JPS616294A - Production of sn-plated steel sheet having excellent corrosion and weldability for container - Google Patents
Production of sn-plated steel sheet having excellent corrosion and weldability for containerInfo
- Publication number
- JPS616294A JPS616294A JP12632484A JP12632484A JPS616294A JP S616294 A JPS616294 A JP S616294A JP 12632484 A JP12632484 A JP 12632484A JP 12632484 A JP12632484 A JP 12632484A JP S616294 A JPS616294 A JP S616294A
- Authority
- JP
- Japan
- Prior art keywords
- plating
- base
- alloy
- steel sheet
- weldability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electroplating Methods And Accessories (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は電気抵抗溶接法の溶接性にすぐれ、また飲料缶
、一般缶などに要求される耐食性にもすぐれた性能を有
するSnメ、中容器用鋼板の製造法に関するものである
。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is a method for manufacturing Sn-metal and medium-sized steel alloys that have excellent weldability using electric resistance welding and also have excellent corrosion resistance required for beverage cans, general cans, etc. This invention relates to a method for producing steel sheets for containers.
(従来の技術)
近年、飲料缶、食品缶の製缶方式や缶デザイン等は著し
く進歩かつ多様化し、これらに適応する容器用素材は低
価格で高性能なものが要求されている。(Prior Art) In recent years, can manufacturing methods and can designs for beverage cans and food cans have significantly advanced and diversified, and materials for containers that are compatible with these are required to be low-cost and high-performance.
就中、電気抵抗溶接法の製缶方式、例えばスードロニy
り溶接製缶法は材料歩留りが高く、溶接部の強度が高く
接合不良に基づく漏洩発生率が極めて少なく、各種形状
のデザイン缶に適用される等多くの利点があり、広く使
用され始めている。In particular, electric resistance welding methods, such as Sudrony
The welding can making method has many advantages such as high material yield, high strength of welded parts, extremely low leakage rate due to poor joints, and can be applied to design cans of various shapes, and is beginning to be widely used.
この溶接製缶素材には、従来からSn付着量が÷10以
上(8n付着量1.129/m” )、好ましくは÷2
5以上(Sn付着量0.28.lil/m”)の8nメ
。Conventionally, this welded can making material has a Sn adhesion amount of ÷10 or more (8n adhesion amount 1.129/m"), preferably ÷2
5 or more (Sn adhesion amount 0.28.lil/m") 8nm.
キ鋼板が使用されてきた。Ki steel plates have been used.
しかしながら、この最大の欠点は8n地金の高騰によシ
、その価格が著しく高いことにある。そのため、Sn付
着量の減少によるコストダウンを計ることが種々企てら
れているが、その場合耐食性と溶接性の低下が問題であ
る。However, the biggest drawback of this is that its price is extremely high due to the soaring price of 8N bullion. Therefore, various attempts have been made to reduce the cost by reducing the amount of Sn deposited, but in this case, problems arise such as reductions in corrosion resistance and weldability.
最近では、これに代る容器用素材として、特開昭57−
23091号公報、特開昭57−200592号公報、
特開昭57−110685号公報等のように各種のメッ
キ層または被覆層を有する鋼板が開発されている。その
製造法は、鋼板表面にN1メッキ、薄目付量のSnメッ
キ、これらの合金化(加熱溶融処理)、クロメート被覆
処理を任意に組合せたものである。Recently, as an alternative material for containers, JP-A-57-
No. 23091, Japanese Unexamined Patent Publication No. 57-200592,
Steel plates having various plating layers or coating layers have been developed, as disclosed in Japanese Patent Application Laid-Open No. 57-110685. The manufacturing method is an arbitrary combination of N1 plating, thin Sn plating on the surface of the steel plate, alloying of these (heat melting treatment), and chromate coating treatment.
このような製造法で製造された鋼板は、二層被覆の重畳
効果によるピンホール減少、メッキ層のN1とSnの合
金層が緻密に生成されてATC(AttoyTin C
oupts)値の低下による耐食性の向上も計られる。Steel sheets manufactured by this manufacturing method have reduced pinholes due to the superimposed effect of the two-layer coating, and the formation of a dense alloy layer of N1 and Sn in the plating layer, resulting in ATC (AttoyTin C).
Corrosion resistance can also be improved by lowering the outputs value.
特に、N1下地メッキによシ溶接製缶時あるいは内容物
充填後の高温殺菌処理時の高温度の加熱過程において成
長するFeとSnからなる合金層(FaSn2合金層)
を抑制し、溶接性さらには溶接部の外観性を向上する。In particular, an alloy layer consisting of Fe and Sn (FaSn2 alloy layer) that grows during the high-temperature heating process during N1 base plating, welding, can manufacturing, or high-temperature sterilization after filling.
This improves weldability and the appearance of the welded part.
(発明が解決しようとする問題点)
しかしながら、これらの容器用鋼板を詳細に検討してみ
る七、必ずしも充分な性能が確保されているとはいい難
い。N1系下地メッキ層とSnメッキの二層メッキ鋼板
は、腐食環境に曝された場合、第1図に示すように、前
記の効果によりSnの溶解速度が減少し、その初期耐食
性はすぐれている。しかし長期間腐食環境に曝され、S
nが溶解消費され、合金層が露出した状態では、合金層
が如何に緻密といえども、ピンホールは皆無ではなく、
N1とSnの合金層に局部電池を生成し、腐食が促進さ
れる。この場合NlとSnの合金層は鋼素地(地鉄)に
対して電位的に極めて貴(カン−ディック)になるため
、鉄の露出部(ピンホール部)から地鉄が優先的に溶出
するため、耐食性を劣化し、場合によってはせん孔腐食
を発生する現象も生じる。(Problems to be Solved by the Invention) However, when these steel plates for containers are examined in detail, it is difficult to say that sufficient performance is necessarily ensured. When a double-layer plated steel sheet consisting of an N1 base plating layer and Sn plating is exposed to a corrosive environment, the dissolution rate of Sn decreases due to the above effect, as shown in Figure 1, and its initial corrosion resistance is excellent. . However, after being exposed to a corrosive environment for a long period of time, S
When n is dissolved and consumed and the alloy layer is exposed, no matter how dense the alloy layer is, there are still pinholes.
A local battery is formed in the N1 and Sn alloy layer, and corrosion is accelerated. In this case, the alloy layer of Nl and Sn becomes extremely noble (can-dic) in potential with respect to the steel base (base iron), so the base iron is preferentially eluted from the exposed portions of iron (pinholes). As a result, corrosion resistance deteriorates, and in some cases, drilling corrosion may occur.
また、このような現象は、製缶時の加工傷によって合金
層或いは地鉄が露出する場合もあり、上記と同様に地鉄
の溶出による耐食性劣化、ひいてはせん孔腐食の原因と
なる。In addition, such a phenomenon may expose the alloy layer or the base steel due to processing scratches during can manufacturing, and similarly to the above, it causes deterioration of corrosion resistance due to elution of the base steel, and eventually causes perforation corrosion.
また、溶接作業は近年共々高速化され、従来以上に優れ
た溶接性が要求されている。溶接性は、合金化されてい
がいSnメッキ()IJ −Sn )の量によって決ま
り、塗装焼付工程時の合金化反応を抑制し、フリーSn
の残存量を多くすることが重要である。しかしながら、
前記のように今日の容器用鋼板においては、Nlの下地
メッキが施されているため、それなりの効果があるとは
いえ、NiとSnの拡散速度が可成り速いため、優れた
溶接性を改善するためのフ!J−8nの確保が難しく、
特に低Sn付着量の鋼板には必ずしも良好な高速溶接性
が得られていなかった。In addition, welding operations have become faster in recent years, and better weldability than ever before is required. Weldability is determined by the amount of alloyed Sn plating ()IJ-Sn), which suppresses the alloying reaction during the paint baking process and suppresses the free Sn plating.
It is important to increase the amount remaining. however,
As mentioned above, today's steel plates for containers are coated with Nl undercoating, which has some effect, but the diffusion rate of Ni and Sn is quite fast, so it is difficult to improve weldability. Fu to do! It is difficult to secure J-8n,
In particular, good high-speed weldability has not always been obtained for steel plates with a low Sn deposition amount.
(問題点を解決するための手段)
本発明は、このような問題点を解決し、よシ優れた耐食
性と溶接性を有する容器用鋼板を提供することを目的と
したものである。(Means for Solving the Problems) The object of the present invention is to solve these problems and provide a steel plate for containers having excellent corrosion resistance and weldability.
本発明者らは、
(1) 前記の如く、合金層と地鉄が露出するような
腐食状況或いは欠陥が存在するよう々場合において、N
Iのような極めて電位的に責な金属を含有するSnとの
合金層(例えば、Ni−8n合金、N1−8n−Fa金
合金N1−P−8n合金等)を生成せしめることなく、
Snとの緻密な合金層を生成せしめ、かつ合金層のピン
ホールを少なくしうる( ATC値の低下)下地メッキ
層を設けるとともに、また生成されたSnとの合金層が
NiをSnの合金メッキ層より、地鉄に電位的に近く、
腐食環境においても地鉄の優先的な鉄溶出を抑制する下
地メッキ層、
(2)加熱のような熱拡散過程において、8nとの反応
速度がNl下地メッキ層よシも極めて遅く、加熱処理を
受けてもフIJ −Snの残存を多くせしめる下地メッ
キ層、
について種々検討を行なった。The present inventors (1) As mentioned above, in cases where there are corrosion conditions or defects where the alloy layer and base metal are exposed, N
without forming an alloy layer with Sn containing an extremely potentially sensitive metal such as I (for example, Ni-8n alloy, N1-8n-Fa gold alloy N1-P-8n alloy, etc.).
In addition to providing a base plating layer that can generate a dense alloy layer with Sn and reduce pinholes in the alloy layer (decreasing ATC value), the formed alloy layer with Sn also forms an alloy layer of Ni with Sn alloy plating. Potentially closer to the base railway than the layer,
A base plating layer that suppresses preferential iron elution from the base iron even in a corrosive environment. (2) During thermal diffusion processes such as heating, the reaction rate with 8N is extremely slow compared to the Nl base plating layer, and heat treatment is Various studies were conducted on the undercoat plating layer that allows more IJ-Sn to remain even after being exposed to oxidation.
その結果、下地メッキ層として、鋼素地に比して電位差
のないCr金属を主体としたCr合金を使用し、Snと
の緻密な合金層を生成し、かつ加熱処理を受けても地鉄
とSnとの拡散反応を防止する効果を有する、Cr−P
、 Cr−Mo、 Cr−P−Mo合金メッキ層が効果
的であることを知った。As a result, a Cr alloy consisting mainly of Cr metal, which has no potential difference compared to the steel substrate, is used as the base plating layer, and it forms a dense alloy layer with Sn, and even when subjected to heat treatment, it remains the same as the base steel. Cr-P has the effect of preventing diffusion reaction with Sn.
, Cr-Mo, and Cr-P-Mo alloy plating layers were found to be effective.
すなわち、本発明の要旨とするところは、鋼板表面にP
或いはMoまたはその複合の含有量が1〜60%のCr
−P或いはCr−Mo またはCr−P−Mo合金下地
メッキを片面当93〜300η/m!の付着量で施し、
この上に片面当、jlJ300〜/m 2以上のSnメ
ッキを施し或いはさらに加熱溶融処理した後、さらにそ
の上にクロメート被膜処理することを特徴とする耐食性
および溶接性に優れたSnメッキ容器用鋼板の製造法に
ある。That is, the gist of the present invention is that P is applied to the surface of the steel plate.
Or Cr containing 1 to 60% of Mo or its composite
-P or Cr-Mo or Cr-P-Mo alloy base plating on one side at 93~300η/m! Apply with a coating amount of
A Sn-plated steel sheet for containers with excellent corrosion resistance and weldability, characterized by applying Sn plating on one side of JlJ300~/m2 or more, or further heat-melting it, and then applying a chromate coating thereon. It is in the manufacturing method.
(作 用) 以下に、本発明について詳細に説明する。(for production) The present invention will be explained in detail below.
通常の製鋼から圧延、焼鈍工程を経て製造された冷延鋼
板は、脱脂、酸洗等、通常のメッキ工程において行なわ
れる前処理を施してその表面を洗浄し、活性化した後、
Cr−P或いはCr−MoまたはCr−P−Mo系合金
下地メッキを行なう。Cold-rolled steel sheets manufactured through normal steel manufacturing, rolling, and annealing processes are subjected to pretreatment performed in normal plating processes such as degreasing and pickling, and after cleaning and activating the surface,
Cr--P, Cr--Mo, or Cr--P--Mo based alloy base plating is performed.
この下地メッキ層の効果は、第1図と第2図および第3
図で示すように、(1)Snメッキ後の加熱溶融処理(
通常のブリキ製造工程において行なわれるメルト処理或
いは塗装焼付は工程における加熱処理等)において生成
されるSnとの合金層は緻密でピンホールが少な(AT
C値の低い合金層である(第2図)とともに、その合金
層の電位がN1とSnの合金層に対してメッキ原板の電
位に極めて近く、地鉄との間のカップル電流(腐食電流
)を小さくする(第1表)。さらにまた、(2)加熱過
程における地鉄とメッキ層の拡散を阻止してFern2
合金層の生成を抑制し、表面層のSn残存量()IJ
Sn量)を多くせしめる(第3図)バリヤー効果を有
する。The effect of this base plating layer is shown in Figures 1, 2, and 3.
As shown in the figure, (1) heating and melting treatment after Sn plating (
The alloy layer with Sn that is produced during the melting process or the heat treatment in the paint baking process that is carried out in the normal tinplate manufacturing process is dense and has few pinholes (AT
It is an alloy layer with a low C value (Figure 2), and the potential of the alloy layer is extremely close to the potential of the plated original plate with respect to the N1 and Sn alloy layer, so that a couple current (corrosion current) between the alloy layer and the base metal is generated. (Table 1). Furthermore, (2) Fern2
Suppresses the formation of an alloy layer and reduces the residual amount of Sn in the surface layer ()IJ
It has a barrier effect that increases the amount of Sn (Fig. 3).
(注)測定方法
・テストピース作製方法
■焼成条件 210℃X20分間
■フリーSnの電解剥離条件
焼成後のテストピースをo、 5 ’16 Na2CO
s中で陰極的に電解脱脂を行ない、そのあと54 Na
OH中で陽極的に電解剥離をし、合金層を露出させ、水
洗、乾燥する。(Note) Measurement method/test piece preparation method ■Calcination conditions 210°C x 20 minutes ■Free Sn electrolytic stripping conditions The test piece after firing was o, 5'16 Na2CO
Electrolytic degreasing is carried out cathodically in S, and then 54 Na
Electrolytic stripping is performed in OH to expose the alloy layer, washed with water, and dried.
・カップル電流測定方法
■試験液 1.5チクエン酸+1.5係食塩■測定条件
脱Sn後のテストピースとメッキ原板を試験液中でカッ
プルさせ、窒素雰囲気中、27℃、20時間後のカップ
ル電流を無抵抗電流計で測定した。試験面積は2X2c
rR。・Couple current measurement method ■Test solution: 1.5 citric acid + 1.5% sodium chloride ■Measurement conditions: The test piece after Sn removal and the plated original plate are coupled in the test solution, and the couple is measured after 20 hours at 27°C in a nitrogen atmosphere. Current was measured with a resistanceless ammeter. Test area is 2x2c
rR.
すなわち、P或いはMoまたはその複合のP+MoのC
r合金中の含有量が1〜60%、好ましくは5〜301
で、またその下地メッキ層の付着量が3〜300ダ/−
(片面当り)、好ましくは10〜20011197m”
の範囲で本発明の目的とする効果が得られ、優れた耐食
性と溶接性を有する容器用鋼板が得られる。That is, C of P or Mo or their composite P+Mo
The content in r-alloy is 1-60%, preferably 5-301
Also, the amount of adhesion of the base plating layer is 3 to 300 Da/-
(per side), preferably 10 to 20011197 m”
Within this range, the desired effects of the present invention can be obtained, and a steel plate for containers having excellent corrosion resistance and weldability can be obtained.
ここで、P或いはMoまたはその複合P + Moの含
有量が1憾未満ではSnと反応して生成されるこれら下
地合金メッキ層が緻密性や低ATC値を得られず、さら
には加熱過程での地鉄と8nとの拡散を防止できず、優
れた溶接性と耐食性の容器用鋼板を得ることができない
。Here, if the content of P, Mo, or their composite P + Mo is less than 1, the underlying alloy plating layer produced by reacting with Sn will not be dense or have a low ATC value, and furthermore, it will not be possible to obtain a low ATC value during the heating process. It is not possible to prevent the diffusion of 8n from the base iron, and it is not possible to obtain a steel sheet for containers with excellent weldability and corrosion resistance.
また、P或いはMo又はその複合の含有量が60チを超
えると、合金メッキ層の緻密化効果及び地鉄とSnの拡
散防止効果が飽和するとともに、下地被覆層を含有する
Snとの合金層の電位が地鉄よルカソーディック化し、
合金層の欠陥部からのF・溶出量の増加、ひいてはせん
孔腐食を発生せしめるため、P、Moおよびその複合の
含有量の上限を60係に限定した。In addition, when the content of P, Mo, or their composite exceeds 60%, the densification effect of the alloy plating layer and the diffusion prevention effect of the base metal and Sn become saturated, and the alloy layer with Sn containing the base coating layer becomes saturated. The electric potential of the base metal becomes more cathodic,
In order to increase the amount of F eluted from defective parts of the alloy layer and to cause drilling corrosion, the upper limit of the content of P, Mo and their composites was limited to 60 parts.
また、この地鉄被覆層の付着量が3〜/m2(片面当夛
)未満では、下地メッキ層としての効果が得られず、又
300〜/m”を超えるとその効果が飽和に達するとと
もに、Snとの間に生成される下地被覆層を含む合金層
が厚くな夛加工性を劣化する。In addition, if the coating amount of this base metal coating layer is less than 3~/m2 (one side applied), it will not be effective as a base plating layer, and if it exceeds 300~/m2, the effect will reach saturation. , Sn, and the alloy layer including the base coating layer is thick, which deteriorates the processability.
次にこのような下地メッキ層を得るための方法。Next, how to obtain such a base plating layer.
条件は特に限定するものではないが、被膜量のコントロ
ール、合金化元素の含有量の調整を行なう点で電気メツ
キ法が好ましい。Although the conditions are not particularly limited, electroplating is preferred in terms of controlling the coating amount and adjusting the content of alloying elements.
而して、これらの下地被覆層を設けるための一例を挙げ
れば下記の通シである。An example of how to provide these base coating layers is as follows.
(1)電気メッキ法によるCr−P合金下地メ、生処理
Crys 1001 /L(NH4)2
So45.31/l
メッキ浴組成(NH4)2HC6H50,3009/1
HPH20□ 251/1
HsPO4509/を
電流密度 10 A / dm”
メッキ浴温 50℃
(2)電気メツキ法によるCr−Mo合金下地メッキ処
理Crys 2001//1(NH
a)2SO45,311/l
メッキ浴組成 (NH4)2HC6H50,3001/
/1M00s 251/INa
2 Co s 25 y/1電流密度
10A/dm”
メッキ浴温 50℃
次いで、このようにして得られた鋼板にCr −P或い
はCr−MoまたはCr−P−Mo合金からなる下地メ
ッキ層を施した後、Snメッキし或いはさらにSfIメ
ッキ後に加熱溶融処理(メルト処理)が施される。この
場合のSnメッキ条件及び8nメツキ後の加熱溶融処理
条件についても、通常のメッキ条件及び加熱溶融処理条
件を採用すればよく、メッキ浴組成、メッキ条件或いは
加熱溶融処理条件等は特に規制しない。例えば、
フェノールスルフォン酸 10〜30.9/べ硫酸に換
算して)5nS0440〜80g/1
ENSA (添加剤、デュポン製)5〜i 5 p7t
(2)メッキ浴組成:
(ハロケ゛ン浴)
塩化第一錫 50〜1001/lフ、化ソーダ
15〜3511/を水素化硫黄カリウム 40〜
60 E/を塩化ナトリウム 30〜601/l
ナフトールスルフオン酸 1〜 511/lで電流密
度5〜100 A/ dm”、浴温30〜60℃で行な
われる。(1) Cr-P alloy base plate by electroplating method, raw treatment Crys 1001/L(NH4)2
So45.31/l Plating bath composition (NH4)2HC6H50, 3009/1
HPH20□ 251/1 HsPO4509/ Current density 10 A/dm” Plating bath temperature 50°C (2) Cr-Mo alloy base plating treatment by electroplating method
a) 2SO45,311/l Plating bath composition (NH4)2HC6H50,3001/
/1M00s 251/INa
2 Co s 25 y/1 current density
10A/dm" Plating bath temperature: 50°C Next, a base plating layer made of Cr-P, Cr-Mo, or Cr-P-Mo alloy is applied to the steel sheet thus obtained, and then Sn plating or further SfI plating is applied. After plating, heat melting treatment (melt treatment) is performed.In this case, the Sn plating conditions and the heat melting treatment conditions after 8N plating may be the same as the usual plating conditions and heat melting treatment conditions, and the plating bath composition , plating conditions or heat-melting treatment conditions are not particularly restricted.For example, phenolsulfonic acid 10-30.9/based on base sulfuric acid) 5nS0440-80g/1 ENSA (additive, manufactured by DuPont) 5-i 5 p7t
(2) Plating bath composition: (halokene bath) stannous chloride 50-1001/l, sodium chloride
15~3511/ potassium sulfur hydride 40~
60 E/l of sodium chloride 30-601/l naphtholsulfonic acid 1-511/l at a current density of 5-100 A/dm" and a bath temperature of 30-60°C.
また、加熱溶融処理はSnメッキ層の金属光沢の増加に
よる外観向上と下地合金メッキ層と8nとの合金層をよ
り均一な緻密を計って、よυ一層の耐食性向上を計るた
めに行なわれる。Further, the heat melting treatment is carried out to improve the appearance by increasing the metallic luster of the Sn plating layer, and to further improve the corrosion resistance by making the base alloy plating layer and the 8N alloy layer more uniform and dense.
加熱溶融処理は、Snメッキ後水洗して、そのまま或い
は水溶液フラックスを塗布して、空気中或いは非酸化性
雰囲気(例えばN2雰囲気)中で240〜350℃、好
ましくは250〜300℃で8nメッキ層が溶融される
。The heat melting treatment is performed by washing with water after Sn plating, and forming an 8N plating layer as it is or by applying an aqueous flux at 240 to 350°C, preferably 250 to 300°C, in air or a non-oxidizing atmosphere (for example, N2 atmosphere). is melted.
フラックスは、浸漬処理又はスプレィ処理により、例え
ばメッキ浴がフェロスタン浴では、フェノールスルフォ
ン酸 2〜1011/l (硫酸に換算して)S n8
04 2〜1011/1を塗布して、溶融
される。The flux is applied by dipping or spraying, for example, if the plating bath is a ferrostane bath, phenolsulfonic acid 2 to 1011/l (in terms of sulfuric acid) S n8
042-1011/1 is applied and melted.
また、本発明のこのCr−F或いはCr−Mo合金下地
メッキ層とその表面にSnメッキ層或いは加熱溶融処理
したSnメッキ層の鋼板は、貯麓時のSnメッキ層表面
の酸化膜の生成防止及び塗装性能向上のためにクロメー
ト処理が行なわれる。クロメート処理はSnメッキし或
いはさらに加熱溶融処理後に、その表面上の残渣物を水
洗により除去し或いは炭酸アンモン、炭酸ソーダ等でメ
ツ午層表面の酸化膜等を予備除去してから行なわれる。In addition, the steel sheet of the present invention having a Cr-F or Cr-Mo alloy base plating layer and a Sn plating layer or a heat-melted Sn plating layer on the surface thereof can prevent the formation of an oxide film on the surface of the Sn plating layer during storage. Chromate treatment is also performed to improve coating performance. The chromate treatment is carried out after Sn plating or further heating and melting treatment, removing residues on the surface by washing with water, or preliminarily removing the oxide film etc. on the surface of the methane layer with ammonium carbonate, soda carbonate, etc.
このため、Snメッキ或いはさらに加熱溶融処理後に、
その表面上の残渣物を除去した後、無水クロム酸、クロ
ム酸塩(クロム酸アンモン、クロム酸ソーダ吟)あるい
は重クロム酸塩(重クロム酸アンモン、重クロム酸ソー
ダ等)の一種または二種以上の混合水溶液及びこれらに
5o4−2イオン、F−イオン等を添加した水溶液を用
いて行なわれる。For this reason, after Sn plating or further heat melting treatment,
After removing the residue on the surface, one or two of chromic anhydride, chromate (ammonium chromate, sodium chromate) or dichromate (ammonium dichromate, sodium dichromate, etc.) The above mixed aqueous solution and an aqueous solution to which 5o4-2 ions, F- ions, etc. are added are used.
この場合のクロメート処理水溶液浴或いは処理条件は特
に規定するものではないが、例えば以下のようなりロメ
ート浴が使われ、またクロメート条件で行なわれる。In this case, the chromate treatment aqueous solution bath or treatment conditions are not particularly specified, but for example, the following chromate bath is used and the treatment is carried out under chromate conditions.
(1)クロメート浴組成 601/LCrO,−0,3
11/1804−2電流密度 7,5A/d
m”浴 温 60℃
クロメート被膜量(Cr換算) 14.5 my/
m”(2)クロメート浴組成 3QI/を重クロム酸ソ
ーダ電流密度 10 A / dm”浴
温 50℃
クロメート被膜量 6.5ダ/m m特に塗装性能(
塗装密着性、塗装後針食性)の向上のためには、Cry
、−804−2系或いはCrOs −F−系等の隘イオ
ンを含むクロメート浴を用いて、金属クロム層と水酸化
クロムからなるクロメート被膜層を同時に析出させるの
が好ましい。(1) Chromate bath composition 601/LCrO, -0,3
11/1804-2 Current density 7,5A/d
m” bath temperature 60℃ Chromate coating amount (Cr conversion) 14.5 my/
m" (2) Chromate bath composition 3QI/sodium dichromate current density 10 A/dm" bath
Temperature: 50°C Chromate coating amount: 6.5 da/mm Particularly, coating performance (
In order to improve paint adhesion and post-painting corrosion resistance, Cry
, -804-2 system, or CrOs -F- system, etc., to simultaneously deposit a metallic chromium layer and a chromate coating layer consisting of chromium hydroxide.
クロメート被膜は、最近の如く缶の形状にファ、ジョン
性が要求され、苛こくな加工を受ける用途に、また優れ
た塗装性能が要求される用途には最適である。Chromate coatings are ideal for applications in which the shape of cans is required to have good flexibility and are subjected to harsh processing, as well as applications that require excellent coating performance.
また、本発明の方法で製造された容器用鋼板は、下地メ
ッキ層と地鉄と8nメッキ層の拡散防止効果が極めて大
きいため、フIJ −Snの残存量が多く、Sn付着量
が例えば1.121//m” (片面当り付着量)以下
、好ましくは0.7017m” (片面当り付着量)以
下の低付着量でも溶接性が優れている。In addition, the container steel sheet manufactured by the method of the present invention has a very large diffusion prevention effect between the base plating layer, the base metal, and the 8N plating layer, so the residual amount of F-IJ-Sn is large, and the Sn adhesion amount is, for example, 1. Excellent weldability is achieved even at a low deposition amount of 0.121//m'' (deposition amount per side) or less, preferably 0.7017 m'' (deposition amount per side).
すなわち、このように低Sn付着量の鋼板が塗装焼付け
の加熱処理を受けたとしても、フIJ −8nの残存量
が多いため、金属Orが1011m9/m”以下、また
その表面に生成される水酸化クロム被膜との総和で30
mg/m2以下でも優れた溶接性が得られる。In other words, even if a steel plate with a low Sn adhesion is subjected to heat treatment for paint baking, the amount of metal Or is less than 1011 m9/m'' and is generated on the surface because there is a large amount of IJ-8n remaining. 30 in total with chromium hydroxide coating
Excellent weldability can be obtained even at mg/m2 or less.
さらに、低Sn付着量のため若干生成されるピンホール
も金属Crのピンホールの防止効果で優れた耐食性が得
られる。特に塗装密着性向上効果によって、缶が輸送時
に衝撃を受けた場合、低Sn付着量であるがゆえに、塗
料がはげにくいことは極めて耐食性の点から好ましい。Furthermore, excellent corrosion resistance can be obtained due to the effect of preventing pinholes caused by metal Cr even though some pinholes are generated due to the low amount of Sn attached. In particular, due to the effect of improving paint adhesion, when the can is subjected to impact during transportation, it is extremely preferable from the viewpoint of corrosion resistance that the paint is hard to peel off due to the low Sn adhesion amount.
以上の如く、本発明法で得られた容器用鋼板は、Snメ
ッキ層に対する適正な下地メッキ層により、緻密な合金
属の生成による耐食性の向上、他金属或いは他の合金を
下地メッキ層として使用した場合に比して合金層の電位
が地鉄に比して貴(カソーディック)になる度合が少な
いため、メッキ層の欠陥部からのF・の優先溶解、ひい
てはせん孔腐食の懸念が少なく、また加熱処理を受けた
場合の地鉄とSnメッキ層の拡散防止効果が大なること
によるフQ −anの残存効果による溶接性の向上、耐
食性の向上等と相俟って優れた性能が得られる。As described above, the steel sheet for containers obtained by the method of the present invention has improved corrosion resistance due to the formation of a dense metal alloy due to the appropriate base plating layer for the Sn plating layer, and the use of other metals or other alloys as the base plating layer. Compared to the case where the potential of the alloy layer is less noble (cathodic) than that of the base steel, there is less concern about preferential dissolution of F from defective parts of the plating layer and, ultimately, drilling corrosion. In addition, when subjected to heat treatment, the diffusion prevention effect between the base steel and the Sn plating layer increases, resulting in improved weldability due to the residual effect of F-Q-an, and improved corrosion resistance, etc., resulting in excellent performance. It will be done.
尚、本発明の下地メッキ層はCr−P 、 Cr−Mo
合金について説明したが、Cr−P−Moの三元合金で
も同様の効果が得られる。これは実工業ラインにおける
メッキ工程では、成分の調整、浴管理等三元合金におい
ては困難な点も多いので本発明では説明を省略したが、
本発明とほぼ同一技術、同一効果が得られるので、本発
明の範囲に含まれる。Incidentally, the base plating layer of the present invention is made of Cr-P, Cr-Mo
Although the alloy has been described, similar effects can be obtained with a ternary alloy of Cr-P-Mo. In the plating process on an actual industrial line, there are many difficulties with ternary alloys, such as component adjustment and bath management, so explanations are omitted in this invention.
Since almost the same technique and the same effect as the present invention can be obtained, it is included in the scope of the present invention.
(実施例) 以下本発明の実施例について説明する。(Example) Examples of the present invention will be described below.
鋼板を通常の方法により電解法による脱脂、酸洗後、(
a)クロム酸−クエン酸ニアンモニウムー次亜リン酸−
リン酸系水溶液、(b)クロム酸−クエン酸ニアンモニ
ウムー酸化モリブデン水溶液を用いて各々10 A/d
m”の電流密度で電気メッキを施した。各々のP或いは
Moの含有量は溶液中の次亜リン酸の含有量または酸化
モリブデンの含有量で調整し、付着量はクーロン数で調
整して所定の下地メッキ層を得た。また(浸漬塗布→熱
拡散処理法)では(C)塩化鉄−次亜リン酸ソーダ水溶
液、(d)モリブデン酸アン水溶液中に浸漬後、ロール
絞シ法で付着量を調整して、焼鈍拡散によシ各々下地メ
ッキ層を得た。After degreasing and pickling the steel plate using the usual electrolytic method, (
a) Chromic acid - ammonium citrate - hypophosphorous acid -
10 A/d each using a phosphoric acid aqueous solution and (b) a chromic acid-niammonium citrate-molybdenum oxide aqueous solution.
Electroplating was performed at a current density of m''.The content of each P or Mo was adjusted by the content of hypophosphorous acid or molybdenum oxide in the solution, and the amount of deposition was adjusted by the number of coulombs. A predetermined base plating layer was obtained.Also, in (dip coating → thermal diffusion treatment method), after dipping in (C) iron chloride-sodium hypophosphite aqueous solution and (d) ammonium molybdate aqueous solution, roll drawing method was used. Each base plating layer was obtained by annealing diffusion while adjusting the amount of adhesion.
水洗後、フェロスタン浴中で電流密度30A/dm”で
各付着量の13nメツキを施し、場合によっては加熱溶
融処理を施した。次いで、3011/lのグイクロメー
ト浴(金属クロム析出なし)或いは601/1cro、
−0,3y7t 5o4−2系浴(金属クロム析出)を
用い、温度60℃で、電流密度、電解時間を変化させて
所定のクロメート被膜量を得た。After washing with water, 13n plating was applied to each coating amount at a current density of 30 A/dm in a ferrostane bath, and heat melting treatment was performed in some cases. Next, a 3011/l gychromate bath (no metal chromium precipitation) or 601/l gychromate bath (no metal chromium precipitation) /1cro,
A predetermined amount of chromate coating was obtained using a -0,3y7t 5o4-2 bath (metallic chromium precipitation) at a temperature of 60°C and varying the current density and electrolysis time.
この様にして得た容器用鋼板について、公知の下地メッ
キ層を有する鋼板及び下地メッキ層を有さないSnメッ
キ鋼板(′fリキ)と比較して、溶接性能及び耐食性能
を下記の要領で調べた。その結果を第2表に示す。The welding performance and corrosion resistance of the container steel sheets obtained in this manner were compared with known steel sheets with a base plating layer and with Sn-plated steel sheets ('f Riki) without a base plating layer. Examined. The results are shown in Table 2.
1、溶接性能
メッキ板を210℃×20分、次いで190℃×10分
の塗装焼付けの加熱処理に相当するサイクルで空焼き後
、スードロニック溶接機を用い、周波数400 Hz
、ラップ幅0.5+w+、溶接速度50m /m l
n でシーム溶接を行ない、溶接部のチリ発生状況及
び溶接部断面のナゲツト生成状況を調査し、その溶接性
能を総合判断した。1. Welding performance After dry-baking the plated plate at 210°C for 20 minutes and then at 190°C for 10 minutes in a cycle equivalent to the paint baking process, we used a Suudronic welder at a frequency of 400 Hz.
, lap width 0.5+w+, welding speed 50m/ml
Seam welding was carried out using the welding method, and the occurrence of dust in the welded part and the occurrence of nuggets in the cross section of the welded part were investigated, and the welding performance was comprehensively judged.
2、塗膜下腐食性(UCC性)
メッキ後にエポキシフェノール系塗料ヲ559/ dm
”塗布し、210℃で10分間焼付けた後に、サンプル
板表面に地鉄に達するクロスカットを入れ、1.5%ク
エン酸−1,5’4 NaCA水溶液中に55℃で4日
間浸漬し、カット部からの錆の拡がシ程度及びセロテー
プ剥離後の塗膜部の剥離状況(りロスカット部及び平面
部)から判断した。2. Under-coating corrosion (UCC) Epoxyphenol paint after plating 559/dm
After coating and baking at 210°C for 10 minutes, crosscuts were made on the surface of the sample plate to reach the base metal, and immersed in a 1.5% citric acid-1,5'4 NaCA aqueous solution at 55°C for 4 days. Judgment was made based on the degree of rust spread from the cut portion and the peeling status of the coating after peeling off the cellophane tape (loss-cut portion and flat portion).
3、 耐孔食性(塗装後の欠陥部の孔食状況)上記2と
同一条件で塗装、地鉄に達するクロスカットを入れ、第
2表に示す腐食試験液中に50℃で12日間浸漬した後
、クロスカット部の断面顕鏡による深さ方向の腐食状況
を観察することによってその耐食性を評価した。3. Pitting corrosion resistance (pitting corrosion status of defective areas after painting) Painted under the same conditions as in 2 above, made a cross cut that reached the base metal, and immersed it in the corrosion test solution shown in Table 2 at 50°C for 12 days. Afterwards, the corrosion resistance of the cross-cut portion was evaluated by observing the corrosion state in the depth direction using a cross-sectional microscope.
4、耐塩水レトルト性
メッキ板にエポキシフェノール系塗料ヲ55〜/d−塗
布し、210℃で10分間焼付けた後に、サンプルに密
着曲げ加工を施し、5 % NaC2水溶液中で、12
0℃で60分間レトルト処理を行なった。塩水レトルト
処理後速やかにセロテープ剥離を行々い、曲げ加工部及
び平板部の塗膜剥離状況を評価した。4. Apply 55~/d of epoxy phenol paint to a salt water retort-resistant plated plate, bake at 210°C for 10 minutes, bend the sample closely, and heat it in a 5% NaC2 aqueous solution at 12°C.
Retort treatment was performed at 0°C for 60 minutes. Immediately after the salt water retort treatment, cellophane tape was peeled off, and the state of paint film peeling on the bent portion and the flat plate portion was evaluated.
上記性能試験を行なった後、実施例及び比較材について
その性能を判断し九が、その判定基準は以下に示す通シ
である。After conducting the above performance test, the performance of the Example and Comparative materials was judged, and the judgment criteria were as shown below.
◎・・・非常に良好 ○・・・比較的良好Δ・・・や
や劣る ×・・・非常に劣る尚、P・・・、 Mo
・・・はP或いはMoの付着量を示す。◎...Very good ○...Relatively goodΔ...Slightly poor ×...Very poor, P..., Mo
... indicates the amount of P or Mo attached.
(発明の効果)
以上の如く、本発明法で製造された鋼板は比較にし九メ
ッキ製品に比べて、耐食性能、溶接性能環、容器用素材
として極めて優れた性能を有する。(Effects of the Invention) As described above, the steel plate manufactured by the method of the present invention has extremely superior corrosion resistance, welding performance, and performance as a material for containers, compared to nine-plated products.
第1図は各種容器用鋼板のモデル腐食液(1,5チクエ
ン酸+1.5チNaCA沖、測定条件:27℃、N2雰
囲気中におけるSn溶出速度の比較を示す図である。測
定に使用したテストピースの被膜構成は下記の通シであ
る。
O・・・下地(F・−20%Nl)合金メッキ(200
ダ/R)→Snメ、メッキ0019/m’)→加熱溶融
処理→クロメート処理(9■/ff/)
Δ・・・下地Nlメメッ(25m9/n? )→8nメ
ッキ(soomp/m”)→クロメート処理(8111
9/1el)O・・・下地(F・−10Nl)拡散被覆
量(Nlメッキ量50■/rr?→拡散処理)→anメ
ッキ(800壓賃)→加熱溶融処理→クロメート処理(
8■/−)×・・・Snメッキ(ssomp/m’)→
加熱溶融処理→クロメート処理(9ダ/−)
ム・・・下地(Nl−161F)合金メッキ(60yn
y/m” )→Snメッキ(850mg/ m” )
4クロメート処理
第2図はCr−PまたはCr−Mo下下地合金メツ喘鳴
有するSnメ、中鋼板(片面当り付着量780〜/−)
のPまたはMo含有量とATC値の関係を示す図である
。測定に使用した試験液はトマトジュースを蒸留水で1
対1にうすめ、煮沸後S nCL2・2H20を0.1
9g/を添加(Sn 10100pp熟成したものを
用いた。測定条件は、テストピースのフリーSnを水酸
化す) IJウム中で電解剥離し、合金層を露出させ、
上記試験液中でSnとカップルさせ、N2ガス雰囲気中
、27℃で20時間後の力、ゾル電流を測定した。(S
nの溶出速度を示す)第3図はCr−PまたはCr−M
o下地合金メッキ層を有するSnメッキ鋼板のPまたは
Mo含有量と加熱溶融処理後のフIJ −Sn残存量の
関係を示す図である。測定に使用した鋼板はCr−P及
びCr−Mo合金下地被覆処理を片面当F) 751Q
7m”の付着量で施しく水洗後Snメッキ量を片面当
り550〜/ FPI*施したものを用い、加熱処理(
加熱条件:210℃×20分9tklng)を行なって
、フリーSn量を測定し友。ブリーSnの測定は第1図
のSn溶出の電解剥離曲線よりその量を算出した。(S
n溶出前後のSn量を螢光X線で測定し、その差をフリ
ーSn量として確認した)
B寺 バ丘 (Hハ〕Figure 1 is a diagram showing a comparison of Sn elution rates in model corrosive liquids (1.5 citric acid + 1.5 chloride NaCA, measurement conditions: 27°C, N2 atmosphere) of various steel plates for containers. The coating composition of the test piece is as follows: O... Base (F/-20%Nl) Alloy plating (200% Nl)
da/R) → Sn metal, plating 0019/m') → heating melting treatment → chromate treatment (9■/ff/) Δ...base Nl metal (25m9/n?) → 8n plating (soomp/m") →Chromate treatment (8111
9/1el) O... Base (F・-10Nl) Diffusion coating amount (Nl plating amount 50■/rr? → Diffusion treatment) → An plating (800 ml) → Heating melting treatment → Chromate treatment (
8■/-)×...Sn plating (ssomp/m')→
Heat melting treatment → chromate treatment (9 da/-) Mu... base (Nl-161F) alloy plating (60yn
y/m”)→Sn plating (850mg/m”)
4 Chromate treatment Figure 2 shows Sn medium steel plate with Cr-P or Cr-Mo underlayer alloy (coating amount per side 780~/-)
It is a figure showing the relationship between P or Mo content and ATC value. The test solution used for measurement was 1 part tomato juice mixed with distilled water.
Dilute to 1:1, add 0.1 S nCL2/2H20 after boiling
Added 9g/ (Sn aged 10100pp was used.The measurement conditions were to hydroxylate the free Sn on the test piece) Electrolytic stripping was performed in IJium to expose the alloy layer,
It was coupled with Sn in the above test solution, and the force and sol current were measured after 20 hours at 27° C. in a N2 gas atmosphere. (S
Figure 3 shows the elution rate of Cr-P or Cr-M.
FIG. 3 is a diagram showing the relationship between the P or Mo content of a Sn-plated steel sheet having an underlying alloy plating layer and the residual amount of Sn after heat-melting treatment. The steel plate used for the measurement was coated with Cr-P and Cr-Mo alloy base coating on one side F) 751Q
After washing with water and applying an Sn plating amount of 550~/FPI* per side, heat treatment (
Heating conditions: 210°C x 20 minutes (9 tKlng) to measure the amount of free Sn. The amount of Sn was calculated from the electrolytic peeling curve of Sn elution shown in FIG. (S
The amount of Sn before and after elution was measured using fluorescent X-rays, and the difference was confirmed as the amount of free Sn)
Claims (1)
60%のCr−P或いはCr−MoまたはCr−P−M
o合金下地メッキを片面当り3〜300mg/m^2の
付着量で施し、この上に片面当り300mg/m^2以
上のSnメッキを施し或いはさらに加熱溶融処理した後
、さらにその上にクロメート被膜処理することを特徴と
する耐食性および溶接性にすぐれたSnメッキ容器用鋼
板の製造法。The content of P or Mo or their composite on the steel plate surface is 1 to 1.
60% Cr-P or Cr-Mo or Cr-P-M
o Apply an alloy base plating with a coating weight of 3 to 300 mg/m^2 per side, then apply Sn plating of 300 mg/m^2 or more per side on top of this, or further heat-melt it, and then apply a chromate coating on top of it. A method for manufacturing a Sn-plated steel sheet for containers, which has excellent corrosion resistance and weldability.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12632484A JPS616294A (en) | 1984-06-21 | 1984-06-21 | Production of sn-plated steel sheet having excellent corrosion and weldability for container |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12632484A JPS616294A (en) | 1984-06-21 | 1984-06-21 | Production of sn-plated steel sheet having excellent corrosion and weldability for container |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS616294A true JPS616294A (en) | 1986-01-11 |
Family
ID=14932364
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12632484A Pending JPS616294A (en) | 1984-06-21 | 1984-06-21 | Production of sn-plated steel sheet having excellent corrosion and weldability for container |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS616294A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01118031A (en) * | 1987-10-31 | 1989-05-10 | Toshiba Corp | Cooker |
-
1984
- 1984-06-21 JP JP12632484A patent/JPS616294A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01118031A (en) * | 1987-10-31 | 1989-05-10 | Toshiba Corp | Cooker |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4487663A (en) | Steel sheets for preparing welded and coated cans and method for manufacturing the same | |
JPS5930798B2 (en) | Steel plate for welded can containers and its manufacturing method | |
EP0164092B1 (en) | Process for preparing surface-treated steel strips adapted for electric resistance welding | |
US4790913A (en) | Method for producing an Sn-based multilayer coated steel strip having improved corrosion resistance, weldability and lacquerability | |
JPH0649933B2 (en) | Plated steel plate for cans | |
JPH0140118B2 (en) | ||
JPS616294A (en) | Production of sn-plated steel sheet having excellent corrosion and weldability for container | |
JPS5932556B2 (en) | Manufacturing method of chromate-coated steel sheet for containers with excellent weldability and corrosion resistance after painting | |
JPS63186860A (en) | Manufacture of surface-treated steel sheet excellent in rust resistance and weldability | |
JPS63277794A (en) | Production of steel sheet coated with sn-based multilayered plating and having superior adhesion to paint | |
JPS6123786A (en) | Manufacture of steel sheet for vessel having superior corrosion resistance | |
JPH06293996A (en) | Stock for welded can excellent in high speed seam weldability, corrosion resistance, heat resistance and adhesion of paint | |
JPS6123787A (en) | Manufacture of steel sheet for vessel having superior corrosion resistance and weldability | |
JP3224457B2 (en) | Material for welding cans with excellent high-speed seam weldability, corrosion resistance, heat resistance and paint adhesion | |
JPS6379994A (en) | Production of steel sheet for welded can | |
JP3270318B2 (en) | Steel plate for welded cans with excellent weldability, corrosion resistance, appearance and adhesion | |
JP2726008B2 (en) | High performance Sn-based multi-layer plated steel sheet with excellent corrosion resistance, weldability and paint adhesion | |
JPH0241594B2 (en) | ||
JPS6231066B2 (en) | ||
JPH05106091A (en) | Material for welded can excellent in seam weldability and adhesive strength of paint | |
JPS6350431B2 (en) | ||
JPH06116790A (en) | Stock for welded can excellent in high speed seam weldability, pitting corrosion resistance, heat resistance and adhesion of coating material | |
JPS63199896A (en) | Production of surface treated steel sheet for welded can having superior weldability, adhesion of paint and corrosion resistance after painting | |
JPH041074B2 (en) | ||
JPS63105991A (en) | Production of high quality surface treated steel sheet for vessel having superior corrosion resistance, weldability and paintability |