JPS6165891A - Novel silane and its production - Google Patents

Novel silane and its production

Info

Publication number
JPS6165891A
JPS6165891A JP18538584A JP18538584A JPS6165891A JP S6165891 A JPS6165891 A JP S6165891A JP 18538584 A JP18538584 A JP 18538584A JP 18538584 A JP18538584 A JP 18538584A JP S6165891 A JPS6165891 A JP S6165891A
Authority
JP
Japan
Prior art keywords
formula
group
formulas
tables
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18538584A
Other languages
Japanese (ja)
Inventor
Shigeyoshi Tai
田井 繁好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP18538584A priority Critical patent/JPS6165891A/en
Publication of JPS6165891A publication Critical patent/JPS6165891A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Abstract

NEW MATERIAL:A compound of formula I (R<1> is H, lower alkyl; R<2> is H, formula II; R<3> is trimethylene chain, ethylpropylamino chain; X is methoxy, ethoxy, acetoxy). EXAMPLE:The compound of formula III. USE:A silane coupling agent that gives a printed circuit base with high heat resistance. PREPARATION:At first, the reaction of nitrobenzyl halide with allylamine, preferably in an amount 10 times or more the molar amount of the benzyl halide is effected to give an aromatic nitro intermediate of formula IV or V. The nitro group only in the intermediate is reduced, preferably using tin and hydrochloric acid to form an amino group, then in the presence of a platinum catalyst preferably chloroplatinic acid, a compound of HSiX3 such as trimethoxysilane is added to give a compound of formula I where R<1> is H and R<3> is trimethylene chain.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、新規なシラン化合物およびその製造性に関す
る本のであシ、さらに詳しくは、芳香族アミン金官能基
として有するシランカップリング剤およびその製造性に
関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a novel silane compound and its manufacturability, and more particularly to a silane coupling agent having an aromatic amine gold functional group and its It is related to manufacturability.

(従来の技術) 近年、エレクトロニクス業界における急速な技術的進歩
とともに、その関連する材料への要求が高ま)つ\ある
。例えば、ICの高集積化による発熱量の増大は、プリ
ント配線基板の一層の耐熱性への要求となって現われて
きた。プリント配線基板として使用されているものの中
で、ガラス織物を芯材とし、これにエポキシ樹脂を含浸
、硬化させてつくる積層板の耐熱性は、ガラス繊維の表
面処理に用いるシランカップリング剤の性能に依存する
ことが大きい。
(Prior Art) In recent years, along with the rapid technological progress in the electronics industry, the demand for related materials has increased. For example, increased heat generation due to higher integration of ICs has led to demands for even higher heat resistance of printed wiring boards. Among the materials used as printed wiring boards, the heat resistance of laminates made by impregnating and curing glass fabric with epoxy resin as a core material depends on the performance of the silane coupling agent used for surface treatment of the glass fibers. Much depends on.

(発明が解決しようとする問題点) 耐熱性の劣つ次項層板は、その加工工程、すなわち、エ
ツチング、水洗い、穿孔、有機溶剤による洗浄、ハンダ
づけ工程等の途上、種々の欠点が露呈してくる。例えば
、ハンダヒユージング工程で高温環境下に置かれ次場合
、耐熱性の悪い積層板は、形が歪んだシ、表面に多数の
ふくれが発生し、ま几、ガラス繊維と樹脂が剥離する等
、実用上着しい障害が生ずる。
(Problems to be Solved by the Invention) The following laminated plates with poor heat resistance exhibit various defects during their processing steps, including etching, washing with water, drilling, cleaning with organic solvents, and soldering. It's coming. For example, if a laminate with poor heat resistance is placed in a high-temperature environment during the soldering process, the shape may be distorted, many blisters may appear on the surface, and the laminate, glass fibers, and resin may peel off. etc., which may cause problems in practical use.

(問題点を解決するための手段) 本発明者らは、製造工程においても完成製品においても
、上記し次欠点の現われない耐熱性を有するプリント配
線基板を得るため、新構造を有する多数のシラン化合物
を合成し、評価検討を行なつt結果、優れ念性能を有す
るシラン化合物を見出すことができ次。
(Means for Solving the Problems) In order to obtain a heat-resistant printed wiring board that does not exhibit the following defects, both in the manufacturing process and in the finished product, the present inventors developed a method using a large number of silanes having a new structure. As a result of synthesizing and evaluating compounds, we were able to find a silane compound with excellent psychological performance.

本発明になるシラン化合物は、一般式(I)で示される
。上記一般式において R1は水素、ま次はメチル基、
エチル基、シアノエチル基などの置換基を有するか、あ
るいは有しない低級アルキR1はトリメチレン鎖−C几
C)I、CH,−1またはエチルプロピルアミノ鎖−C
H,CH,NHCH,0H1C1(、−を表わし、Xは
メトキシ基、エトキシ基、アセトキシ基のいずれかの基
を表わす。芳香環に結合する一NHRI基シよび−CH
1NR”SiX、基に関して、オルト、メタ、パラの3
種の異性体が可能である。
The silane compound of the present invention is represented by general formula (I). In the above general formula, R1 is hydrogen, next is methyl group,
Lower alkyl R1 with or without a substituent such as an ethyl group or a cyanoethyl group is a trimethylene chain -C 几C) I, CH, -1 or an ethylpropylamino chain -C
H, CH, NHCH, 0H1C1 (, -, and X represents any one of methoxy group, ethoxy group, acetoxy group. One NHRI group bonded to the aromatic ring and -CH
1NR"SiX, ortho, meta, para 3 with respect to the group
Isomers of the species are possible.

本発明の上記化合物は、下記の3通力の方法によって製
造される。
The above compounds of the present invention are prepared by the following three-way method.

i−o方aは、ニトロベンジルハラ゛イドとアリルアミ
ンより、下式oi次は■′ の構造を有する芳香族ニトロ化合物中間体を合成し、次
匹でニトロ基のみを選択的に還元してアミノ基とし友後
、白金系触媒の存在下K H81X、 t−付加させる
方法である。該方法で得られるシラン化合物の構造は、
下式(IIDまたは(m)’で示される。
In method io, an aromatic nitro compound intermediate having the structure of the following formula oi is synthesized from nitrobenzyl halide and allylamine, and only the nitro group is selectively reduced with the following compound. This is a method in which KH81X and t-addition are performed in the presence of a platinum catalyst after the amino group is removed. The structure of the silane compound obtained by this method is
It is represented by the following formula (IID or (m)').

(式中、Xは前記と同じン 第2の方法は、ニトロベンズアルデヒドと3−アミノプ
ロピルトリアルコキシシランまたはN−2−7ミノエチ
ルー3−アミノプロピルトリメトキシシラ/とよ夕、下
式(IV)ま几は(V)の構造を有する中間体を合成し
、次いで脱水剤の存在下にニトロ基およびアゾメチン鎖
を同時に嘔または段階的に還元する方法である。該方法
で得られるシラン化合物の構造は、下式(I[Dまたは
(至)で示される。
(wherein, This is a method in which an intermediate having the structure (V) is synthesized, and then the nitro group and the azomethine chain are reduced simultaneously or stepwise in the presence of a dehydrating agent.Structure of the silane compound obtained by this method is represented by the following formula (I[D or (to)).

(式中、Xは前記と同じ) 本発明のシラン化合物ftM造する第5の方法は、ニト
ロベンジルハライドと3−アミノプロピルトリアルコキ
シ(もしくはアセトキシ)シラ/より、下式(vIDま
tは(■)′ (式中、Xは前記と同じ) の構造を有する化合物を合成し、次いで脱水剤の存在下
足ニトロ基を還元する方法であシ、得られるシラン化合
物は、式([I)ま几は(IID’で示されるものであ
る。式(IID、(IID′で示されるシラン化合物が
反応生成物中に混合して含まれている場合においても、
シランカップリング剤としての性能圧大差がないときに
は、これらの成分を分離することなく使用することがで
きる。
(wherein, ■)' (wherein, The formula is represented by (IID'. Even when the silane compound represented by the formula (IID, (IID') is mixed in the reaction product,
When there is no significant difference in performance pressure as a silane coupling agent, these components can be used without being separated.

前記第1および第3の方法において使用するニトロベン
ジルハライドとしては、ニトロベンジルブロマイドまた
はニトロベンジルブロマイドのパラ、メタ、オルト異性
体が好適である。場合によっては、ニトロベンジルアイ
オダイドも使用することができるが、価格的忙不利であ
る。
The nitrobenzyl halide used in the first and third methods is preferably nitrobenzyl bromide or para-, meta-, ortho-isomers of nitrobenzyl bromide. In some cases, nitrobenzyl iodide can also be used, but this is disadvantageous in terms of cost.

ニトロベンジルハライドとアリルアミンの反応は、通常
、有機溶媒中、室温から100Cの温度範囲で容易に進
行し、1〜10時間で完結する。
The reaction between nitrobenzyl halide and allylamine usually proceeds easily in an organic solvent at a temperature ranging from room temperature to 100C and is completed in 1 to 10 hours.

アリルアミンをニトロベンジルハライドに対して大過剰
(5倍モル以上、好ましくは10倍モル以上)用いるこ
とによって、ニトロベンジルハライドの転化率1100
%とすることができ、このような原料の仕込比において
は、反応生成物中の2級アミン(II)の量は、3級ア
ミン(■)′に比べて圧倒的に多((951以上)、特
に分離操作を行わない場合でも、最終的に得られるシラ
ン化合物は、実質的に式(I[Dの構造のものである。
By using allylamine in large excess (at least 5 times the mole, preferably at least 10 times the mole) relative to the nitrobenzyl halide, the conversion rate of nitrobenzyl halide is 1100.
%, and at such a raw material charging ratio, the amount of secondary amine (II) in the reaction product is overwhelmingly larger ((951 or more) than the tertiary amine (■)'). ), even if no particular separation operation is performed, the silane compound finally obtained has substantially the structure of formula (I[D).

反応生成物から未反応のアリルアミンを蒸留によって回
収し、次の反応に再び使用することができろ。蒸留後の
残液には、生成物およびアリルアミンの塩酸塩が含まれ
、アルカリで中和した後、抽出および蒸留などの操作?
経て、95%以上の0と5−以下の(IID ffi含
む中間体が得られる。
Unreacted allylamine can be recovered from the reaction product by distillation and used again in the next reaction. The residual liquid after distillation contains the product and allylamine hydrochloride, and after neutralization with alkali, operations such as extraction and distillation are performed.
Through this process, an intermediate containing 95% or more of 0 and 5- or less (IID ffi) is obtained.

次に、上記中間体を錫、もしくは塩化錫と塩酸の混合試
薬、1次は鉄、塩化鉄と塩酸の混合試薬など、不飽和結
合を還元することなく、ニトロ基のみを還元してアミノ
基にすることができる還元剤を用いて、芳香族アミン中
間体とする。
Next, the above intermediate is treated with tin, or a mixed reagent of tin chloride and hydrochloric acid, and the first is iron, a mixed reagent of iron chloride and hydrochloric acid, etc., to reduce only the nitro group without reducing the unsaturated bonds, and then to form an amino group. An aromatic amine intermediate is prepared using a reducing agent that can be used as an aromatic amine intermediate.

白金系触媒の存在下に、上記芳香族アミン中間体の不飽
和結合部にシランを付加させる反応は、有機溶媒の存在
下または不存在下に反応液を加熱することによって行わ
せる。白金系触媒としては塩化白金酸が最も好ましいが
、白金や酸化白金木用いることができる。
The reaction of adding silane to the unsaturated bond of the aromatic amine intermediate in the presence of a platinum-based catalyst is carried out by heating the reaction solution in the presence or absence of an organic solvent. As the platinum-based catalyst, chloroplatinic acid is most preferred, but platinum or oxidized platinum wood can also be used.

第2の方法における中間体QV)、(V)の還元は、モ
レキュラーシーブ、ゼオライト、無水硫酸カルシウム、
無水硫酸マグネシウム等の脱水剤の存在下に行う。ニト
ロ基の還元によって生成する水がアルコキシシランiた
はアセトキシシランを加水分解させ、溶媒に不溶の縮合
物を生成するからである。アゾメチン鎖に比べてニトロ
基が容易に還元される方法においては、第1段の反応と
して、脱水剤の存在下に温和な条件でニトロ基のみを還
元し、次いで完全く水分を除去し比後、より高温の第2
段反6廻よジアゾメチ/鎖を還元するのが有利である。
The reduction of intermediate QV), (V) in the second method can be carried out using molecular sieves, zeolites, anhydrous calcium sulfate,
It is carried out in the presence of a dehydrating agent such as anhydrous magnesium sulfate. This is because the water produced by the reduction of the nitro group hydrolyzes the alkoxysilane i or acetoxysilane to produce a condensate that is insoluble in the solvent. In the method in which the nitro group is easily reduced compared to the azomethine chain, the first step is to reduce only the nitro group under mild conditions in the presence of a dehydrating agent, then completely remove water and reduce the , the second at a higher temperature
It is advantageous to reduce the diazomethy/chain in six turns.

水分の共存下に苛酷な反応を行わせると、アセトキシシ
ラン″1次はアセトキシシランが加水分解され、縮合物
を生成し易い。反応は脱水され次原料、生成物の双方を
溶解する有機溶媒中で、好ましくはメタノール、エタノ
ール等の低級アルコール中で行う。姐元方法は、貴金属
系触媒を使用する水素添加反応が好ましく、還元剤を使
用する還元においては、アルコキシシラン′=1次はア
セトキシシランが分解され易い欠点がある。
When a severe reaction is carried out in the presence of moisture, acetoxysilane is easily hydrolyzed and a condensate is formed. It is preferably carried out in a lower alcohol such as methanol or ethanol. In the second method, a hydrogenation reaction using a noble metal catalyst is preferable, and in the reduction using a reducing agent, alkoxysilane' = primary is acetoxysilane. The disadvantage is that it is easily decomposed.

第3の方法において使用する脱水剤は、前記第2の方法
において使用する脱水剤と同種のものである。
The dehydrating agent used in the third method is the same type as the dehydrating agent used in the second method.

また、第5の方法においては、反応によって生成する塩
化水素の捕捉剤としてトリエチルアミンなどの強塩基を
用いなければ、反応は途中で停止してしまう。もし、原
料として使用するアミノ基tiするシランが、シランカ
ップリング剤として著しく劣悪な性能のものでなければ
、上記原料シラ/をニトロベンジルハライドの2倍モル
以上徴用することKよって反応は完結し、得られる生成
物の中には、生成物と等モルの未反応シランが含まれる
が、そのま\還元反応を行い、混合組成物トシてシラン
カップリング剤の用途に供することができる。
Furthermore, in the fifth method, unless a strong base such as triethylamine is used as a scavenger for hydrogen chloride produced by the reaction, the reaction will stop midway. If the silane having an amino group used as a raw material does not have extremely poor performance as a silane coupling agent, the reaction can be completed by using at least twice the mole of the raw material silane as the nitrobenzyl halide. Although the resulting product contains unreacted silane in the same mole as the product, the reduction reaction can be carried out as it is, and the mixed composition can be used as a silane coupling agent.

本発明の新規なシラン化合物は、シランカップリング剤
として無機材、例えば、ガラス、シリカ、アルミナ、タ
ルク、カオリンクレー、マイカ、炭酸カルシウム、チタ
ン酸バリウム、シラス、水酸化アルミニウム、ゼオライ
ト、酸化チタン、アスベスト、窒化硅素など天然に産す
る鉱物、人工的に合成される単一組成物などの表面に処
理される。
The novel silane compound of the present invention can be used as a silane coupling agent using inorganic materials such as glass, silica, alumina, talc, kaolin clay, mica, calcium carbonate, barium titanate, shirasu, aluminum hydroxide, zeolite, titanium oxide, It is applied to the surface of naturally occurring minerals such as asbestos and silicon nitride, as well as artificially synthesized single compositions.

(発明の効果) 本発明のシラン化合物で表面処理された無機材と有機高
分子とよりなる複合材は、一般に強固で、耐熱性に優れ
た性能を有する。
(Effects of the Invention) A composite material made of an inorganic material and an organic polymer surface-treated with the silane compound of the present invention is generally strong and has excellent heat resistance.

特に、本発明のシラン化合物で表面処理され友ガラス織
物から作られるプリント配線基板は、ハンダ耐熱性およ
び耐薬品性に優れており、エレクトロニクス業界の高い
要請に応えられるものである。
In particular, a printed wiring board made of glass fabric whose surface is treated with the silane compound of the present invention has excellent solder heat resistance and chemical resistance, and can meet the high demands of the electronics industry.

(実施例) 以下、本発明を実施例罠よってさらに詳しく説明する。(Example) Hereinafter, the present invention will be explained in more detail with reference to examples.

実施例1 1tのフラスコにアリルアミン148.5SF、)リエ
チルアミン52,6 S’を混合し、該混合液Kp−ニ
トロベンジルクロライド82.? f fテトラヒドロ
ンラン2613 PK溶解し次溶液を攪拌しながら少し
ずつ滴下した。滴下後、窒素気流中、水浴下20〜30
Cの温度で15.5時間攪拌を続けて反応させ九。反応
後、反応液をロータリーエバポレーターに入れ、30C
で未反応のアリルアミンを蒸発させ、約220−の残液
を得九。これを220dの水に溶解させ、340−の酢
酸エチルにより4回にわ友って回分抽出を行い、再びロ
ータリーエバポレーターにより酢酸エチルを蒸発させ、
97.Stの反応生成物を得た。該生成物を重水素で置
換し、テトラメチルシラン(TMS ) t−添加した
。クロロホルムに溶解し、核磁気共鳴分析器(NMR)
で分析し、第1図のチャート全得た。
Example 1 Allylamine 148.5SF and ) ethylamine 52.6S' were mixed in a 1t flask, and the mixed solution Kp-nitrobenzyl chloride was 82.5SF. ? f fTetrahydroneran 2613 PK was dissolved and the solution was added dropwise little by little while stirring. After dropping, in a nitrogen stream and in a water bath for 20 to 30 minutes.
9. The reaction was continued at a temperature of C for 15.5 hours with stirring. After the reaction, put the reaction solution into a rotary evaporator and heat at 30C.
Unreacted allylamine was evaporated to give a residual liquid of about 220%. This was dissolved in 220 d of water, subjected to batch extraction four times with 340 d of ethyl acetate, and the ethyl acetate was evaporated using a rotary evaporator again.
97. A reaction product of St was obtained. The product was replaced with deuterium and tetramethylsilane (TMS) was added. Dissolve in chloroform and analyze with nuclear magnetic resonance (NMR)
The entire chart in Figure 1 was obtained.

次に、該反応生成物96,5 f fエタノール200
?の入つfC2tのフラスコだ溶解し、塩化第一錫(2
水塩)576ftエタノール5 a OfK溶かした液
を氷水で冷却しつ\約1時間で滴下し次。
Next, the reaction product 96,5 f f ethanol 200
? Dissolve stannous chloride (2
Water salt) 576ft Ethanol 5 a OfK The dissolved liquid was cooled with ice water and added dropwise over about 1 hour.

次に、35%塩酸43Qrdf約45分間で滴下し、滴
下終了後、13時間室温で反応を行なう友。反応終了後
、反応液(約1,4 t ) を水3.6tで希釈し、
5Nのカセイソーダ水溶液で中和した(pH→11)。
Next, 35% hydrochloric acid (43 Qrdf) was added dropwise over about 45 minutes, and after the addition was completed, the reaction was carried out at room temperature for 13 hours. After the reaction was completed, the reaction solution (approximately 1.4 t) was diluted with 3.6 t of water,
It was neutralized with a 5N aqueous solution of caustic soda (pH→11).

この中和液を数回に分けて酢酸エチルで抽出し、抽出液
全ロータリーエバポレーターに入れ、酢酸エチルを蒸発
させ、計6 El、5 fの生成物を得た。該生成物の
NMRチャートヲ第2図に示し友。
This neutralized solution was extracted in several portions with ethyl acetate, and the entire extract was placed in a rotary evaporator to evaporate the ethyl acetate, yielding a total of 6 El and 5 f of the product. The NMR chart of the product is shown in Figure 2.

次に、該生成物、64.8p、)リメトキシシラン58
.77f混合し、約0.05 pの塩化白金酸を添加し
、120Cでトリメトキシシランを還流させつ\、3.
5時間反応させ友。得られた新規なシラ/化合物’iN
MRで測定し、第3図のチャートを得た。チャートの中
のδ÷5.5tptsの大きなピークは、溶媒として使
用したメタノールのメチル基の6個の水素原子に基づく
ものである。
Then the product, 64.8p,)rimethoxysilane 58
.. 77f mix, add about 0.05p chloroplatinic acid, reflux trimethoxysilane at 120C, 3.
Let it react for 5 hours. The obtained novel sila/compound 'iN
Measurement was carried out by MR, and the chart shown in FIG. 3 was obtained. The large peak of δ÷5.5 tpts in the chart is based on 6 hydrogen atoms of the methyl group of methanol used as a solvent.

実施例2 p−ニトロベンズアルデヒド15.12′f!:脱水メ
タノール1o01RtK溶解し、該溶液に5−アミノプ
ロピルトリエトキシシラン22,17’i少しずつ滴下
し、滴下終了後、室温で1時間攪拌し、反応させた。反
応は定量的に進行し、シッフ塩と等モルの水が生成する
。反応液中の生成水全除去するため[,600Cで焼成
し几モレキュラーシープ約502を投入し、−夜攪拌を
続は恋。反応液の一部を取り出し、ロータリーエバポレ
ーターで溶媒を蒸発させ次長黄色の残液をNMRで分析
したところ、第4図に示すチャートを得友。アゾメチン
結合の1個の水素に基づく吸収は最左端に現われる(δ
−ニー7.8ppm)。次に、モレキュラーシーブk濾
過によって取り除き、新しいモレキュラーシーズ5a2
と酸化白金を耳かき一杯添加し、オートクレーブを用い
、水素加圧10 kg/d Gで8時間反応させ九。反
応温度は発熱によって一時的に30Cになったが、概し
て20〜25Ci保つ九。
Example 2 p-Nitrobenzaldehyde 15.12'f! : Dehydrated methanol 1o01RtK was dissolved, and 5-aminopropyltriethoxysilane 22,17'i was added dropwise little by little to the solution, and after completion of the dropwise addition, the mixture was stirred at room temperature for 1 hour to react. The reaction proceeds quantitatively, producing equimolar amounts of water and Schiff salt. In order to remove all the produced water in the reaction solution, calcined at 600C and added about 502 grams of Molecular Sheep, followed by stirring at night. A portion of the reaction solution was taken out, the solvent was evaporated using a rotary evaporator, and the yellow residue was analyzed by NMR, and the chart shown in Figure 4 was obtained. The absorption based on one hydrogen of the azomethine bond appears on the leftmost side (δ
- knee 7.8 ppm). Next, remove by molecular sieve filtration and use new molecular seeds 5a2.
Added an earpick of platinum oxide and reacted in an autoclave under hydrogen pressure of 10 kg/dG for 8 hours.9. The reaction temperature temporarily rose to 30C due to heat generation, but was generally kept at 20-25C.

反応終了後、濾過によりモレキュラーシープを取り除き
、代りに新しbモレキュラーシーブを入れ、−夜装置し
友。再びモレキュラーシープを除去し、酸化白金を耳か
き一杯加えて、1o kg /adGの水素加圧下、8
5Cで9時間反応させた。反応液を冷却後、触媒および
少量の固形物を濾過によって除去した。反応液は暗褐色
のや\粘性を帯び友液体であシ、反応液の一部を取り出
し、エタノール金蒸発させ、 生成物t−NMRで分析
し次結果(第5図)、生成物は下記の構造の化合物であ
ることが判つ次。
After the reaction, remove the molecular sieve by filtration, replace it with new molecular sieve, and set aside overnight. The molecular sheep was removed again, an earpickful of platinum oxide was added, and the mixture was heated under a hydrogen pressure of 10 kg/adG.
The reaction was carried out at 5C for 9 hours. After cooling the reaction solution, the catalyst and a small amount of solid matter were removed by filtration. The reaction solution was a dark brown, slightly viscous liquid. A portion of the reaction solution was taken out, ethanol gold was evaporated, and the product was analyzed by t-NMR. The results (Figure 5) showed that the product was as follows. The following is found to be a compound with the structure:

該生成物の分析はNMRで行なった。原料のエトキシシ
ランは反応の過程で溶媒として使用し几メタノールによ
って置換されるため、メトキシ基の吸収のみδ+3.5
(psm)付近にみられる。
Analysis of the product was performed by NMR. Since the raw material ethoxysilane is used as a solvent during the reaction process and is replaced by diluted methanol, only the absorption of methoxy groups is δ + 3.5.
(psm).

実施例3 m−ニトロベンズアルデヒド15.1pi脱水メタノー
ルtoo−に溶解し、該溶液1cN−2−7ミノエチル
ー3−7ミノプロビルトリメトキシシラン22.2ft
−少しずつ滴下し、滴下後室温で1時間反応させ、シッ
フ塩を生成させた。該シッフ塩を実施例2と同様の反応
および分離操作を繰り返して、下記の化合物を得た。
Example 3 15.1 pi of m-nitrobenzaldehyde was dissolved in too much dehydrated methanol, and 1 c of the solution was dissolved in 22.2 ft of m-nitrobenzaldehyde.
- It was added dropwise little by little, and after the dropwise addition, it was allowed to react at room temperature for 1 hour to generate Schiff salt. The Schiff salt was subjected to the same reaction and separation procedure as in Example 2 to obtain the following compound.

洲! 実施例4 p−=)ロベンジルプロマ4 ト17,2 r、5−ア
ミノプロピルトリエトキシシラン33.2ft−脱水エ
タノール501に溶解させ、約78Gでエタノールを還
流きせつ\、5時間反応させ比。遊離したブロムを硝酸
銀で滴定したところ、収率は約90%であった。
Shu! Example 4 33.2 ft of 5-aminopropyltriethoxysilane was dissolved in 501 dehydrated ethanol, refluxed the ethanol at about 78 G, and reacted for 5 hours. . When the liberated bromine was titrated with silver nitrate, the yield was about 90%.

次に、反応液に酸化白金を耳かき一杯とモレキュラーシ
ープSA(脱水剤)(I−1Of加え、オートクレーブ
中、1ok1iI/c++tGの水素加圧下、60Cで
9時間反応さ・ぜた。
Next, an earpick of platinum oxide and Molecular Sheep SA (dehydrating agent) (I-1Of) were added to the reaction solution, and the mixture was reacted in an autoclave at 60C under a hydrogen pressure of 10k1iI/c++tG for 9 hours.

反応液は暗褐色の粘性のある液体であ)、これを一部具
化カリ結晶板に塗布して乾燥し、赤外分光分析でニトロ
基の吸収を検べたところ、ニトロ基の存在は認められな
かった。反応液中に含まれる組成物は、未反応の5−ア
ミノプロピルトリエトキシシランと、これと等モルの下
記の化合物である。
The reaction solution was a dark brown viscous liquid), which was applied to a partially embedded potash crystal plate and dried, and the absorption of nitro groups was examined by infrared spectroscopy, and the presence of nitro groups was confirmed. I couldn't. The composition contained in the reaction solution is unreacted 5-aminopropyltriethoxysilane and the following compound in an equimolar amount thereto.

実施例5 実施例1〜4で得られた種々のシランカップリング剤お
よび比較薬剤を、下記の方法でガラス織物に処理し九〇 シランカップリング剤を水に溶解させ0.5重量%の水
溶液をり〈シ、該水溶液に酢酸を加えてpHを5に調整
し九(処理液)。
Example 5 The various silane coupling agents and comparative agents obtained in Examples 1 to 4 were treated on glass fabric in the following manner, and the 90 silane coupling agents were dissolved in water to form a 0.5% by weight aqueous solution. Then, add acetic acid to the aqueous solution to adjust the pH to 5 (treatment liquid).

上記処理液に厚さ0.18111のガラス織物〔旭シュ
ニーベル(株)製7628 )を浸漬し、次いでガラス
織物に対し約50−の処理液保持率になるように脱液し
た後、120Cの熱風によって乾燥した。
A glass fabric with a thickness of 0.18111 [7628 manufactured by Asahi Schniebel Co., Ltd.] was immersed in the above treatment liquid, and then the liquid was removed so that the retention rate of the treatment liquid was about 50%, and then 120C hot air was immersed. dried by.

また、臭素化ビスフェノールA型エポキシ樹脂AER7
11−EK130(旭化成工業(株)製〕100部、N
 、 N’−ジメチルホルムアミド9.3部、メチルセ
ロソルブ9.3部、ジシアンジアミド2.0部、N、N
’−ジメチルベンジルアミン0.17部i配合してエポ
キシワニス?:’HAMした。
In addition, brominated bisphenol A type epoxy resin AER7
11-EK130 (manufactured by Asahi Kasei Industries, Ltd.) 100 parts, N
, N'-dimethylformamide 9.3 parts, methyl cellosolve 9.3 parts, dicyandiamide 2.0 parts, N,N
Epoxy varnish containing 0.17 parts i of '-dimethylbenzylamine? :'HAM.

該ワニスを前記シランカップリング剤で処理したガラス
織物に含浸、乾燥して樹脂分45チのプリプレグをりく
り几。次に、該プリプレグ全8枚重ね、その画表層に厚
さ35μの銅箔を張ルつけて、175Cで60分間、4
50kg/dQで加圧し一体く成形し、厚さ1.6in
鋼張鋼張板をつくった。
A glass fabric treated with the silane coupling agent was impregnated with the varnish, dried, and a prepreg having a resin content of 45 inches was cut out. Next, all 8 sheets of the prepreg were stacked, a 35 μm thick copper foil was pasted on the surface layer of the image, and 4 sheets were heated at 175C for 60 minutes.
Pressurized at 50 kg/dQ and molded into one piece, 1.6 inch thick.
We made steel-clad steel plates.

さらに、エツチング液で銅箔の一部をエッチアウトして
、水洗、風乾して試験用積層板とじ九。
Furthermore, a portion of the copper foil was etched out using an etching solution, washed with water, and air-dried to form a test laminate.

種々のシランカップリング剤で処理したガラス織物から
つくられ比上記試験用積層板について、樹脂の含浸性、
ハンダ耐熱性、耐薬品性、電気特性を測定し、シランカ
ップリング剤の性能評価を行ない、その結果を表IK示
した表1中、比較例のシランカップリング剤は下記のと
お)である。
For the above test laminates made from glass fabrics treated with various silane coupling agents, the impregnability of the resin,
The solder heat resistance, chemical resistance, and electrical properties were measured, and the performance of the silane coupling agents was evaluated, and the results are shown in Table 1. In Table 1, the silane coupling agents of comparative examples are as follows.

比較例1 (r−グリシドキシクロビル)トリメトキシシラy 比較例2 3−アミノプロビルトリエトキシシラン×1 樹脂の含
浸性の良否を目視により判定し次。  ある。
Comparative Example 1 (r-glycidoxyclovir)trimethoxysilane Comparative Example 2 3-aminoprobyltriethoxysilane x 1 The impregnability of the resin was visually determined. be.

良好(○)、やや良好(Δ)、不良(×)*2  JI
S−C−6481の手出耐熱性に準じ、プレッシャーク
ツカー(pc)で、120Cで2.5時間、3.0時間
、5.5時間熱処理後、260Cの半田面に1分間浮か
べ、7クレの発生の有(×)、無(○)を調べた。
Good (○), Fairly good (Δ), Poor (×) *2 JI
According to the heat resistance of S-C-6481, heat treatment was performed at 120C for 2.5 hours, 3.0 hours, and 5.5 hours using a pressure cooker (PC), and then floated on the solder surface at 260C for 1 minute. The presence (×) and absence (○) of the occurrence of cracks was investigated.

*3  JIS−C−6481の耐トリクレン性試験に
準じ、20Cのトリクレンに20分間浸漬した投の表面
状態t?調べた。
*3 According to the trichlene resistance test of JIS-C-6481, the surface condition of the throw that was immersed in 20C trichlene for 20 minutes t? Examined.

残4  JIS−C−6481の耐トリクレン性試験に
準じ、20Cの塩化メチレンに20分間浸漬した後の表
面状態を調べ次。
Remaining 4 In accordance with the trichlene resistance test of JIS-C-6481, the surface condition was examined after immersion in 20C methylene chloride for 20 minutes.

* 5 JIS−C−6481K準する。*5 Conforms to JIS-C-6481K.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (4)

【特許請求の範囲】[Claims] (1)下記一般式( I ) ▲数式、化学式、表等があります▼( I ) (式中、R_1は水素、またはメチル基、エチル基、シ
アノエチル基などの置換基を有するか、あるいは有しな
い低級アルキル基、R^2は水素、または▲数式、化学
式、表等があります▼基、R^3はトリメチレン鎖−C
H_2CH_2CH_2−、またはエチルプロピルアミ
ノ鎖−CH_2CH_2NHCH_2CH_2CH_2
−、Xはメトキシ基、エトキシ基、アセトキシ基のいず
れかの基を表わす。) で示される新規なシラン化合物。
(1) The following general formula (I) ▲Mathematical formulas, chemical formulas, tables, etc.▼(I) (In the formula, R_1 may or may not have hydrogen, or a substituent such as a methyl group, ethyl group, or cyanoethyl group. Lower alkyl group, R^2 is hydrogen, or ▲ there are mathematical formulas, chemical formulas, tables, etc. ▼ group, R^3 is trimethylene chain -C
H_2CH_2CH_2-, or ethylpropylamino chain -CH_2CH_2NHCH_2CH_2CH_2
- and X represent any one of a methoxy group, an ethoxy group, and an acetoxy group. ) A novel silane compound represented by
(2)ニトロベンジルハライドとアリルアミンより、下
式(II)または(II)′ ▲数式、化学式、表等があります▼(II) ▲数式、化学式、表等があります▼(II)′ の構造を有する芳香族ニトロ化合物中間体を合成し、次
いでニトロ基のみを選択的に還元してアミノ基とした後
、白金系触媒の存在下にHSiX_3を付加させること
を特徴とする下式(III)または(III)′▲数式、化学
式、表等があります▼(III) ▲数式、化学式、表等があります▼(III)′ (式中、Xはメトキシ基、エトキシ基、アセトキシ基の
いずれかの基を表わす。) で示されるシラン化合物の製造法。
(2) From nitrobenzyl halide and allylamine, the structure of the following formula (II) or (II)′ ▲There are mathematical formulas, chemical formulas, tables, etc.▼(II) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(II)′ The following formula (III) or (III)'▲There are mathematical formulas, chemical formulas, tables, etc.▼(III) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(III)' (In the formula, X is a group of methoxy, ethoxy, or acetoxy. ).
(3)ニトロベンズアルデヒドと3−アミノプロピルト
リアルコキシシランまたはN−2−アミノエチル−3−
アミノプロピルトリメトキシシランより、下式(IV)ま
たは(V) ▲数式、化学式、表等があります▼(IV) ▲数式、化学式、表等があります▼(V) の構造を有するシラン塩を形成させ、次いで脱水剤の存
在下にニトロ基およびアゾメチン鎖を同時に、または段
階的に還元することを特徴とする下式(III)または(
VI) ▲数式、化学式、表等があります▼(III) ▲数式、化学式、表等があります▼(VI) (式中、Xはメトキシ基、エトキシ基、アセトキシ基の
いずれかの基を表わす。) で示されるシラン化合物の製造法。
(3) Nitrobenzaldehyde and 3-aminopropyltrialkoxysilane or N-2-aminoethyl-3-
From aminopropyltrimethoxysilane, a silane salt having the structure of the following formula (IV) or (V) ▲Mathematical formula, chemical formula, table, etc. available▼(IV) ▲Mathematical formula, chemical formula, table, etc. available▼(V) is formed. and then reduce the nitro group and the azomethine chain simultaneously or stepwise in the presence of a dehydrating agent.
VI) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(III) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(VI) (In the formula, X represents any of the methoxy group, ethoxy group, or acetoxy group. ) A method for producing a silane compound shown in
(4)ニトロベンジルハライドと3−アミノプロピルト
リアルコキシシランより、下式(VII)または(VII)′
▲数式、化学式、表等があります▼(VII) ▲数式、化学式、表等があります▼(VII)′ の構造を有する化合物を合成し、次いで脱水剤の存在下
にニトロ基を還元することを特徴とする下式(III)ま
たは(III)′ ▲数式、化学式、表等があります▼(III) ▲数式、化学式、表等があります▼(III)′ (式中、Xはメトキシ基、エトキシ基、アセトキシ基の
いずれかの基を表わす。) で示されるシラン化合物の製造法。
(4) From nitrobenzyl halide and 3-aminopropyltrialkoxysilane, the following formula (VII) or (VII)'
▲There are mathematical formulas, chemical formulas, tables, etc.▼(VII) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(VII) Synthesize a compound with the structure ′, and then reduce the nitro group in the presence of a dehydrating agent Characteristics of the following formula (III) or (III)′ ▲There are mathematical formulas, chemical formulas, tables, etc.▼(III) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(III)′ (In the formula, X is a methoxy group, an ethoxy or acetoxy group).
JP18538584A 1984-09-06 1984-09-06 Novel silane and its production Pending JPS6165891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18538584A JPS6165891A (en) 1984-09-06 1984-09-06 Novel silane and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18538584A JPS6165891A (en) 1984-09-06 1984-09-06 Novel silane and its production

Publications (1)

Publication Number Publication Date
JPS6165891A true JPS6165891A (en) 1986-04-04

Family

ID=16169882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18538584A Pending JPS6165891A (en) 1984-09-06 1984-09-06 Novel silane and its production

Country Status (1)

Country Link
JP (1) JPS6165891A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6429385A (en) * 1987-07-27 1989-01-31 Bridgestone Corp Silane coupling agent
JPS6483088A (en) * 1987-09-25 1989-03-28 Asahi Shiyueebell Kk Water-soluble silane composition
JPH05105689A (en) * 1991-10-15 1993-04-27 Shin Etsu Chem Co Ltd Organic silicon compound
EP0768313A3 (en) * 1995-09-14 1998-04-29 Dow Corning Toray Silicone Company Limited A surface treating agent for glass fiber substrates
US7026426B2 (en) 2000-10-12 2006-04-11 Shin-Etsu Chemical Co., Ltd. Room temperature curable organopolysiloxane compositions
US7901866B2 (en) * 2006-10-10 2011-03-08 Canon Kabushiki Kaisha Pattern forming method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6429385A (en) * 1987-07-27 1989-01-31 Bridgestone Corp Silane coupling agent
JPS6483088A (en) * 1987-09-25 1989-03-28 Asahi Shiyueebell Kk Water-soluble silane composition
JP2577753B2 (en) * 1987-09-25 1997-02-05 旭シユエーベル株式会社 Water-soluble silane composition
JPH05105689A (en) * 1991-10-15 1993-04-27 Shin Etsu Chem Co Ltd Organic silicon compound
EP0768313A3 (en) * 1995-09-14 1998-04-29 Dow Corning Toray Silicone Company Limited A surface treating agent for glass fiber substrates
US7026426B2 (en) 2000-10-12 2006-04-11 Shin-Etsu Chemical Co., Ltd. Room temperature curable organopolysiloxane compositions
US7901866B2 (en) * 2006-10-10 2011-03-08 Canon Kabushiki Kaisha Pattern forming method

Similar Documents

Publication Publication Date Title
KR930002763B1 (en) Silane coupling agent and glass fiber product for laminates
JPS6165891A (en) Novel silane and its production
JP2000297093A (en) New organosilicon compound, its production and surface treating agent and resin additive using the same
JP3523804B2 (en) Novel organosilicon compound, method for producing the same, surface treating agent and resin additive using the same
TWI705955B (en) Diamine compound, preparation method thereof, thermosetting resin composition and application thereof
JPS6157590A (en) Silane compound and its production
JP6421073B2 (en) Metal surface treatment liquid and use thereof
JP4675649B2 (en) Triazine derivative, method for producing the same, and metal surface treatment agent
JPS62100462A (en) Glass cloth surface finishing agent
US5149839A (en) Silane coupling agent and glass fiber product for laminates
JP3062822B2 (en) Epoxy resin composition
TWI736925B (en) Double-end amino active ester, preparation method thereof, thermosetting resin composition and application thereof
JP2004115522A (en) Arylalkylamino-functional silane for epoxy laminate
KR100511482B1 (en) Novel Ester Compound And Thermosetting Resin Composition Using The Same
KR101475839B1 (en) Copper foil for flexible printed circuit board, method for preparing the same, and flexible copper clad laminate using polyamic acid precursor and copper foil
WO2020232597A1 (en) Diamine compound, preparation method therefor, thermosetting resin composition, and application
WO2020232596A1 (en) Active ester with amino groups at two ends, preparation method therefor, thermosetting resin composition and use thereof
US4564578A (en) Novel thioxanthones substituted by alpha-aminoalkyl groups
JPH1112267A (en) Production of polyhydric phenol compound, epoxy resin composition and product using the same
JPS6195046A (en) Composition for surface treatment
JP3427465B2 (en) Modifier for composite material, method for producing the same, and composite material
JP2008031278A (en) Modifier for composite materials, and composite material
JPH0565538B2 (en)
JP3448902B2 (en) Silane coupling agent and method for producing silane coupling agent
JP2920324B2 (en) Modifier for composite materials