JPS6231066B2 - - Google Patents
Info
- Publication number
- JPS6231066B2 JPS6231066B2 JP12458284A JP12458284A JPS6231066B2 JP S6231066 B2 JPS6231066 B2 JP S6231066B2 JP 12458284 A JP12458284 A JP 12458284A JP 12458284 A JP12458284 A JP 12458284A JP S6231066 B2 JPS6231066 B2 JP S6231066B2
- Authority
- JP
- Japan
- Prior art keywords
- plating
- base
- alloy
- layer
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000007747 plating Methods 0.000 claims description 86
- 229910000831 Steel Inorganic materials 0.000 claims description 38
- 239000010959 steel Substances 0.000 claims description 38
- 230000007797 corrosion Effects 0.000 claims description 33
- 238000005260 corrosion Methods 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 23
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 claims description 21
- 239000011248 coating agent Substances 0.000 claims description 20
- 238000000576 coating method Methods 0.000 claims description 20
- 229910052698 phosphorus Inorganic materials 0.000 claims description 19
- 229910017116 Fe—Mo Inorganic materials 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 229910001182 Mo alloy Inorganic materials 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 71
- 229910045601 alloy Inorganic materials 0.000 description 42
- 239000000956 alloy Substances 0.000 description 42
- 238000011282 treatment Methods 0.000 description 39
- 238000010438 heat treatment Methods 0.000 description 20
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 20
- 230000000694 effects Effects 0.000 description 17
- 238000009792 diffusion process Methods 0.000 description 15
- 238000002844 melting Methods 0.000 description 15
- 230000008018 melting Effects 0.000 description 12
- 238000003466 welding Methods 0.000 description 12
- 239000007864 aqueous solution Substances 0.000 description 11
- 239000003973 paint Substances 0.000 description 11
- 229910052742 iron Inorganic materials 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000010953 base metal Substances 0.000 description 9
- 229910052750 molybdenum Inorganic materials 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 239000011247 coating layer Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910052718 tin Inorganic materials 0.000 description 6
- 239000011651 chromium Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- 229910001128 Sn alloy Inorganic materials 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000009713 electroplating Methods 0.000 description 4
- 238000010828 elution Methods 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 229910000990 Ni alloy Inorganic materials 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 238000005238 degreasing Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- WHOZNOZYMBRCBL-OUKQBFOZSA-N (2E)-2-Tetradecenal Chemical compound CCCCCCCCCCC\C=C\C=O WHOZNOZYMBRCBL-OUKQBFOZSA-N 0.000 description 2
- JHWIEAWILPSRMU-UHFFFAOYSA-N 2-methyl-3-pyrimidin-4-ylpropanoic acid Chemical compound OC(=O)C(C)CC1=CC=NC=N1 JHWIEAWILPSRMU-UHFFFAOYSA-N 0.000 description 2
- 239000004254 Ammonium phosphate Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- 229910005382 FeSn Inorganic materials 0.000 description 2
- 229910001096 P alloy Inorganic materials 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 description 2
- 239000011609 ammonium molybdate Substances 0.000 description 2
- 235000018660 ammonium molybdate Nutrition 0.000 description 2
- 229940010552 ammonium molybdate Drugs 0.000 description 2
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 2
- 235000019289 ammonium phosphates Nutrition 0.000 description 2
- 235000013361 beverage Nutrition 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 229940044654 phenolsulfonic acid Drugs 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- YPPMLCHGJUMYPZ-UHFFFAOYSA-L sodium;iron(2+);sulfate Chemical compound [Na+].[Fe+2].[O-]S([O-])(=O)=O YPPMLCHGJUMYPZ-UHFFFAOYSA-L 0.000 description 2
- 229910002058 ternary alloy Inorganic materials 0.000 description 2
- 239000012085 test solution Substances 0.000 description 2
- TXUICONDJPYNPY-UHFFFAOYSA-N (1,10,13-trimethyl-3-oxo-4,5,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl) heptanoate Chemical compound C1CC2CC(=O)C=C(C)C2(C)C2C1C1CCC(OC(=O)CCCCCC)C1(C)CC2 TXUICONDJPYNPY-UHFFFAOYSA-N 0.000 description 1
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 description 1
- 102100036092 Alpha-endosulfine Human genes 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- -1 F - Chemical class 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 101000876352 Homo sapiens Alpha-endosulfine Proteins 0.000 description 1
- 229910018100 Ni-Sn Inorganic materials 0.000 description 1
- 229910018532 Ni—Sn Inorganic materials 0.000 description 1
- DZFLWZSJWNYVEU-UHFFFAOYSA-N P(O)(O)(O)=O.[PH2](=O)O Chemical compound P(O)(O)(O)=O.[PH2](=O)O DZFLWZSJWNYVEU-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910004837 P—Sn Inorganic materials 0.000 description 1
- 229910020900 Sn-Fe Inorganic materials 0.000 description 1
- 229910019314 Sn—Fe Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910002065 alloy metal Inorganic materials 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- JOSWYUNQBRPBDN-UHFFFAOYSA-P ammonium dichromate Chemical compound [NH4+].[NH4+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O JOSWYUNQBRPBDN-UHFFFAOYSA-P 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- SOCTUWSJJQCPFX-UHFFFAOYSA-N dichromate(2-) Chemical compound [O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O SOCTUWSJJQCPFX-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000007610 electrostatic coating method Methods 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- 229910001379 sodium hypophosphite Inorganic materials 0.000 description 1
- 239000011684 sodium molybdate Substances 0.000 description 1
- 235000015393 sodium molybdate Nutrition 0.000 description 1
- TVXXNOYZHKPKGW-UHFFFAOYSA-N sodium molybdate (anhydrous) Chemical compound [Na+].[Na+].[O-][Mo]([O-])(=O)=O TVXXNOYZHKPKGW-UHFFFAOYSA-N 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000001119 stannous chloride Substances 0.000 description 1
- 235000011150 stannous chloride Nutrition 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000005028 tinplate Substances 0.000 description 1
- 235000015193 tomato juice Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/78—Pretreatment of the material to be coated
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Treatment Of Metals (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
(産業上の利用分野)
本発明は電気抵抗溶接法の溶接性にすぐれ、ま
た飲料缶、一般缶などに要求される耐食性にもす
ぐれた性能を示す容器用鋼板の製造法に関するも
のである。
(従来技術)
近年、飲料缶、食品缶の製缶方式や缶デザイン
等は著しく進歩かつ多様化し、これらに適応する
容器用素材は低価格で高性能なものが要求されて
いる。
就中、電気抵抗溶接法の製缶方式、例えばスー
ドロニツク溶接製缶法は、材料歩留りが高く、接
合時の強度が高く接合不良に基づく漏洩缶発生率
が極めて少なく、各種形状のデザイン缶に適用さ
れる等多くの利点があり広く使用され始めてい
る。この溶接製缶素材には、従来からSn付着量
が#10以上(Sn付着量1.12g/m2)、好ましくは
#25以上(Sn付着量0.28g/m2)のSnメツキ鋼
板が使用されてきた。
しかしながら、その最大の欠点はSn地金の高
騰により、その価格が著しく高いことにある。そ
のため、Sn付着量の減少による、コストダウン
を計ることが種々企てられているが、その場合耐
食性と溶接性の低下が問題である。最近ではこれ
に代る容器用素材として特開昭57−23091号公
報、特開昭57−200592号公報、特開昭57−110685
号公報等のように各種のメツキ層または被覆層の
鋼板が開発されている。
その製造法は、鋼板表面にNiメツキ、薄目付
量のSnメツキ、これらの合金化拡散処理(加熱
溶融処理)クロメート被覆処理を任意に組合せた
ものである。
このような製造法で製造された鋼板は、二層被
覆の重畳効果によるピンホール減少、メツキ層の
NiとSnの合金層が緻密に生成されてATC(Alloy
Tin Couple)値の低下による耐食性の向上も計
られている。特に、Ni下地メツキにより溶接製
缶時あるいは内容物充填後の高温殺菌処理時の高
温度の加熱過程において成長するFeとSnからな
る合金層(FeSn2合金層)を抑制し、溶接性さら
には溶接部の外観性を向上する。
(発明の解決しようとする問題点)
しかしながら、これらの容器用鋼板を詳細に検
討してみるに、必ずしも充分な性能が確保されて
いるとはいい難い。Niの下地メツキのSnメツキ
の二層メツキ鋼板は、腐食環境に曝された場合第
1図に示すように、前記の効果によりSnの溶解
速度が減少し、その初期耐食性はすぐれている。
第1図はモデル腐食液中におけるsn溶出速度
の比較を示す。
(注−1) モデル腐食液 (1.5%クエン酸+
1.5%食塩)
測定条件 27℃、N2雰囲気中
(注−2) テストピースの被膜構成
〇…下地(Fe−20%Ni)合金メツキ(200mg/
m2)→Snメツキ(800mg/m2)→加熱溶融処
理→クロメート処理(9mg/m2)
△…下地Niメツキ25mg/m2→Snメツキ(800
mg/m2)→クロメート処理(8mg/m2)
□…下地(Fe−10%Ni)拡散被覆層(Niメツ
キ量50mg/m2→拡散処理)→Snメツキ(800
mg/m2)→加熱溶融処理→クロメート処理
(8mg/m2)
×…Snメツキ(850mg/m2)→加熱溶融処理→
クロメート処理(9mg/m2)
▲…下地(Ni−16%P)合金メツキ(60mg/
m2)→Snメツキ(850mg/m2)→クロメート
処理
しかし、長期間腐食環境に曝され、Snが溶解
消費され合金層が露出した状態では、合金層が如
何に緻密といえども、ピンホールは皆無でなく、
NiとSnの合金層に局部電池を生成し腐食が促進
される。この場合、NiとSnの合金層は鋼素地
(地鉄)に比して電位的に極めて貴(カソーデイ
ツク)になるため、鉄の露出部(ピンホール部)
から、地鉄が優先的に溶出するため、耐食性を劣
化し、場合によつてはせん孔腐食を発生する現象
も生じる。
又、このような現象は、製缶時の加工傷によつ
て、合金層或いは地鉄が露出する場合もあり、上
記同様に、地鉄の溶出による耐食性劣化、ひいて
はせん孔腐食の原因となる。又、溶接作業は近年
増々高速化され、従来以上に優れた溶接性が要求
されている。
溶接性は、合金化されていないSnメツキ(フ
リーSn)の量によつて決まり、塗装焼付け工程
時の合金化反応を抑制しフリーSnの残存量を多
くする事が重要である。しかしながら、前記のよ
うに今日の容器用鋼板においては、Ni系の下地
メツキが施されているため、それなりの効果があ
るとはいえ、NiとSnの拡散速度が可成り速いた
め優れた溶接性を改善するためのフリーSnの確
保が難しく、特に低Sn付着量の鋼板には必ずし
も良好な高速溶接性が得られていなかつた。本発
明は、このような問題点を解決し、より優れた耐
食性と溶接性を有する容器用鋼板を提供する事を
目的としてなされたものである。
(発明の構成、作用)
本発明は鋼板表面にP或いはMoまたはその複
合の含有量が1〜60%のFe−P或いはFe−Moま
たはFe−P−Mo合金下地メツキを片面当り3〜
300mg/m2の付着量で施し、この上に片面当り300
mg/m2以上のSnメツキをし或いはさらに加熱溶
融処理した後、更にその上にクロメート被膜処理
する耐食性および溶接性にすぐれた容器用鋼板の
製造法である。
そもそも本発明者らは、
(1) 前記の如く、合金層と地鉄が露出するような
腐食状況或いは欠陥が存在するような場合にお
いて、Niのような極めて電位的に貴な金属を
含有するSnとの合金層(例えば、Ni−Sn合
金、Ni−Sn−Fe合金、Ni−P−Sn合金等)を
生成せしむる事なく、Snとの緻密な合金属を
生成せしめかつ合金層のピンホールを少なくし
うる(ATC値の低下)下地メツキ層を設ける
とともに、また生成されたSnとの合金層が、
NiとSnの合金メツキ層より、地鉄に電位的に
近く、腐食環境においても地鉄の優先的な鉄溶
出を抑制する下地メツキ層
(2) 加熱のような熱拡散過程において、Snとの
反応速度がNi下地メツキ層よりも極めて遅
く、加熱処理を受けてもフリーSnの残存を多
くせしめる下地メツキ層
について種々の検討を行なつた。
その結果、下地メツキ層として、鋼素地に比し
て電位差のないFe金属を主体としたFe合金を使
用し、Snとの緻密な合金層を生成しかつ加熱処
理を受けても地鉄とSnの拡散反応を防止する効
果を有するFe−P又はFe−Mo合金メツキ層が効
果的である事を知つた。かくして本発明を完成し
たのである。
以下に本発明について詳細に説明する。
通常の製鋼工程から、圧延、焼鈍工程を経て製
造された冷却鋼板は、脱脂、酸洗等通常のメツキ
工程において行なわれる前処理を施してその表面
を清浄化、活性化した後、Fe−P或いはFe−Mo
またはFe−P−Mo系合金下地メツキを行う。
この下地メツキ層の効果は、第1表と第2図お
よび第3図で示すように、
(1) Snメツキ後の加熱溶融処理(通常のブリキ
製造工程において行なわれるメルト処理)或い
は、塗装焼付け工程における加熱処理等におい
て、生成されるSnとの合金層は緻密でピンホ
ールが少なく、ATC値の低い合金層である
(第2図)とともに、その合金属の電位がNiと
Snの合金層に比してメツキ原板の電位に極め
て近く、地鉄との間のカツプル電流(腐食電
流)を小さくする(第1表)。さらにまた、
(Industrial Field of Application) The present invention relates to a method for manufacturing a steel sheet for containers that exhibits excellent weldability using electric resistance welding and also exhibits excellent corrosion resistance required for beverage cans, general cans, and the like. (Prior Art) In recent years, can manufacturing methods and can designs for beverage cans and food cans have significantly advanced and diversified, and materials for containers that are compatible with these are required to be low-cost and high-performance. In particular, electric resistance welding can manufacturing methods, such as the Sudronik welding can manufacturing method, have a high material yield, high strength during joining, and an extremely low incidence of can leakage due to poor joining, and can be applied to design cans of various shapes. It has many advantages and is beginning to be widely used. Conventionally, Sn-plated steel sheets with a Sn coating of #10 or higher (Sn coating of 1.12 g/m 2 ), preferably #25 or higher (Sn coating of 0.28 g/m 2 ) are used as welded can making materials. It's here. However, its biggest drawback is that its price is extremely high due to the soaring price of Sn metal. Therefore, various attempts have been made to reduce costs by reducing the amount of Sn deposited, but in this case, the problem is that corrosion resistance and weldability deteriorate. Recently, alternative materials for containers have been published in JP-A-57-23091, JP-A-57-200592, and JP-A-57-110685.
Steel plates with various plating layers or coating layers have been developed, as shown in Japanese Patent Publication No. The manufacturing method is a combination of Ni plating, thin Sn plating, alloying diffusion treatment (heat melting treatment), and chromate coating treatment on the steel plate surface. Steel sheets manufactured using this manufacturing method have a reduction in pinholes due to the superimposed effect of the two-layer coating, and a reduction in the plating layer.
An alloy layer of Ni and Sn is formed densely and ATC (Alloy
Corrosion resistance is also being improved by lowering the tin couple value. In particular, the Ni underplating suppresses the alloy layer consisting of Fe and Sn (FeSn 2 alloy layer) that grows during the high-temperature heating process during welded can making or high-temperature sterilization after filling, and improves weldability and Improve the appearance of welded parts. (Problems to be Solved by the Invention) However, when these steel plates for containers are examined in detail, it is difficult to say that sufficient performance is necessarily ensured. When a double-layer plated steel plate consisting of a Sn-plated plate with a Ni undercoat is exposed to a corrosive environment, the dissolution rate of Sn decreases due to the above-mentioned effect, as shown in FIG. 1, and its initial corrosion resistance is excellent. Figure 1 shows a comparison of sn elution rates in model corrosive fluids. (Note-1) Model corrosive liquid (1.5% citric acid +
1.5% salt) Measurement conditions 27℃, N2 atmosphere (Note 2) Test piece coating composition 〇... Base (Fe-20% Ni) alloy plating (200mg/
m 2 ) → Sn plating (800 mg/m 2 ) → Heat melting treatment → chromate treatment (9 mg/m 2 ) △...Ni plating on base 25 mg/m 2 → Sn plating (800
mg/m 2 ) → Chromate treatment (8 mg/m 2 ) □… Base (Fe-10%Ni) diffusion coating layer (Ni plating amount 50 mg/m 2 → diffusion treatment) → Sn plating (800
mg/m 2 ) → Heat melting treatment → Chromate treatment (8mg/m 2 ) ×…Sn plating (850mg/m 2 ) → Heat melting treatment →
Chromate treatment (9 mg/m 2 ) ▲… Base (Ni-16%P) alloy plating (60 mg/
m 2 ) → Sn plating (850 mg/m 2 ) → chromate treatment However, if exposed to a corrosive environment for a long time, the Sn will be dissolved and consumed and the alloy layer will be exposed, no matter how dense the alloy layer is, pinholes will form. There are not all
Local batteries are formed in the Ni and Sn alloy layer and corrosion is accelerated. In this case, the Ni and Sn alloy layer has an extremely noble potential (cathode) compared to the steel base (base iron), so the exposed part of the iron (pinhole part)
Since the base iron is preferentially leached from the steel, corrosion resistance deteriorates, and in some cases, drilling corrosion may occur. In addition, such a phenomenon may expose the alloy layer or the base metal due to processing scratches during can manufacturing, and similarly to the above, this causes deterioration in corrosion resistance due to elution of the base metal, and eventually causes perforation corrosion. Furthermore, welding operations have become faster and faster in recent years, and better weldability than ever before is required. Weldability is determined by the amount of unalloyed Sn plating (free Sn), and it is important to suppress the alloying reaction during the paint baking process and increase the remaining amount of free Sn. However, as mentioned above, today's steel sheets for containers are coated with a Ni-based base plating, which is effective to some extent, but the diffusion rate of Ni and Sn is quite fast, resulting in excellent weldability. It is difficult to secure free Sn to improve the Sn content, and good high-speed weldability has not always been obtained, especially for steel plates with low Sn adhesion. The present invention has been made to solve these problems and to provide a steel plate for containers having better corrosion resistance and weldability. (Structure and operation of the invention) The present invention provides an Fe-P, Fe-Mo or Fe-P-Mo alloy base plating with a P or Mo or composite content of 1 to 60% on the surface of a steel sheet at a rate of 3 to 3 per side.
It was applied at a coating weight of 300mg/ m2 , and on top of this, 300mg/m2 was applied per side.
This is a method for producing steel sheets for containers with excellent corrosion resistance and weldability, in which Sn plating of mg/m 2 or more is applied, or a chromate coating is applied on top of the plated Sn plating or heat melting treatment. In the first place, the present inventors believe that (1) as mentioned above, in cases where there are corrosion conditions or defects that expose the alloy layer and the base metal, it is necessary to It is possible to form a dense alloy metal with Sn without forming an alloy layer with Sn (for example, Ni-Sn alloy, Ni-Sn-Fe alloy, Ni-P-Sn alloy, etc.), and without forming an alloy layer with Sn. In addition to providing a base plating layer that can reduce pinholes (reducing ATC value), the alloy layer with Sn that is generated also
The base plating layer is closer in potential to the base iron than the Ni and Sn alloy plating layer, and suppresses preferential iron elution from the base iron even in a corrosive environment (2) During thermal diffusion processes such as heating, the base plating layer Various studies were conducted on the base plating layer, which has a much slower reaction rate than the Ni base plating layer and allows more free Sn to remain even after heat treatment. As a result, we used an Fe alloy mainly consisting of Fe metal, which has no potential difference compared to the steel substrate, as the base plating layer, and created a dense alloy layer with Sn. It has been found that a Fe-P or Fe-Mo alloy plating layer is effective in preventing the diffusion reaction of. The present invention was thus completed. The present invention will be explained in detail below. Cooled steel sheets manufactured through the rolling and annealing processes in the normal steelmaking process are subjected to pretreatment such as degreasing and pickling to clean and activate the surface, and then the Fe-P Or Fe-Mo
Or perform Fe-P-Mo alloy base plating. The effect of this base plating layer is as shown in Table 1, Figures 2 and 3. During heat treatment in the process, the alloy layer formed with Sn is dense, has few pinholes, and has a low ATC value (Figure 2), and the potential of the alloy is similar to that of Ni.
Compared to the Sn alloy layer, it is extremely close to the potential of the plating original plate, and reduces the couple current (corrosion current) between it and the base metal (Table 1). Furthermore,
【表】【table】
【表】
(2) 加熱過程における地鉄とメツキ層の拡散を阻
止してFeSn2合金層の生成を抑制し、表面層の
Sn残存量を多くせしめる(第3図)バリヤー
効果を有する。
(注) 測定方法
・テストピース作製方法
焼成条件 210℃×20分間の焼成
フリーSnの電解剥離条件
焼成後のテストピースを0.5%Na2CO3
中で陰極的に電解脱脂を行ない、そのあ
と5%NaOH中で陽極的に電解剥離をし
合金層を露出させ、水洗、乾燥する。
・カツプル電流測定方法
試験液 1.5%クエン酸+1.5%食塩
測定条件 脱Sn後のテストピースと
メツキ原板を試験液中でカツプルさせ、
窒素雰囲気中、27℃、20時間後のカツプ
ル電流を無抵抗電流計で測定した。
試験面積は2×2cm
第2図はFe−P又はFe−Mo下地合金メツキ
層を有するSnメツキ鋼板(片面当り付着量780
mg/m2)のATC値を示す。
(注) 測定条件
試験液 トマトジユースを蒸留水で1対1で
うすめ煮沸後SnCl22H2Oを0.19g/添加
(Sn2+100ppm)熟成後試験液として使用
測定条件 テストピースのフリーSnを水酸
化ナトリウム中で電解剥離し、合金層を露
出させ上記試験液中でSnとカツプルさ
せ、窒素ガス雰囲気中、27℃で20時間後の
カツプル電流を測定する。
又、第3図はFe−P又はFe−Mo下地合金メ
ツキ層を有するSnメツキ鋼板の加熱処理後の
フリーSn残存量を示す。
注(1) Fe−P及びFe−Mo合金下地メツキ処理
を片面当り75mg/m2の付着量で施し、水洗後
Snメツキ量を片面当り550mg/m2施した後、
以下の塗装焼付けを前提とした加熱処理を行
なつて、フリーSn量を測定した。
加熱条件;210℃×20min焼成を行なつた。
注(2) フリーSnの測定法;前述の脱Sn時の電
解剥離曲線よりフリーSn量を算出(脱Sn前
後のSn量を螢光X線で測定しその差をフリ
ーSn量として確認した)
すなわち、P或いはMoのFe合金中の含有量が
1〜60%、好ましくは5〜30%で、またその下地
メツキ層の付着量が3〜300mg/m2(片面当り)、
好ましくは10〜200mg/m2の範囲で本発明の目的
とする効果が得られ、優れた耐食性と溶接性を有
する容器用鋼板が得られる。
ここで、P或いはMoまたはその複合の含有量
が1%未満では、Snと反応して生成されるこれ
ら下地合金メツキ層の緻密性や低ATC値が得ら
れずさらには加熱過程での地鉄とSnの拡散を防
止されず、すぐれた溶接性と耐食性の容器用鋼板
を得ることができない。
また、P或いはMoの含有量が各々60%をこえ
ると、合金メツキ層の緻密化効果及び地鉄とSn
の拡散防止効果が飽和するとともに、下地被覆層
を含有するSnとの合金層の電位が地鉄よりカソ
ーデイツク化し、合金層の欠陥部からのFe溶出
量の増加、ひいてはせん孔腐食を発生せしめるた
め、P、Mo含有量の上限を60%に限定した。ま
た、この下地被覆層の付着量が3mg/m2(片面当
り)未満では、下地メツキ層の効果が得られず、
又300mg/m2をこえるとその効果が飽和に達する
とともに、Snとの間に生成される下地メツキ層
を含む合金層が厚くなり、加工性を劣化する。
次に、このような下地メツキ層を得るための方
法は特に規定するものではなく、電気メツキ法、
化学メツキ(無電解メツキ法)或いはP、Moの
化合物を塗布後に鋼板の焼鈍工程での熱械散処理
等の方法で行なわれ、またこれらの処理条件等に
ついても特に規定するものではない。これらの下
地メツキ層を設けるための一例を挙げると下記の
如くである。
(1) 電気メツキ法によるFe−P合金下地メツキ
処理[Table] (2) The formation of the FeSn 2 alloy layer is suppressed by preventing the diffusion of the base iron and the plating layer during the heating process, and the surface layer is
It has a barrier effect that increases the amount of Sn remaining (Figure 3). (Note) Measurement method - Test piece preparation method Firing conditions Firing at 210°C for 20 minutes Conditions for electrolytic stripping of free Sn The test piece after firing was exposed to 0.5% Na 2 CO 3
Electrolytic degreasing is carried out cathodically in 5% NaOH, followed by anodic stripping in 5% NaOH to expose the alloy layer, followed by washing with water and drying.・Couple current measurement method Test liquid 1.5% citric acid + 1.5% salt Measurement conditions The test piece after Sn removal and the mated original plate are coupled in the test solution,
The couple current was measured with a non-resistance ammeter after 20 hours at 27°C in a nitrogen atmosphere. The test area was 2 x 2 cm. Figure 2 shows a Sn-plated steel plate with an Fe-P or Fe-Mo base alloy plating layer (coating amount per side: 780
mg/m 2 ). (Note) Measurement conditions Test liquid Tomato juice was diluted 1:1 with distilled water, boiled, and 0.19g/SnCl 2 2H 2 O was added (Sn 2+ 100ppm) used as the test liquid after ripening Measurement conditions Free Sn of the test piece Electrolytic stripping is performed in sodium hydroxide to expose the alloy layer, which is then coupled with Sn in the above test solution, and the couple current is measured after 20 hours at 27°C in a nitrogen gas atmosphere. Moreover, FIG. 3 shows the amount of free Sn remaining after heat treatment of a Sn-plated steel sheet having a Fe-P or Fe-Mo base alloy plating layer. Note (1) Fe-P and Fe-Mo alloy base plating treatment was applied at a coating amount of 75mg/ m2 per one side, and after washing with water.
After applying Sn plating amount of 550mg/ m2 per side,
The amount of free Sn was measured by performing the following heat treatment on the premise of baking the paint. Heating conditions: Firing was performed at 210°C for 20 minutes. Note (2) Measuring method of free Sn: Calculate the amount of free Sn from the electrolytic exfoliation curve during Sn removal described above (the amount of Sn before and after removing Sn was measured with fluorescent X-rays, and the difference was confirmed as the amount of free Sn) That is, the content of P or Mo in the Fe alloy is 1 to 60%, preferably 5 to 30%, and the amount of the underlying plating layer is 3 to 300 mg/m 2 (per one side).
Preferably, the desired effect of the present invention can be obtained within the range of 10 to 200 mg/m 2 , and a steel plate for containers having excellent corrosion resistance and weldability can be obtained. Here, if the content of P, Mo, or their composite is less than 1%, the density and low ATC value of the base alloy plating layer produced by reacting with Sn cannot be obtained, and furthermore, the base metal may deteriorate during the heating process. This does not prevent the diffusion of Sn and makes it impossible to obtain steel sheets for containers with excellent weldability and corrosion resistance. In addition, when the content of P or Mo exceeds 60% each, the effect of densification of the alloy plating layer and the
As the anti-diffusion effect of Sn saturates, the potential of the alloy layer with Sn containing the base coating layer becomes more cathodic than that of the base metal, increasing the amount of Fe eluted from the defective parts of the alloy layer, and eventually causing drilling corrosion. The upper limit of P and Mo content was limited to 60%. In addition, if the amount of the base coating layer is less than 3 mg/m 2 (per side), the effect of the base plating layer will not be obtained.
Moreover, when it exceeds 300 mg/m 2 , the effect reaches saturation, and the alloy layer including the base plating layer formed between Sn and Sn becomes thicker, degrading workability. Next, the method for obtaining such a base plating layer is not particularly specified, and electroplating method,
This is carried out by chemical plating (electroless plating method) or by heat mechanical dispersion treatment in the annealing process of the steel plate after applying a compound of P and Mo, and the conditions for these treatments are not particularly specified. An example of how to provide these base plating layers is as follows. (1) Fe-P alloy base plating treatment by electroplating method
【表】
(2) 電気メツキ法によるFe−Mo合金下地メツキ
処理[Table] (2) Fe-Mo alloy base plating treatment by electroplating method
【表】
(3) 熱拡散処理法によるFe−P合金下地メツキ
処理50g/のリン酸アンモン溶液中に50℃で
3秒間浸漬後、高圧気体絞り法で所定の付着量
にリン酸アンモン溶液を鋼板表面に塗布後、
730℃で30秒間・非酸化雰気中で加熱する熱処
理
(4) 熱拡散処理法によるFe−Mo合金下地メツキ
処理
35g/のモリブデン酸アンモン水溶液を用
いて静電塗布法により所定の付着量を鋼板表面
に塗布して、還元性雰囲気中の715℃で20秒間
加熱する熱処理
等の方法で処理される。
このようにして鋼板にFe−P或いはFe−Mo合
金からなる下地メツキを施した後Snメツキし或
いはさらにSnメツキ後に加熱溶融処理(メルト
処理)が施される。この場合のSnメツキ条件及
びSnメツキ後の加熱溶融処理条件についても、
通常のメツキ条件及び加熱溶融処理条件を採用す
ればよく、メツキ浴組成、メツキ条件或いは加熱
溶融処理条件等は特に規性しない。例えば
(1) メツ浴組成(フエロスタン浴);
フエノールスルフオン酸
10〜30g/(硫酸に換算して)
SnSO4 40〜80g/
ENSA(添加剤、デユポン製) 5〜15g/
(2) メツキ浴組成(ハロゲン浴);
塩化第一錫 50〜100g/
フツ化ソーダー 15〜35g/
水素化硫黄カリウム 40〜60g/
塩化ナトリウム 30〜60g/
ナフトールスルフオン酸 1〜5g/
で電流密度5〜100A/dm2、浴温30〜60℃で
行われる。
また、加熱溶融処理はSnメツキ層の金属光沢
の増加による外観向上と下地合金メツキ層とSn
との合金層をより均一な緻密を計つてより、一層
の耐食性向上を計るために行なわれる。
加熱溶融処理は、Snメツキ後水洗して、その
ままあるいは水溶液フラツクスを塗布して、空気
中或いは非酸加性雰囲気(例えばN2雰囲気)中
で40〜350℃、好ましくは250℃〜300℃でSnメツ
キ層が溶融される。
フラツクスは、浸漬処理又はスプレイ処理によ
り、例えばメツキ浴がフエロスタン浴では、
フエノールスルフオン酸
2〜10g/(硫酸に換算して)
SnSO4 2〜10g/
を塗布して、Meltされる。
又、本発明のこのFe−P或いはFe−Mo合金下
地メツキ層とその表面にSnメツキ層或いは加熱
溶融処理したSnメツキ層の鋼板は、貯蔵時のSn
メツキ層表面の酸化膜の生成防止及び塗装性能向
上のために、クロメート処理が行なわれる、クロ
メート処理はSnメツキし或いはさらに加熱溶融
処理後に、鋼表面上の残査物を水洗により除去
し、或いは炭酸アンモン、炭酸ソーダー等でメツ
キ層表面の酸化膜等を予備除去してから行なわれ
る。すなわちクロメート処理はそのため、Snメ
ツキし或いはさらに加熱溶融処理後、その表面上
の残査物などを除去した後、無水クロム酸、クロ
ム酸塩(クロム酸アンモン、クロム酸ソーダー
等)或いは重クロム酸塩(重クロム酸アンモン、
重クロム酸ソーダー等)の一種又は二種以上の混
合水溶液及びこれらにSO4 -2イオン、F-イオン等
を添加した水溶液を用いて行なわれる。
この場合のクロメート処理水溶液或いは処理条
件は特に規定するものでないが、例えば以下の様
なクロメート浴が使われまたクロメート条件で行
なわれる。
(1) クロメート浴組成;
60g/CrO3−0.3g/SO4 -2
電流密度 7.5A/dm2
浴 温 60℃
クロメート被膜量(Cr換算); 14.5mg/m2
(2) クロメート浴組成
30g/重クロム酸ソーダー
電流密度 10A/dm2
浴 温 50℃
クロメート被膜量 6.5mg/m2
特に塗装性能(塗料密着性、塗装後耐食性)の
向上のためには、CrO3−SO4 -2系或いはCrO3−
F-系等の陰イオンを含むクロメート浴を用い
て、金属クロム層と水和酸化クロムからなるクロ
メート被膜層を10mg/m2以下、好ましくは5mg/
m2以下同時に析出させるのが好ましい。
クロメート被報層は、最近の如く、缶の形状に
フアツシヨン性が要求され苛酷な加工を受ける用
途、また優れた塗装性能が要求される用途には最
適である。また、本発明方法で製造された容器用
鋼板は、下地メツキ層と地鉄とSnメツキ層の拡
散防止効果が極めて大きいため、フリーSnの残
存量が多く、Sn付着量が例えば1.12g/m2(片面
当り付着量)以下、好ましくは0.70g/m2(片面
当り付着量)以下の低付着量でも溶接性が優れて
いる。
すなわち、本発明では低Sn付着量でも塗装焼
付けの加熱処理を受けても、フリーSnの残存量
が多いため、優れた溶接性が得られる。さらに、
低Sn付着量のため若干生成されるピンホールも
金属Crのピンホール防止効果ですぐれた耐食性
が得られる。特に塗料密着性向上効果によつて缶
が輸送時にしようげきを受けた場合、低Sn付着
量であるがゆえに塗料がはげにくい事は極めて耐
食性の点から好ましい。
(発明の効果)
以上の如く、本発明法で得られた容器用鋼板
は、Snメツキ層に対する適正な下地メツキ層に
より、緻密な合金層の生成による耐食性の向上、
他金属或いは他の合金を下地メツキ層として使用
した場合に比して合金層の電位が地鉄に比して貴
(カソーデイツク)になる度合が少ないため、メ
ツキ層の欠陥部からのFeの優先溶解、ひいては
穿孔腐食の懸念が少なく、又加熱処理を受けた場
合の地鉄とSnメツキ層の拡散防止効果が大なる
事によるフリーSnの残存効果による溶接性の向
上、耐食性の向上等と相俟つて優れた性能が得ら
れる。
尚、本発明の下地メツキ層としてはFe−P、
Fe−Mo合金について説明したが、Fe−P−Mo
の三元合金でも同様の効果が得られる。
これは、実工業ラインにおけるメツキ工程で
は、成分の調整、浴管理等三元合金においては困
難な点も多いので本発明では説明を省略したが、
本発明とほぼ同一技術、同一効果が得られるの
で、本発明の範囲に含まれる。
(実施例)
以下、本発明の実施例について説明する。
鋼板を通常の方法により電解法による脱脂、酸
洗後、(a)硫酸鉄−次亜リン酸ソーダー−リン酸水
溶液(b)硫酸鉄−モリブデン酸ソーダー−クエン酸
ソーダー水溶液を用いて各々10A/dm2の電流密
度で電気メツキを施した、各々のP或いはMoの
含有量は溶液中の次亜リン酸の含有量又はモリブ
デン酸ソーダーの含有量で調整し、付着量はクー
ロン数で調整して、所定の下地被覆層を得た、
又、(浸漬塗布→熱拡散処理法)では(c)塩化鉄−
次亜リン酸ソーダー水溶液、(d)モリブデン酸アン
モニウム水溶液中に浸漬後、ロール絞り法で付着
量を調整して、焼鈍・拡散により各々下地メツキ
層を得た。
水洗後フエロスタン浴中の電流密度が30A/d
m2で、各付着量のSnメツキを施し、場合によつ
ては加熱溶融処理を施した。次いで、30g/の
ダイクロメート浴(金属クロム析出なし)或いは
60g/CrO3−0.3g/SO4 -2系浴(金属Cr析
出)を用い、温度60℃で、電流密度、電解時間を
変化させて所定のクロメート被膜量を得た。
この様にして得た容器用鋼板について、公知の
下地メツキ層を有する鋼板及び下地メツキ層を有
しないSnメツキ鋼板(ブリキ)と比較して、溶
接性能および耐食性能を下記の要領で調べた。そ
の結果を第2表に示す。
(1) 溶接性能
メツキ板を210℃×20分、次いで190℃×10分
の塗装焼付けの加熱処理に相当する模擬サイク
ルで空焼き後、スードロニツク溶接機を用い、
周波数400Hz、ラツプ巾0.5mm、溶接速度50m/
minでシーム溶接を行ない、溶接部のチリの発
生状況及び溶接部断面のナゲツト生成状況を調
査し、その溶接性能を総合判断した。
(2) 塗膜下腐食性(UCC性)
メツキ板にエポキシフエノール系塗料を55
mg/dm2塗布し、210℃で10分間焼付けた後
に、サンプル板表面に地鉄に達するクロスカツ
トを入れ、1.5%クエン酸−1.5%NaCl水溶液中
に55℃で4日間浸漬し、カツト部からの錆の拡
がり程度及びセロテープ剥離後の塗膜部の剥離
状況(クロスカツト部及び平面部)から判断し
た。
(3) 耐孔食性(塗装板の欠陥部の孔食状況)
上記2と同一条件で塗装、地鉄に達するクロ
スカツトを入れ、第2表に示す腐食試験中に50
℃で12日間浸漬した後、クロスカツト部の断面
顕微鏡による深さ方向の腐食状況を観察するこ
とによつてその耐食性を評価した。[Table] (3) Fe-P alloy base plating using thermal diffusion treatment method After immersing in 50 g of ammonium phosphate solution at 50°C for 3 seconds, apply ammonium phosphate solution to a predetermined coating amount using high-pressure gas squeezing method. After applying to the steel plate surface,
Heat treatment at 730°C for 30 seconds in a non-oxidizing atmosphere (4) Fe-Mo alloy base plating treatment using thermal diffusion treatment Using 35g/ammonium molybdate aqueous solution, apply the specified amount of adhesion using electrostatic coating method. It is applied to the surface of a steel plate and treated by a heat treatment method such as heating at 715°C for 20 seconds in a reducing atmosphere. In this way, a steel plate is subjected to a base plating made of Fe--P or Fe--Mo alloy and then Sn plating, or further after Sn plating, heating and melting treatment (melt treatment) is performed. Regarding the Sn plating conditions and the heat melting treatment conditions after Sn plating in this case,
Usual plating conditions and heat-melting treatment conditions may be employed, and there are no particular restrictions on the plating bath composition, plating conditions, heat-melting treatment conditions, etc. For example, (1) Metsu bath composition (ferostane bath); phenolsulfonic acid
10 to 30 g/(converted to sulfuric acid) SnSO 4 40 to 80 g/ ENSA (additive, manufactured by Dupont) 5 to 15 g/ (2) Plating bath composition (halogen bath); Stannous chloride 50 to 100 g/ Fluoride Soda 15-35g/potassium sulfur hydride 40-60g/sodium chloride 30-60g/naphtholsulfonic acid 1-5g/current density 5-100A/ dm2 , bath temperature 30-60°C. In addition, heat melting treatment improves the appearance by increasing the metallic luster of the Sn plating layer, and improves the appearance of the base alloy plating layer and Sn.
This is done to further improve corrosion resistance by making the alloy layer more uniform and dense. The heating and melting treatment is carried out after Sn plating, washing with water, as it is, or applying an aqueous solution flux, at 40 to 350°C, preferably 250 to 300°C, in air or in a non-acidic atmosphere (for example, N2 atmosphere). The Sn plating layer is melted. The flux can be treated by dipping or spraying, for example, in plating baths and ferrostan baths, phenolsulfonic acid
2 to 10 g/(in terms of sulfuric acid) of SnSO 4 is applied and melted. In addition, the steel sheet of the present invention having a Fe-P or Fe-Mo alloy base plating layer and a Sn plating layer or a heat-melted Sn plating layer on the surface thereof has a high Sn plating layer during storage.
In order to prevent the formation of an oxide film on the surface of the plating layer and improve coating performance, chromate treatment is performed.The chromate treatment involves removing residues on the steel surface by washing with water after Sn plating or further heating and melting treatment. This is done after preliminary removal of the oxide film on the surface of the plating layer using ammonium carbonate, soda carbonate, etc. In other words, chromate treatment is performed after Sn plating or further heat-melting treatment to remove residues on the surface. salt (ammonium dichromate,
This is carried out using a mixed aqueous solution of one or more of sodium dichromate, etc.) and an aqueous solution to which SO 4 -2 ions, F - ions, etc. are added. The chromate treatment aqueous solution or treatment conditions in this case are not particularly limited, but for example, the following chromate baths are used and the treatment is carried out under chromate conditions. (1) Chromate bath composition;
60g/CrO 3 -0.3g/SO 4 -2 Current density 7.5A/dm 2 baths Temperature 60℃ Chromate coating amount (Cr conversion); 14.5mg/m 2 (2) Chromate bath composition
30g/sodium dichromate Current density 10A/dm 2 baths Temperature 50℃ Chromate coating amount 6.5mg/m 2Especially to improve coating performance (paint adhesion, corrosion resistance after coating), use CrO 3 −SO 4 -2 system or CrO 3 −
Using a chromate bath containing anions such as F - , a chromate coating layer consisting of a metallic chromium layer and hydrated chromium oxide is applied at a rate of 10 mg/m 2 or less, preferably 5 mg/m 2 or less.
It is preferable to precipitate up to m 2 at the same time. The chromate-covered layer is most suitable for applications in which the shape of the can is required to have good flexibility and is subject to severe processing, as well as applications in which excellent coating performance is required. In addition, the steel sheet for containers manufactured by the method of the present invention has a very large diffusion prevention effect of the base plating layer, base iron, and Sn plating layer, so the residual amount of free Sn is large, and the Sn adhesion amount is, for example, 1.12 g/m Excellent weldability is achieved even at a low deposition amount of less than 2 (deposition amount per one side), preferably 0.70 g/m 2 (deposition amount per one side). That is, in the present invention, even if the amount of Sn attached is low, even after the heat treatment for baking the paint, there is a large amount of free Sn remaining, so excellent weldability can be obtained. moreover,
Excellent corrosion resistance can be obtained due to the pinhole prevention effect of the metal Cr, even though some pinholes are generated due to the low amount of Sn deposited. In particular, due to the effect of improving paint adhesion, when the can is subjected to damage during transportation, the low Sn adhesion makes it difficult for the paint to peel off, which is extremely desirable from the viewpoint of corrosion resistance. (Effects of the Invention) As described above, the steel sheet for containers obtained by the method of the present invention has improved corrosion resistance due to the formation of a dense alloy layer due to the appropriate base plating layer for the Sn plating layer.
Compared to cases where other metals or other alloys are used as the base plating layer, the potential of the alloy layer is less likely to be cathodic than the base metal, so Fe is prioritized from the defective parts of the plating layer. There is less concern about melting and even perforation corrosion, and when heat treatment is applied, the diffusion prevention effect between the base steel and the Sn plating layer is large, resulting in improved weldability and corrosion resistance due to the residual effect of free Sn. Excellent performance can be obtained over time. In addition, as the base plating layer of the present invention, Fe-P,
Although Fe-Mo alloy was explained, Fe-P-Mo
Similar effects can be obtained with ternary alloys. This is because there are many difficult points in the plating process in an actual industrial line for ternary alloys, such as component adjustment and bath management, so explanations are omitted in this invention.
Since almost the same technique and the same effect as the present invention can be obtained, it is included in the scope of the present invention. (Example) Examples of the present invention will be described below. After degreasing and pickling the steel plate by electrolytic method using the usual method, (a) iron sulfate-sodium hypophosphite-phosphoric acid aqueous solution (b) iron sulfate-sodium molybdate-sodium citrate aqueous solution were used to degrease the steel plate at 10 A/min each. Electroplating was performed at a current density of dm2.The content of each P or Mo was adjusted by the content of hypophosphorous acid or the content of sodium molybdate in the solution, and the amount of deposit was adjusted by the number of coulombs. A predetermined base coating layer was obtained.
In addition, in (dip coating → thermal diffusion treatment method) (c) iron chloride -
After immersing in a sodium hypophosphite aqueous solution and (d) an ammonium molybdate aqueous solution, the amount of adhesion was adjusted by a roll squeezing method, and a base plating layer was obtained by annealing and diffusion. After washing with water, the current density in the Ferrostan bath is 30A/d.
m 2 , Sn plating was applied to each coating amount, and in some cases, heating and melting treatment was performed. Then 30g/dichromate bath (no metallic chromium precipitation) or
A predetermined amount of chromate coating was obtained using a 60 g/CrO 3 -0.3 g/SO 4 -2 bath (metallic Cr precipitation) at a temperature of 60° C. and varying the current density and electrolysis time. The welding performance and corrosion resistance of the container steel sheets obtained in this way were compared with a known steel plate with a base plating layer and a Sn-plated steel plate (tin plate) without a base plating layer, and the welding performance and corrosion resistance performance were examined in the following manner. The results are shown in Table 2. (1) Welding performance After dry baking the plated plate in a simulated cycle equivalent to heat treatment of 210℃ x 20 minutes and then 190℃ x 10 minutes for paint baking, using a Sudronik welding machine,
Frequency 400Hz, lap width 0.5mm, welding speed 50m/
Seam welding was performed at min., the occurrence of dust in the welded area and the formation of nuggets in the cross section of the welded area were investigated, and the welding performance was comprehensively judged. (2) Under-coating corrosion (UCC) Apply 55% epoxy phenol paint to the plating board.
After applying 2 mg/dm2 and baking at 210℃ for 10 minutes, a cross cut reaching the base metal was placed on the surface of the sample plate, and immersed in a 1.5% citric acid-1.5% NaCl aqueous solution at 55℃ for 4 days. Judgment was made based on the degree of rust spread and the peeling status of the paint film after peeling off the cellophane tape (cross-cut areas and flat areas). (3) Pitting corrosion resistance (pitting corrosion status of defective parts of painted plate) Painted under the same conditions as in 2 above, a cross cut reaching the base metal was inserted, and 50% was applied during the corrosion test shown in Table 2.
After being immersed at ℃ for 12 days, the corrosion resistance was evaluated by observing the corrosion state in the depth direction of the cross-cut portion using a cross-sectional microscope.
【表】【table】
【表】
(4) 耐塩水レトルト性
メツキ板にエポキシフエノール系塗料を55
mg/dm2塗布し、210℃で10分間焼き付けた後
にサンプルを密着曲げ加工を施し5%NaCl水
溶液中で120℃で60minレトルト処理を行なつ
た。塩水レトルト処理後速やかにセロテープ剥
離を行ない、曲げ加工部及び平板部の塗膜剥離
状況を評価した。
上記性能試験を行なつた後、実施例及び比較材
についてその性能を判断したが、その判定基準は
以下に示す通りである。
◎…非常に良好 〇…比較的良好
△…やや劣る ×…非常に劣る
尚、P…、Mo…はP或いはMoの付着量を示
す。以上の如く、本発明の製品は、比較にしたメ
ツキ製品に比べて、耐食性能、溶接性能等容器用
素材として極めてすぐれた性能を有する。[Table] (4) Salt water retort resistance Epoxyphenol paint applied to plating board 55
mg/dm 2 was coated and baked at 210°C for 10 minutes, the sample was subjected to contact bending and retorted in a 5% NaCl aqueous solution at 120°C for 60 minutes. Cellotape was removed immediately after the salt water retort treatment, and the state of paint film removal on the bent portion and flat plate portion was evaluated. After conducting the above performance test, the performance of the example and comparative materials was judged, and the criteria for the judgment were as shown below. ◎...Very good 〇...Relatively good △...Slightly poor ×...Very poor Note that P... and Mo... indicate the amount of P or Mo attached. As described above, the product of the present invention has extremely superior performance as a material for containers, such as corrosion resistance and welding performance, compared to the comparative plated product.
第1図は各種容器用鋼板のSn溶出速度を示
す。第2図はFe−P又はFe−Mo下地合金メツキ
層を有するSnメツキ鋼板のATC値を示す。第3
図はFe−P又はFeMo下地合金メツキ層を有する
Snメツキ鋼板の加熱処理後のフリーSn残存量を
示す。
Figure 1 shows the Sn elution rate of various steel sheets for containers. FIG. 2 shows the ATC value of a Sn-plated steel sheet having an Fe-P or Fe-Mo base alloy plating layer. Third
The figure shows Fe-P or FeMo base alloy plating layer.
The figure shows the amount of free Sn remaining after heat treatment of Sn-plated steel sheets.
Claims (1)
有量が1〜60%のFe−P或いはFe−Moまたは
Fe−P−Mo合金下地メツキを片面当り3〜300
mg/m2の付着量で施し、この上に片面当り300
mg/m2以上のSnメツキをし或いはさらに加熱溶
融処理した後、更にその上にクロメート被膜処理
する事を特徴とする耐食性と溶接性にすぐれた容
器用鋼板の製造法。1. Fe-P, Fe-Mo or
Fe-P-Mo alloy base plating 3 to 300 per side
300 mg/ m2 per side.
A method for manufacturing a steel sheet for containers with excellent corrosion resistance and weldability, which is characterized in that it is plated with Sn of mg/m 2 or more, or further heat-melted, and then further treated with a chromate coating.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12458284A JPS613886A (en) | 1984-06-19 | 1984-06-19 | Production of steel sheet for container having excellent corrosion resistance and weldability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12458284A JPS613886A (en) | 1984-06-19 | 1984-06-19 | Production of steel sheet for container having excellent corrosion resistance and weldability |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS613886A JPS613886A (en) | 1986-01-09 |
JPS6231066B2 true JPS6231066B2 (en) | 1987-07-06 |
Family
ID=14889034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12458284A Granted JPS613886A (en) | 1984-06-19 | 1984-06-19 | Production of steel sheet for container having excellent corrosion resistance and weldability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS613886A (en) |
-
1984
- 1984-06-19 JP JP12458284A patent/JPS613886A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS613886A (en) | 1986-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1102272A (en) | Heating thin tin-plated steel sheet to form alloy and electrolytically treating with chromate | |
US4429021A (en) | Chromium-plated steel strip having excellent weldability and resistance to corrosion | |
EP0307929B1 (en) | Plated steel sheet for a can | |
JPS61223197A (en) | Surface-treated steel plate | |
JPH0246679B2 (en) | ||
US4713301A (en) | Sn-based multilayer coated steel strip having improved corrosion resistance, weldability and lacquerability | |
JPH0140118B2 (en) | ||
JPH0826477B2 (en) | Manufacturing method of Sn-based multi-layered steel sheet with excellent paint adhesion | |
JPS6029477A (en) | Production of steel sheet for can vessel having excellent weldability and painting performance | |
JPH0472091A (en) | Surface-treated steel sheet for two-piece can and production thereof | |
JPS6231066B2 (en) | ||
JPS6123786A (en) | Manufacture of steel sheet for vessel having superior corrosion resistance | |
JP3270318B2 (en) | Steel plate for welded cans with excellent weldability, corrosion resistance, appearance and adhesion | |
JPH0431039B2 (en) | ||
JPS6123787A (en) | Manufacture of steel sheet for vessel having superior corrosion resistance and weldability | |
JPH041074B2 (en) | ||
JP2726008B2 (en) | High performance Sn-based multi-layer plated steel sheet with excellent corrosion resistance, weldability and paint adhesion | |
JPS616294A (en) | Production of sn-plated steel sheet having excellent corrosion and weldability for container | |
JPS62284086A (en) | Production of sn multilayer-coated steel sheet having excellent corrosion resistance, weldability, and coating performance | |
JP3745457B2 (en) | Manufacturing method of steel sheet for welding can excellent in weldability, corrosion resistance, appearance and adhesion | |
JPS63125694A (en) | Production of surface treated steel sheet for welded can | |
JPS6396294A (en) | Production of steel sheet having excellent weldability and corrosion resistance | |
JPS63105991A (en) | Production of high quality surface treated steel sheet for vessel having superior corrosion resistance, weldability and paintability | |
JPH06116790A (en) | Stock for welded can excellent in high speed seam weldability, pitting corrosion resistance, heat resistance and adhesion of coating material | |
JPH0726207B2 (en) | High-performance Sn-based multilayer plated steel sheet with excellent corrosion resistance, weldability and paint adhesion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |