や、回転に伴う遠心力により可動シーブ4を軸方
向に移動させる遠心作動手段や、駆動軸2の入力トルク
に見合ったシーブ推力を発生させるトルクカム手段など
がある。
The drive pulley 1 has a fixed sheave 3 fixed to the drive shaft 2 and a movable sheave 4 that is movable relative to the drive shaft 2. By pressing the movable sheave 4 from behind with the actuating means 5, The pulley diameter is variable. The actuating means 5 includes a hydraulic pulley ratio control means equipped with a hydraulic actuating chamber (to be described later), a centrifugal actuating means that moves the movable sheave 4 in the axial direction by centrifugal force accompanying rotation, and an input torque of the drive shaft 2. There are torque cam means and the like that generate commensurate sheave thrust.

従動側ブー1710も駆動側ブーI71と同様に、従動
軸11に固定された固定シーブ12と、従動軸11に対
し軸方向に移動自在な可動シーブ13と、可動シーブ1
3を軸方向へ移動させる油圧式プーリ比制御手段18と
を有している。
Similarly to the driving side boob I71, the driven side boob 1710 also includes a fixed sheave 12 fixed to the driven shaft 11, a movable sheave 13 that is movable in the axial direction with respect to the driven shaft 11, and a movable sheave 1.
3 in the axial direction.

従動側プーリlOの構成を第2図に従って詳述すると、
固定シーブエ2は従動軸11の端末部にスプライン係合
され、回り止めナツト14にて結合されている。可動シ
ーブ13のボス部13a内周面には縦魂15が形成され
、この縦溝15と従動軸11の外周面に設けた縦416
との間に複数のポールI7を配置することによって、可
動シーブ13は従動軸11に対し軸方向にのみ移動自在
である。可動シーブ13の背部には油圧式プーリ比制御
手段18の一部を構成する油圧作動室19が一体に設け
られており、この油圧作動室19へ作用する油圧を図示
しない油圧制御弁で制御することにより、可動シーブ1
3を軸方向へ移動させ、駆動側と従動側とのブーり比(
変速比)を無段階に変えることができる。第2図中、従
動軸11を中心として上側半分は従動側プーリ10のプ
ーリ径が最小、下側半分はプーリ径が最大の状態を示す
The configuration of the driven pulley lO will be explained in detail according to Fig. 2.
The fixed sheave 2 is spline-engaged with the end of the driven shaft 11 and coupled with a rotation stopper nut 14. A vertical groove 15 is formed on the inner circumferential surface of the boss portion 13a of the movable sheave 13, and a vertical groove 15 is formed on the outer circumferential surface of the driven shaft 11.
By arranging a plurality of poles I7 between the movable sheave 13 and the driven shaft 11, the movable sheave 13 is movable only in the axial direction. A hydraulic chamber 19 that constitutes a part of the hydraulic pulley ratio control means 18 is integrally provided at the back of the movable sheave 13, and the hydraulic pressure acting on this hydraulic chamber 19 is controlled by a hydraulic control valve (not shown). By this, movable sheave 1
3 in the axial direction, and adjust the boolean ratio between the driving side and the driven side (
transmission ratio) can be changed steplessly. In FIG. 2, the upper half of the driven shaft 11 shows the state in which the pulley diameter of the driven pulley 10 is the smallest, and the lower half shows the state in which the pulley diameter is the largest.

油圧式プーリ比制御手段18の具体的構成としては、例
えば特開昭58−42862号公報に記載のように、エ
ンジン回転数を検出するピトー管と、スロットル開度と
連動するカムと、ピトー管からの油圧信号とカムの変位
信号とによってプーリ比を制御する油圧制御弁とで構成
してもよく、また他のいかなる油圧制御方法を用いても
よい。
The specific configuration of the hydraulic pulley ratio control means 18 includes, for example, a pitot tube that detects the engine rotation speed, a cam that interlocks with the throttle opening, and a pitot tube, as described in Japanese Patent Application Laid-Open No. 58-42862. It may be configured with a hydraulic control valve that controls the pulley ratio based on the hydraulic signal from the cam and the displacement signal of the cam, or any other hydraulic control method may be used.

ところで、油圧作動室19への油圧が零の状態において
も、従動側プーリlOの回転に基づく遠心力により油圧
作動室19には油圧が発生し、この油圧により可動シー
ブ13が移動してプーリ比が変化するおそれがある。こ
のブーり比の狂いをなくす目的で、油圧作動室19の内
径側および背面側に副室20.21が設けられている。
By the way, even when the hydraulic pressure to the hydraulic chamber 19 is zero, hydraulic pressure is generated in the hydraulic chamber 19 due to centrifugal force based on the rotation of the driven pulley lO, and this hydraulic pressure moves the movable sheave 13 to change the pulley ratio. may change. In order to eliminate this deviation in the boost ratio, sub-chambers 20 and 21 are provided on the inner diameter side and the rear side of the hydraulic working chamber 19.

油圧作動室19と内径側副室20とは第1ダイヤフラム
22で仕切られ、油圧作動室19と背面側副室21とは
従動軸11に固定された屈曲した固定ピストン23で仕
切られ、かつ背面側副室21と外部とは第2ダイヤフラ
ム24で仕切られている。すなわち、第1ダイヤフラム
22の内外周部は、固定ピストン23のボス部23aと
可動シーブ13の背面に突設した環状壁13bとに密着
固定されており、一方第2ダイヤフラム24の内外周部
は、従動軸11に外嵌されたスリーブ25 (軸部)と
可動シーブ13に結合されたシリンダ26の端部とに密
着固定されている。したがって、油圧作動室19と内径
側副室20との間、および背面側副室21と外部との間
は完全にシールされ、油が帰れ出ることがない。
The hydraulic working chamber 19 and the inner subchamber 20 are partitioned by a first diaphragm 22, and the hydraulic working chamber 19 and the back subchamber 21 are partitioned by a bent fixed piston 23 fixed to the driven shaft 11. The collateral chamber 21 and the outside are separated by a second diaphragm 24. That is, the inner and outer peripheral parts of the first diaphragm 22 are closely fixed to the boss part 23a of the fixed piston 23 and the annular wall 13b protruding from the back surface of the movable sheave 13, while the inner and outer peripheral parts of the second diaphragm 24 are , is closely fixed to a sleeve 25 (shaft portion) fitted onto the driven shaft 11 and an end of a cylinder 26 connected to the movable sheave 13. Therefore, the spaces between the hydraulic chamber 19 and the inner sub-chamber 20 and between the back sub-chamber 21 and the outside are completely sealed, and no oil can escape.

なお、上記固定ピストン23を屈曲形状とし、かつ第1
ダイヤフラム22を第2ダイヤフラム24より外径側に
配置したのは、軸方向のスペースを短縮するためである
。すなわち、従動側プーリ10のプーリ径が最小(第2
図上半分)のときには第1ダイヤフラム22の外周部が
固定ピストン23の外径側凹部23bに嵌り込み、従動
側プーリ10のプーリ径が最大(第2図下半分)のとき
には第2ダイヤフラム24の外周部が固定ピストン23
の内径側凹部23Cに嵌り込む。したがって、プーリ径
が最小の場合と最大の場合とで、第1、第2ダイヤフラ
ム22,24の外周部が互いに近接した位置まで変位す
ることができ、可動シーブ13のストロークの割に軸方
向のスペースを短縮できる。
Note that the fixed piston 23 has a bent shape, and the first
The reason why the diaphragm 22 is arranged on the outer diameter side of the second diaphragm 24 is to shorten the space in the axial direction. That is, the pulley diameter of the driven pulley 10 is the minimum (second
When the outer circumference of the first diaphragm 22 is in the outer diameter recess 23b of the fixed piston 23 (upper half of the figure), and when the pulley diameter of the driven pulley 10 is at its maximum (lower half of the figure 2), the second diaphragm 24 is The outer periphery is a fixed piston 23
It fits into the inner diameter side recess 23C. Therefore, the outer peripheries of the first and second diaphragms 22 and 24 can be displaced to positions close to each other depending on whether the pulley diameter is the minimum or the maximum, and the axial direction is proportional to the stroke of the movable sheave 13. Space can be shortened.

上記油圧作動室19へは上述のように油圧制御弁から油
路27を介して作動圧が作用しており、一方向径側副室
20へはオイルポンプ28からオリフィス29を介して
低圧の潤滑油を供給する潤滑用油路30が連通し、かつ
両副室20.21は固定ピストン23に設けた連通路3
1を介して連通している。つまり、第1ダイヤフラム2
2には油圧作動室19の油圧と副室20の遠心力による
油圧との差だけが作用し、一方第2ダイヤフラム24に
は遠心力による小さな油圧しか作用せず、いずれのダイ
ヤフラム22,24にも過大な負荷が掛からない。した
がって、一般に耐圧性に劣るとされるダイヤフラムであ
っても、充分に実用性に耐えるものとすることができる
As mentioned above, working pressure is applied to the hydraulic working chamber 19 from the hydraulic control valve through the oil passage 27, and low-pressure lubrication is applied to the unidirectional radial subchamber 20 from the oil pump 28 through the orifice 29. A lubrication oil passage 30 for supplying oil communicates with the sub-chambers 20, 21, and a communication passage 3 provided in the fixed piston 23.
It communicates via 1. In other words, the first diaphragm 2
Only the difference between the hydraulic pressure in the hydraulic chamber 19 and the centrifugal force in the auxiliary chamber 20 acts on the second diaphragm 24, while only a small hydraulic pressure due to the centrifugal force acts on the second diaphragm 24. There is no excessive load. Therefore, even a diaphragm that is generally considered to have poor pressure resistance can be made sufficiently durable for practical use.

ここで、上記副室20.’21の作用を第3図に従って
説明する。いま、従動側プーリ10が回転している状態
において、油圧作動室19には作動圧のほかに遠心力に
応じた油圧が発生し、この油圧により可動シーブ13は
Flの力で固定シーブ12011 (第3図左方向)へ
押される。一方、油圧作動室19と一体回転する副室2
0,21にも遠心力による油圧が発生し、この油圧によ
り内径側副室20は可動シーブ13をF2の力で第3図
左方向へ押し、背面側副室21は可動シーブ13をF3
の力で第3図右方向へ押す。このとき、油圧作動室19
の油圧作用面と内径側副室20の油圧作用面との面積の
和が背面側副室21の油圧作用面積にほぼ等しく設定さ
れているため、遠心力による油圧は左右で釣り合い、プ
ーリ比が狂うことがない。
Here, the sub-chamber 20. The operation of '21 will be explained with reference to FIG. Now, while the driven pulley 10 is rotating, in addition to the operating pressure, a hydraulic pressure corresponding to the centrifugal force is generated in the hydraulic chamber 19, and this hydraulic pressure causes the movable sheave 13 to move the fixed sheave 12011 ( (towards the left in Figure 3). On the other hand, the auxiliary chamber 2 rotates integrally with the hydraulic working chamber 19.
0 and 21 are also generated due to centrifugal force, and due to this oil pressure, the inner subchamber 20 pushes the movable sheave 13 to the left in FIG.
Push it to the right in Figure 3 with the force of . At this time, the hydraulic working chamber 19
Since the sum of the areas of the hydraulic working surface of the inner diameter subchamber 20 and the hydraulic working surface of the inner subchamber 20 is set approximately equal to the hydraulic working area of the rear subchamber 21, the hydraulic pressure due to the centrifugal force is balanced on the left and right sides, and the pulley ratio is I never go crazy.

上記実施例では、油圧作動室19の両側に副室20.2
1を設けたが、副室20は油圧作動室19の油圧作用面
と副室21の油圧作用面とのアンバランスを解消するた
めであって、油圧作動室19と副室21との油圧作用面
の面積がほぼ等しく設定されておれば、副室20は不要
である。
In the above embodiment, the auxiliary chambers 20.2 are located on both sides of the hydraulic working chamber 19.
1 is provided, but the purpose of the auxiliary chamber 20 is to eliminate the imbalance between the hydraulic working surface of the hydraulic working chamber 19 and the hydraulic working surface of the auxiliary chamber 21. If the areas of the surfaces are set to be approximately equal, the subchamber 20 is not necessary.

また、上記実施例では、内径側副室20と外部との間は
ダイヤフラムでシールされていないが、この副室20は
背面側副室21より小径側にあるため遠心力による油圧
は低く、そのため可動シーブ13のボス部13a先端に
設けたオイルシール32でも充分に油漏れを防止できる
からである。
Further, in the above embodiment, there is no seal between the inner diameter side subchamber 20 and the outside by a diaphragm, but since this subchamber 20 is located on the smaller diameter side than the rear side subchamber 21, the hydraulic pressure due to centrifugal force is low. This is because the oil seal 32 provided at the tip of the boss portion 13a of the movable sheave 13 can also sufficiently prevent oil leakage.

また、油圧作動室I9と副室20とを第1ダイヤフラム
22で仕切ったが、画室19.20の間は完全なシール
は必ずしも必要でないため、第1ダイヤフラム22に代
えて通常のオイルシールあるいは0リングを用いてもよ
い。
In addition, although the hydraulic operating chamber I9 and the auxiliary chamber 20 are partitioned by the first diaphragm 22, a complete seal between the compartments 19 and 20 is not necessarily required, so instead of the first diaphragm 22, a normal oil seal or a A ring may also be used.

発明の効果 以上の説明で明らかなように、本発明によれば油圧作動
室を包囲するシリンダと軸部との間にダイヤフラムを設
けたので、外部への油漏れを完全に防止できる。また、
シリンダと軸部とが互いに摺動しないので、可動シーブ
の動作が極めて円滑となるとともに、シリンダ端部と軸
部との寸法精度を必要としないため、製造コストを低減
できる効果がある。
Effects of the Invention As is clear from the above description, according to the present invention, since a diaphragm is provided between the cylinder surrounding the hydraulic working chamber and the shaft, oil leakage to the outside can be completely prevented. Also,
Since the cylinder and the shaft do not slide relative to each other, the movement of the movable sheave is extremely smooth, and since dimensional accuracy between the cylinder end and the shaft is not required, manufacturing costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる■ヘルド式無段変速機の概略図
、第2図は従動側プーリの詳細断面図、第3図は副室の
作用を示す概略図である。 ■・・・駆動側プーリ、10・・・従動側プーリ、13
・・・可動シーブ、19・・・油圧作動室、20.21
・・・副室、22.’24・・・ダイヤフラム、23・
・・固定ピストン、26・・・シリンダ、50・・・■
ベルト。
FIG. 1 is a schematic diagram of a heald-type continuously variable transmission according to the present invention, FIG. 2 is a detailed sectional view of the driven pulley, and FIG. 3 is a schematic diagram showing the function of the auxiliary chamber. ■... Drive side pulley, 10... Driven side pulley, 13
...Movable sheave, 19...Hydraulic operating chamber, 20.21
...Antechamber, 22. '24...Diaphragm, 23.
...Fixed piston, 26...Cylinder, 50...■
belt.

Claims (1)

【特許請求の範囲】[Claims] (1)駆動側プーリあるいは従動側プーリの少なくとも
一方の可動シーブに、該可動シーブを軸方向に移動させ
るための油圧作動室を一体に設けたVベルト式無段変速
機において、上記油圧作動室を包囲するシリンダの端部
と軸部との間にダイヤフラムを設けたことを特徴とする
Vベルト式無段変速機のシール構造。
(1) In a V-belt continuously variable transmission in which a hydraulic chamber for moving the movable sheave in the axial direction is integrally provided in at least one movable sheave of the driving pulley or the driven pulley, the hydraulic chamber A seal structure for a V-belt continuously variable transmission, characterized in that a diaphragm is provided between an end of a cylinder surrounding the cylinder and a shaft.
JP18859184A 1984-09-08 1984-09-08 Sealing construction of v-belt type non-stage transmission Pending JPS6165953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18859184A JPS6165953A (en) 1984-09-08 1984-09-08 Sealing construction of v-belt type non-stage transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18859184A JPS6165953A (en) 1984-09-08 1984-09-08 Sealing construction of v-belt type non-stage transmission

Publications (1)

Publication Number Publication Date
JPS6165953A true JPS6165953A (en) 1986-04-04

Family

ID=16226340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18859184A Pending JPS6165953A (en) 1984-09-08 1984-09-08 Sealing construction of v-belt type non-stage transmission

Country Status (1)

Country Link
JP (1) JPS6165953A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63164637U (en) * 1987-04-15 1988-10-26
EP0947736A3 (en) * 1998-03-30 1999-10-13 Fuji Jukogyo Kabushiki Kaisha Pulley structure of belt driven continuously variable transmission
EP1582773A3 (en) * 2004-03-31 2007-03-28 JATCO Ltd Pulley structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928790A (en) * 1982-08-11 1984-02-15 Hitachi Ltd Subscriber circuit of telephone set

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928790A (en) * 1982-08-11 1984-02-15 Hitachi Ltd Subscriber circuit of telephone set

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63164637U (en) * 1987-04-15 1988-10-26
EP0947736A3 (en) * 1998-03-30 1999-10-13 Fuji Jukogyo Kabushiki Kaisha Pulley structure of belt driven continuously variable transmission
EP1357314A1 (en) * 1998-03-30 2003-10-29 Fuji Jukogyo Kabushiki Kaisha Pulley structure of belt driven continuously variable transmission
EP1582773A3 (en) * 2004-03-31 2007-03-28 JATCO Ltd Pulley structure

Similar Documents

Publication Publication Date Title
US8092325B2 (en) Continuously variable belt transmission for a vehicle
US5711730A (en) Torque monitoring apparatus
US4534243A (en) Hydraulic control system for a V-belt transmission
US5072587A (en) Hydraulically operated continuously variable transmission
US5676612A (en) Pulley
JPH04279705A (en) Valve opening-closing timing control device
EP0289025B1 (en) Belt-and-pulley type continuously variable transmission
GB973397A (en) Improvements in variable speed hydromechanical power transmission
US6171207B1 (en) Transmission having pressure-operated adjusting means
JP2000161454A (en) Transmission device
US4785690A (en) Pressure regulating system for use in an automatic transmission
US5308287A (en) Rotary pump
US20050014584A1 (en) Belt continuously-variable transmission
JPS6165953A (en) Sealing construction of v-belt type non-stage transmission
JPH03163252A (en) Static hydraulic type continuously variable transmission
CA1309926C (en) Hydraulically operated continuously variable transmission
JPS634843Y2 (en)
JPS634845Y2 (en)
JPS634844Y2 (en)
JPS63149470A (en) Hydraulic continuously variable transmission
JPS6272955A (en) Hydraulic speed change gear for vehicle
JPH07117131B2 (en) Pulley for V-belt transmission
JP3184661B2 (en) Delay relief valve for hydraulic clutch transmission
JPH10252878A (en) Torque transmitting force control device of change gear ratio infinite continuously variable transmission
JPS6170265A (en) Hydraulic device for v-belt type stepless transmission