JPS6163022A - Manufacture of amorphous semiconductor thin film - Google Patents

Manufacture of amorphous semiconductor thin film

Info

Publication number
JPS6163022A
JPS6163022A JP59185089A JP18508984A JPS6163022A JP S6163022 A JPS6163022 A JP S6163022A JP 59185089 A JP59185089 A JP 59185089A JP 18508984 A JP18508984 A JP 18508984A JP S6163022 A JPS6163022 A JP S6163022A
Authority
JP
Japan
Prior art keywords
gas
film
thin film
amorphous semiconductor
sigmap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59185089A
Other languages
Japanese (ja)
Other versions
JPH0611032B2 (en
Inventor
Hidekazu Oota
英一 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP59185089A priority Critical patent/JPH0611032B2/en
Publication of JPS6163022A publication Critical patent/JPS6163022A/en
Publication of JPH0611032B2 publication Critical patent/JPH0611032B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain an a-Si film having high photoconductivities sigmaP and sigmaP/sigmaD and a high optical responding speed by a method wherein N is doped in a-Si using the mixed gas of SiH4, NH3 and H2 gas as the raw gas for a chemical vapor deposition (CVD) method. CONSTITUTION:The mixed gas consisting of SiH4, NH3 and H2 gas is introduced into a vacuum chamber 1 through the intermediary of a gas introducing hole 2 and a gas jetting hole 3. Plasma is discharged by applying high frequency from a high frequency power source 6 between a substrate side electrode 4 and a high frequency side electrode 5, and an a-Si film is formed on a substrate 7. As N is doped on the a-Si film using NH3 gas, an a-Si film, having high photoconductivity sigmaP, sigmaP/sigmaD ratio of 10<2> or above, and a high optical responding speed, can be obtained.

Description

【発明の詳細な説明】 技術分野 本発明は、プラズマCVD法による非晶質半導体薄膜の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method for manufacturing an amorphous semiconductor thin film by plasma CVD.

従来技術 近年、非晶質半導体、具体的にはアモルファスシリコン
a−S iが注目されており、このアモルファスシリコ
ンa−Siは等倍光センサー、太陽電池、4膜トランジ
スタTPT等のデバイスとして用いられる。これらのデ
バイスにおいてa−5i薄膜に要求される特性は、光導
電率σPが高いこと、光導電率と暗導電率との比627
0口が103以上であること、光応答速度が速いこと等
である。特に、等倍光センサーにあっては光応答速度が
速いことが重要である。
BACKGROUND ART In recent years, amorphous semiconductors, specifically amorphous silicon a-Si, have been attracting attention, and this amorphous silicon a-Si is used as devices such as 1x optical sensors, solar cells, and 4-film transistors TPT. . The characteristics required of the a-5i thin film in these devices are a high photoconductivity σP and a ratio of photoconductivity to dark conductivity of 627
The number of zero ports is 103 or more, the light response speed is fast, and so on. In particular, it is important for a life-size optical sensor to have a fast optical response speed.

ここに、a−3il膜の製造にプラスマCVD(化学気
相成長)法を用いるのが最も一般的であり、優れた光電
特性のa−5i膜の製造として次のような方法がとられ
ている。
The plasma CVD (chemical vapor deposition) method is most commonly used to manufacture the a-3il film, and the following methods are used to manufacture the a-5i film with excellent photoelectric properties. There is.

まず、第一に、SiN4ガス(100%)を原料ガスと
して用い、成膜条件の最適化によりノンドープのa−S
iで高特性の薄膜を得る方法である。この方法による場
合、光応答速度の速いものが得られるが、光導電率σP
が低く不充分である。
First of all, by using SiN4 gas (100%) as the source gas and optimizing the film forming conditions, we developed a non-doped a-S
This is a method of obtaining a thin film with high characteristics at i. When using this method, a product with a fast photoresponse speed can be obtained, but the photoconductivity σP
is low and insufficient.

第二に、a−5i膜中にPH3を微量ドープさせること
により、特性の向上を図るようにしたものもある(文献
ED83−132のrプレーナ型a−Si2次元光セン
サj参照)。この方法の場合、光導電率σPは充分であ
るが、光応答速度が゛遅く不充分である。
Secondly, there is also a film in which characteristics are improved by doping a small amount of PH3 into the a-5i film (see r-planar type a-Si two-dimensional optical sensor j in document ED83-132). In this method, the photoconductivity σP is sufficient, but the photoresponse speed is too slow.

第三に、N2ガス又はN H3ガスによってa−8i膜
中にNドープさせることにより、特性の向上を図るよう
にしたものもある(文献JAPAN−ESE JOUR
NAL OF APPLIED PHYSIC3VOL
、 21. No、 8  AUGUST、 1982
 Pp、 L485−L487参照)。この方法におい
ては、太陽電池の窓材として広エネルギーバンド材のも
のを目的とするものであり、光導電率σP及び光学的エ
ネルギーバンドギャップEgopt、は向上するが、光
応答速度の向上は図られていないものである6目的 本発明は、このような点に鑑みなされたもので、光導電
率σPが高く、σP/σ0の比が102以上あり、かつ
、光応答速度が速いa−3i膜を得ることができる非晶
質半導体薄膜の製造方法を提供することを目的とする。
Thirdly, there is a method in which the characteristics are improved by doping N in the a-8i film with N2 gas or NH3 gas (Reference JAPAN-ESE JOURN)
NAL OF APPLIED PHYSIC3VOL
, 21. No. 8 AUGUST, 1982
Pp, see L485-L487). In this method, the objective is to use a wide energy band material as a window material for solar cells, and although the photoconductivity σP and the optical energy band gap Egopt are improved, the optical response speed is not improved. The present invention has been made in view of the above points, and is an a-3i film having a high photoconductivity σP, a ratio of σP/σ0 of 102 or more, and a fast photoresponse speed. An object of the present invention is to provide a method for manufacturing an amorphous semiconductor thin film that can obtain the following.

構成 本発明は、上記目的を達成するため、減圧された真空室
内に原料ガスを導入して高周波電力によるプラズマ中で
分解・反応させて基板上に非晶質半導体の薄膜を形成す
るプラズマCVD法による非晶質半導体薄膜の製造方法
において、原料ガスとして5iI(4ガス、N H3ガ
ス、N2ガスよりなる混合ガスを用いてNH3ガスによ
って非晶質半導体a−3iにNドープすることを特徴と
するものである。
Structure In order to achieve the above object, the present invention uses a plasma CVD method in which a raw material gas is introduced into a reduced pressure vacuum chamber and decomposed and reacted in plasma using high frequency power to form a thin film of an amorphous semiconductor on a substrate. A method for manufacturing an amorphous semiconductor thin film according to the present invention is characterized in that a mixed gas consisting of 5iI (4 gas, NH3 gas, and N2 gas) is used as a raw material gas, and the amorphous semiconductor a-3i is N-doped with NH3 gas. It is something to do.

以下1本発明の一実施例を図面に基づいて説明する。本
発明はプラズマCVD法を採用するものであり、第1図
に示すように、平行平板型のプラズマCVD装置を例に
とり、その作用を説明する。
An embodiment of the present invention will be described below based on the drawings. The present invention employs a plasma CVD method, and its operation will be explained using a parallel plate type plasma CVD apparatus as shown in FIG. 1 as an example.

まず、真空室1内に原料ガスをガス導入口2及びガス憤
出孔3を介して導入させ、基板側電極4と高周波側電極
5との間に高周波電源6により高周波電圧を印加してプ
ラズマ放電させる。このプラズマ中で原料ガスを分解・
反応させて、基板7上にa−Si膜を成膜させるもので
ある。なお、この成膜処理中は余剰原料ガスを排気口8
から除去させ、真空室1内を所定圧力に維持させる。又
、基板7はヒータ9によって所定温度に加熱される。
First, raw material gas is introduced into the vacuum chamber 1 through the gas inlet 2 and gas outlet hole 3, and a high frequency voltage is applied between the substrate side electrode 4 and the high frequency side electrode 5 by the high frequency power source 6 to generate a plasma. Let it discharge. In this plasma, the raw material gas is decomposed and
This reaction causes an a-Si film to be formed on the substrate 7. During this film-forming process, excess raw material gas is discharged through the exhaust port 8.
The inside of the vacuum chamber 1 is maintained at a predetermined pressure. Further, the substrate 7 is heated to a predetermined temperature by a heater 9.

しかして1本実施例では、真空室l内に導入する原料ガ
スとしてSiH4ガス、NH:Iガス、N2ガスよりな
る混合ガスを用いてNH3ガスによってa−5i膜にN
ドープするようにしたものである。
Therefore, in this embodiment, a mixed gas consisting of SiH4 gas, NH:I gas, and N2 gas is used as the raw material gas introduced into the vacuum chamber 1, and the a-5i film is coated with N by NH3 gas.
It was made to dope.

このような混合ガスを原料ガスとして用いてa−3i膜
にNドープすることにより、高い光導電率σPを有し、
σρ/σ0の比も高く、更に光応答速度の速い膜が得ら
れたものである。
By doping the a-3i film with N using such a mixed gas as a raw material gas, it has a high photoconductivity σP,
A film with a high ratio of σρ/σ0 and a fast photoresponse speed was obtained.

次に、好ましい成膜条件を実験結果に基づき説明する。Next, preferred film forming conditions will be explained based on experimental results.

まず、第2図はSiH4ガスの流量1105cc、N2
ガスの流量90sccMとし流量比SiH4/H2を1
/9″=0.11とした場合において流量比NH3/S
iH4を変化させた場合における光導電率σ?、暗導電
率σD及−び光応答速度M(5)の変化の様子を示すも
のである。なお、この測定に用いたセルは幅/長さ=5
0で上層がらAQ電極/a−5i膜/石英基板からなる
ものであり、波長555no+、照度100Quxの対
照光を照射することにより行なったものである。又、光
応答速度につき、繰返し周期50m5のパルス光を測定
セルに照射した場合に最小出力をMl、最大出力をMl
とすると、Modulaヒion raシio M (
5)は で定義されるものである。従って、M(5)の値が大き
い程、光応答特性が速いといえる。
First, Figure 2 shows a flow rate of 1105 cc of SiH4 gas and a flow rate of N2 gas.
The gas flow rate is 90sccM, and the flow rate ratio SiH4/H2 is 1.
/9″=0.11, the flow rate ratio NH3/S
Photoconductivity σ when changing iH4? , shows changes in dark conductivity σD and light response speed M(5). Note that the cell used for this measurement has width/length = 5
The upper layer consists of an AQ electrode/a-5i film/quartz substrate, and was performed by irradiating a control light with a wavelength of 555no+ and an illuminance of 100Qux. Regarding the light response speed, when the measurement cell is irradiated with pulsed light with a repetition period of 50 m5, the minimum output is Ml, and the maximum output is Ml.
Then, ModulahionracioM (
5) is defined by. Therefore, it can be said that the larger the value of M(5), the faster the photoresponse characteristics.

この第2図に示す結果によれば、流量比NH3/ S 
i H4がある程度小さい方がM(5)の値が大きいこ
とがわかる。具体的には、流量比NH3/SiH4が5
.0X10−’〜5.0X10−’が適当であり、より
好ましくは流量比NH:+/SiH4が7.0xlO−
’ 〜4.0xlO−4の時に良好なる光応答特性が得
られたものである。
According to the results shown in FIG. 2, the flow rate ratio NH3/S
It can be seen that the smaller i H4 is to some extent, the larger the value of M(5) is. Specifically, the flow rate ratio NH3/SiH4 is 5
.. 0X10-' to 5.0X10-' is suitable, and more preferably the flow rate ratio NH:+/SiH4 is 7.0xlO-
' Good photoresponse characteristics were obtained at ~4.0xlO-4.

つまり、N原子は5−5i膜中では残いドナー準位を形
成するため膜内のN量が増えるに従って。
In other words, N atoms remain in the 5-5i film and form donor levels, so as the amount of N in the film increases.

σP、σDとも向上するが、あまりNH3の流量が増え
てN原子のドープ濃度が高くなると光応答速度M(5)
が低下してしまうからである。又、前述の流量比NH3
/5iH−+=5.0XIO−5〜5.QXIO””で
あれば、光導電率σPが高く、σP/σ0の比も102
以上であることがわかる。次に、流量比SiH4/H2
は0.1〜0゜4 (望ましくは、0.1〜0.3)が
適当である。
Both σP and σD improve, but if the flow rate of NH3 increases too much and the doping concentration of N atoms increases, the photoresponse speed M(5)
This is because the amount decreases. In addition, the aforementioned flow rate ratio NH3
/5iH-+=5.0XIO-5~5. QXIO"" has a high photoconductivity σP and a ratio of σP/σ0 of 102
It turns out that this is all. Next, the flow rate ratio SiH4/H2
A suitable value is 0.1 to 0.4 (preferably 0.1 to 0.3).

このH2ガスの流量は、a−3i膜中のH濃度を制御す
るもので膜質を左右し、流量比SiH4/H2が小さす
ぎると膜中のH濃度が高くなって一3iH2の構造が多
くなり特性が悪くなり、逆に流量比SiH4/Hzが大
きすぎると膜中のH濃度が低くなってダングリングボン
ドが多くなり。
The flow rate of this H2 gas controls the H concentration in the a-3i film and affects the film quality; if the flow rate ratio SiH4/H2 is too small, the H concentration in the film increases and the -3iH2 structure increases. The characteristics deteriorate, and conversely, if the flow rate ratio SiH4/Hz is too large, the H concentration in the film becomes low and the number of dangling bonds increases.

やはり特性が悪くなるからである。This is because the characteristics will deteriorate after all.

次に、高周波電源6 (13,56MHz)の電力を変
化させた場合の膜特性についての実験結果を第3図に示
す。この結果によれば、高周波電力は3〜20W(望ま
しくは、3〜10W)が適当であることがわかる。これ
は、低パワーではN)(3ガスの分解が不充分でNyK
子が膜中にドープされに<<、又、高パワーではNH3
ガスの分解が促進されるもののプラズマによる膜へのダ
メージが大きく膜質が悪くなるからである。
Next, FIG. 3 shows experimental results regarding film characteristics when the power of the high frequency power source 6 (13.56 MHz) was varied. According to this result, it can be seen that the appropriate high frequency power is 3 to 20 W (preferably 3 to 10 W). At low power, the decomposition of the three gases is insufficient and NyK
NH3 is doped into the film, and at high power, NH3
This is because although the decomposition of the gas is promoted, the damage to the film caused by the plasma is large and the film quality deteriorates.

第4図は、基板温度を変化させた場合の膜特性について
の実験結果を示すものである。この結果によれば、暗導
電率σ0が余り上昇しないように。
FIG. 4 shows experimental results regarding film characteristics when changing the substrate temperature. According to this result, the dark conductivity σ0 should not increase too much.

基板温度を200〜350℃(望ましくは、250〜3
00℃)とするのが適当であることがわかる。
The substrate temperature is 200-350°C (preferably 250-350°C).
00°C) is suitable.

第5図は、真空室1内の圧力を変化させた場合の膜特性
についての実験結果を示すものである。
FIG. 5 shows experimental results regarding membrane characteristics when the pressure inside the vacuum chamber 1 was changed.

この結果によれば、光導電率σPが余り低くならないよ
うに、圧力を0.2〜5Torr  (望ましくは、0
.3〜O0,7Torr )とするのが適当である。
According to this result, in order to prevent the photoconductivity σP from becoming too low, the pressure should be adjusted to 0.2 to 5 Torr (preferably 0
.. 3 to 0.7 Torr) is appropriate.

効果 本発明は、上述したようにSiH4ガス、NH3ガス、
H2ガスよりなる混合ガスを原料ガスとして用いること
により、a−3i膜にNドープするようにしたので、光
導電率σPが高くてσP/σ口の比が102以上の特性
の膜であって、光応答特性の速いものを得ることができ
、よって、良好なる特性の等倍光センサー等のデバイス
を作ることができるものである。
Effects As described above, the present invention uses SiH4 gas, NH3 gas,
Since the a-3i film is doped with N by using a mixed gas consisting of H2 gas as the source gas, the film has a high photoconductivity σP and a ratio of σP/σ of 102 or more. , it is possible to obtain a device with fast photoresponse characteristics, and therefore it is possible to produce devices such as a life-size optical sensor with good characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示すもので、第1図はプラズ
マCVD装置の概略側面図、第2図ないし第5図は実験
結果を示す特性図である。 出 願 人  株式会社 リ コ − −鳥」 図 一毛2し ii配辷ヒN)I3/3+)ll+ 手続補正書(岐) 昭和59年10月 2日 特願昭59−185089号 2、発明の名称 非晶質半導体薄膜の製造方法 3、補正をする者 事件との関係  特許出願人 住所 東京都大田区中馬込1丁目3番6号4、代 理 
人 〒107 住所 東京都港区南青山5丁目9番15号な  し 6、補正の対象 明細書 特願昭59−185089号補正書 この出願に関し、明:a書中の記載を下記のように補正
する。 記 、第2頁第11行目のrsiN4ガス」を[5i)(4
ガス」に補正する。2.第6頁第1行目のr50+ws
Jをr5isjに補正する。 3、第6頁第11行目のr5.0XIO−’ Jをr5
.0XIO−’ Jに補正する。 4、第6頁第13行目のr7,0X10−’ Jを2.
0XIO−s」に補正する。 D、第7頁第1行目のr5.0XLO’−’ Jをr5
.QXIO”” Jに補正する。 6、第8頁第11行目のrQ、 2〜5Torr Jを
0.05〜5Torr Jに補正する。 、第8頁第12行目のrQ、 3−oo、7Torr」
をro、1〜l 、0Torr Jに補正する。
The drawings show one embodiment of the present invention, and FIG. 1 is a schematic side view of a plasma CVD apparatus, and FIGS. 2 to 5 are characteristic diagrams showing experimental results. Applicant Ricoh Co., Ltd. - Tori" Figure Ichigo 2shiii Delivery HiN)I3/3+)ll+ Procedural Amendment (Ki) October 2, 1980 Patent Application No. 185089-2, Invention Name: Process for manufacturing amorphous semiconductor thin film 3, Relationship to the amended case Patent applicant address: 1-3-6-4 Nakamagome, Ota-ku, Tokyo, Agent:
Person: 107 Address: 5-9-15 Minami-Aoyama, Minato-ku, Tokyo None 6 Specification to be amended Japanese Patent Application No. 185089/1989 Regarding this application, the statement in letter a has been amended as follows: do. [5i) (4
Correct to "Gas". 2. r50+ws on page 6, first line
Correct J to r5isj. 3, page 6, line 11 r5.0XIO-' J to r5
.. Correct to 0XIO-'J. 4. r7,0X10-' J on page 6, line 13 to 2.
0XIO-s”. D, page 7, first line r5.0XLO'-' J to r5
.. Correct to QXIO””J. 6. Correct rQ and 2 to 5 Torr J on page 8, line 11 to 0.05 to 5 Torr J. , page 8, line 12 rQ, 3-oo, 7Torr"
Correct to ro, 1~l, 0 Torr J.

Claims (1)

【特許請求の範囲】[Claims]  減圧された真空室内に原料ガスを導入して高周波電力
によるプラズマ中で分解・反応させて基板上に非晶質半
導体の薄膜を形成するプラズマCVD法による非晶質半
導体薄膜の製造方法において、原料ガスとしてSiH_
4ガス、NH_3ガス、H_2ガスよりなる混合ガスを
用いてNH_3ガスによつて非晶質半導体a−SiにN
ドープすることを特徴とする非晶質半導体薄膜の製造方
法。
In a method for manufacturing an amorphous semiconductor thin film using a plasma CVD method, in which a raw material gas is introduced into a reduced pressure vacuum chamber and decomposed and reacted in plasma generated by high-frequency power to form a thin film of an amorphous semiconductor on a substrate, the raw material gas is SiH as a gas
4 gas, NH_3 gas, and H_2 gas.
A method for producing an amorphous semiconductor thin film, which comprises doping.
JP59185089A 1984-09-04 1984-09-04 Method for producing amorphous semiconductor thin film by plasma CVD method Expired - Lifetime JPH0611032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59185089A JPH0611032B2 (en) 1984-09-04 1984-09-04 Method for producing amorphous semiconductor thin film by plasma CVD method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59185089A JPH0611032B2 (en) 1984-09-04 1984-09-04 Method for producing amorphous semiconductor thin film by plasma CVD method

Publications (2)

Publication Number Publication Date
JPS6163022A true JPS6163022A (en) 1986-04-01
JPH0611032B2 JPH0611032B2 (en) 1994-02-09

Family

ID=16164639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59185089A Expired - Lifetime JPH0611032B2 (en) 1984-09-04 1984-09-04 Method for producing amorphous semiconductor thin film by plasma CVD method

Country Status (1)

Country Link
JP (1) JPH0611032B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0962437A (en) * 1995-08-23 1997-03-07 Nec Corp Computer input device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5778546A (en) * 1980-11-05 1982-05-17 Stanley Electric Co Ltd Production of photoconductive silicon layer
JPS58115018A (en) * 1981-12-26 1983-07-08 Sharp Corp Electrophotographic photosensitive material
JPS5957909A (en) * 1982-09-29 1984-04-03 Mitsui Toatsu Chem Inc Formation of amorphous silicon film
JPS5957908A (en) * 1982-09-29 1984-04-03 Mitsui Toatsu Chem Inc Formation of amorphous silicon film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5778546A (en) * 1980-11-05 1982-05-17 Stanley Electric Co Ltd Production of photoconductive silicon layer
JPS58115018A (en) * 1981-12-26 1983-07-08 Sharp Corp Electrophotographic photosensitive material
JPS5957909A (en) * 1982-09-29 1984-04-03 Mitsui Toatsu Chem Inc Formation of amorphous silicon film
JPS5957908A (en) * 1982-09-29 1984-04-03 Mitsui Toatsu Chem Inc Formation of amorphous silicon film

Also Published As

Publication number Publication date
JPH0611032B2 (en) 1994-02-09

Similar Documents

Publication Publication Date Title
JP2579900B2 (en) Method for depositing amorphous semiconductor film
KR100469134B1 (en) Inductive plasma chemical vapor deposition method and amorphous silicon thin film transistor produced using the same
JPS62156811A (en) Thin film semiconductor element and forming method thereof
US4710786A (en) Wide band gap semiconductor alloy material
JPS61234534A (en) Fabrication of silicon nitride coating
JPS62151573A (en) Deposited film forming device
JPS6163022A (en) Manufacture of amorphous semiconductor thin film
JPS62156813A (en) Thin film semiconductor element and forming method thereof
JPH04342122A (en) Manufacture of hydrogenated amorphous silicon thin film
JP3029434B2 (en) Method of manufacturing insulating film and method of manufacturing semiconductor device using this insulating film
JPH05166733A (en) Method and apparatus for forming non-single crystal silicon film
JPH0697078A (en) Manufacture of amorphous silicon thin film
JPS62158873A (en) Multi-layered structure of thin film and its formation
JP3078373B2 (en) Photoelectric conversion device and manufacturing method thereof
JPS5935016A (en) Preparation of hydrogen-containing silicon layer
JPS62240768A (en) Formation of deposited film
JPH04342121A (en) Manufacture of hydrogenated amorphous silicon thin film
JP2622373B2 (en) Thin film transistor and method of manufacturing the same
JPS6041453B2 (en) Method for producing microcrystalline amorphous silicon film
JPH05275354A (en) Manufacture of silicon film
JPH0562917A (en) Manufacture of amorphous silicon thin film
JPS61278132A (en) Forming method for amorphous hydride sige film
JPH04342120A (en) Manufacture of hydrogenated amorphous silicon thin film
JPS6332863B2 (en)
JPS61234533A (en) Fabrication of silicon nitride coating

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term