JPS6350431B2 - - Google Patents

Info

Publication number
JPS6350431B2
JPS6350431B2 JP55057789A JP5778980A JPS6350431B2 JP S6350431 B2 JPS6350431 B2 JP S6350431B2 JP 55057789 A JP55057789 A JP 55057789A JP 5778980 A JP5778980 A JP 5778980A JP S6350431 B2 JPS6350431 B2 JP S6350431B2
Authority
JP
Japan
Prior art keywords
atomic ratio
tin
alloy
cans
alloy layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55057789A
Other languages
Japanese (ja)
Other versions
JPS56156788A (en
Inventor
Hiroshi Kagechika
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP5778980A priority Critical patent/JPS56156788A/en
Publication of JPS56156788A publication Critical patent/JPS56156788A/en
Publication of JPS6350431B2 publication Critical patent/JPS6350431B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electrochemical Coating By Surface Reaction (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は溶接塗装缶用鋼板の創案に係り、溶接
性および塗料密着性において共に優れ、しかも塗
装加工後の耐食性の卓越した新しい溶接塗装缶用
鋼板を提供しようとするものである。 缶詰などの缶体として半田づけ缶が従来から一
般に用いられているが、近時斯かる半田づけ缶か
ら溶接缶、接着缶への移行が急速に進みつつあ
り、又内面無塗装の厚めつきブリキ缶(白缶)か
ら内面塗装の薄めつきブリキ、テインフリースチ
ール(TFS)缶への代替も略定着化しており、
こののような状況下において缶用素材に対する要
求性能も実質的に変化し、上記した内面塗装を前
提とした場合における最大の要求性能は塗料密着
性と加工後の耐食性にある。然して上記した
TFSは塗料密着性が非常に優れた表面処理鋼板
であつて接着缶に広く採用されているが加工後の
耐食性が劣り、又溶接作業性においても極端に劣
ることから強力な接合強度が求められるスプレー
缶などの溶接缶優位の缶種においてはこのTFS
を使用できない現状である。従つて斯かるTFS
並みの塗装性を維持しつつ加工後の耐食性、溶接
作業性が共に優れた缶用素材が求められている。 そこで発明者等は上記したような実情に鑑み検
討を重ね前述したような不利のない缶用鋼板を得
ることに成功し既に出願をなした(特願昭54―
150577)。即ち上記のような鋼板が缶用のもので
あることから金属はFeとSnのみに限定し、しか
も表層全体の完全なアロイ化を図つて塗装性(密
着力)の優れた酸化皮膜を生成する表面組成と加
工性を良好にするための結晶構造の微細化ないし
無定形化を上記アロイ層に得しめ、更に割れ発生
を抑制し耐食性を向上させるため鉄地に対し陰極
的に作用し且つ陰分極の大きい組成の表面層を形
成したものである。蓋し本発明者等は上記したよ
うなSn―Fe系について仔細な検討を重ねた結果
次のようなことが明かにされた。 FeSn2は柱状結晶でポロシテイが高く、加工
割れを発生し易いものである。 Sn及びFeSn2上においてはSnリツチな酸化
皮膜が生成し、この皮膜は密着性が劣る。 鉄上に薄いSnメツキをなし充分に加熱処理
することによつてFeSn2より更にFe比率の高い
合金層を得ることができ、このようにFe原子
比の高い合金表面では鉄錫混合の酸化皮膜が生
成し、該皮膜における密着性は良好である。 FeSnの組成まで合金化すると無定形の被覆
率の高い合金層となり、このFeSn層は加工割
れし難い。 Fe比率の高い合金層は溶接作業性に対し鉄
に近い挙動をなし、しかも溶接時の加熱酸化を
抑制し、又FeSn2より電位が鉄に近く陰分極し
易い。 本発明は、鋼板上を被覆したFe―Sn合金層中
の錫量が0.05〜0.7g/m2であり、しかも該錫量
の全体が前記Fe―Sn合金化され、該合金層の主
体がFeSnであつて原子比としてFeが40〜80%で
あり、この合金層上にCr量が0.5〜5mg/m2の化
成処理皮膜を有することを特徴とする溶接塗装缶
用鋼板に関するものである。 蓋しこれらの関係について更に説明すると、形
成された合金表層の組成とその表面に生成された
酸化膜中のFe原子比との関係は、合金表層のFe
原子比40〜80%、好ましくは45〜60%の範囲にお
いて酸化膜中Fe原子比が大きく変化し、しかも
この場合においてその酸化膜における密着性は合
金表層のFe原子比が40〜80%の範囲において酸
化膜の密着性を充分に高くし得るものであつて、
Fe原子比が33%程度である従来のFeSn2の場合に
比すれば著しい密着性向上結果を得しめることが
できる。 従つて本発明ではこのような関係を適切に活用
するものであつて、上記のようにFe比率の高い
合金層における従前未知の特質性を利用するなら
ば従来のこの種缶用素材における欠点を一掃し、
溶接性において前記TFSより優れ、塗料密着性
においてもそれと同等ないしそれ以上であつて塗
装加工後の耐食性はTFSブリキ以上に優れた新
しい表面処理鋼板を得ることができる。 上記のような合金化及び合金層の特質を的確に
発揮させるためには合金化に先立つ錫メツキ工程
において錫を均一に附着させることが必要条件で
あり、本発明では0.05〜0.7g/m2、好ましくは
0.1〜0.3g/m2の必要錫量を均一に付着させて均
一な合金化を行わしめる。即ち錫メツキ量が0.05
g/m2に達しないときには安定した被覆と合金層
を均一に形成することができず、従つて複合酸化
皮膜も適切に得られないことから後述する具体例
においても明かとされるように塗料密着性、溶接
作業性及び塗装後耐食性の何れにおいても好まし
い結果を得ることができないことになる。又この
錫メツキ量が0.7g/m2以上となると多量の錫を
必要とし経済的でないだけでなく、合金化に要す
る加熱温度、加熱時間などを夫々に高く又は長く
しなければならないので何れにしても不利であ
り、しかもこの錫メツキ量が0.7g/m2以上とな
るとそれに応じたSn―Fe合金層が厚くなり過ぎ
て加工割れを生じ易くなる。所望する錫メツキ量
を得るためには通常のメツキ方法における初期段
階を利用してよいことは勿論であるが、本発明に
おいては比較的薄いメツキ層を形成しそれを合金
化して得られる合金層の緻密性、均一性が重要で
あるので合金化に先立つプレメツキは従来法以上
に改善されたものが好ましく、例えばSnSO4
H2SO4および非イオン活性剤より成るメツキ浴
を用いた方法などを採用することが有利である。 然してこのような錫メツキ板を前記したように
Fe比40〜80%の合金層を得るための加熱方法と
しては連続式又はバツチ式の何れでもよいが、そ
のSn量と加熱温度を考慮してその加熱時間を適
当に決定する。1例としてSn量の比較的少い0.2
g/m2の場合においてはその加熱温度と加熱時間
により得られる合金表層Fe原子比の関係は第1
図の通りであり、又このSn量の比較的高い0.7
g/m2の場合は第3図の通りであつて、それらの
中間に該当する0.5g/m2の場合は第2図の通り
である。第1図の場合においては加熱温度250℃
では時間をかけてもFe原子比40%以上の合金化
をすることができないのでそれ以上の加熱温度に
する必要がある。加熱温度350℃ならば8秒以上、
400℃では3.5秒以上、450℃では1秒以上でFe原
子比40%以上の合金化を得ることができるが、
400℃では10秒以上、450℃では4秒以上になると
Fe原子比が80%以上となる。第2図の場合には
加熱温度350℃では時間をかけてもFe原子比40%
以上の合金化をすることができないのでそれ以上
の加熱温度にする必要がある。加熱温度400℃な
らば50秒以上、410℃で32秒以上、430℃では20秒
以上、450℃では8秒以上でFe原子比40%以上の
合金化を得ることができるが、480℃の場合に48
秒以上、450℃では26秒以上になるとFe原子比が
80%以上になる。第3図の場合においては加熱温
度400℃以下では時間をかけてもFe原子比40%以
上の合金化を得ることができないのでそれ以上の
加熱温度にする必要がある。加熱温度450℃では
38秒以上、500℃では22秒以上、600℃では11秒以
上でFe原子比40%以上の合金化を得ることがで
きるが、600℃では40秒以上となるとFe原子比が
80%以上となる。 更に上記のような合金化層上に化成処理皮膜を
形成するが、この化成皮膜中におけるCr量は0.5
mg/m2〜5mg/m2とする。即ち該化成皮膜におけ
るCr量が0.5mg/m2に達しないものではその処理
効果が認められず溶接性においては適切であると
しても耐食性や塗料密着性が必ずしも充分でな
い。又このCr量が5mg/m2以上となると耐食性
においては充分であるとしても加工後の塗装性や
溶接性において好ましい結果が得られないことと
なる。 本発明によるものの具体的な製造例及びその比
較例について説明すると以下の如くである。 即ち本発明者等が実地的に製造した若干例につ
いて、そのメツキ処理条件を示すと、次の第1表
の通りである。
The present invention relates to the invention of a steel plate for welded and painted cans, and an object thereof is to provide a new steel plate for welded and painted cans that is excellent in both weldability and paint adhesion and has excellent corrosion resistance after painting. Soldered cans have traditionally been commonly used as can bodies for canned goods, but in recent years there has been a rapid shift from soldered cans to welded and adhesive cans, and thick tin cans with unpainted inner surfaces are also being used. Substitution of cans (white cans) to tinplate with a thinner inner coating and cans made of stain-free steel (TFS) has become almost commonplace.
Under these circumstances, the required performance for can materials has changed substantially, and when the above-mentioned inner surface coating is assumed, the greatest required performance is paint adhesion and post-processing corrosion resistance. However, as mentioned above
TFS is a surface-treated steel sheet with very good paint adhesion and is widely used in adhesive cans, but it has poor corrosion resistance after processing and is extremely poor in welding workability, so strong joint strength is required. This TFS is suitable for welded can types such as spray cans.
The current situation is that it cannot be used. Therefore such TFS
There is a need for a material for cans that maintains average paintability, has excellent corrosion resistance after processing, and has excellent welding workability. In view of the above-mentioned circumstances, the inventors have conducted extensive studies and succeeded in obtaining a steel plate for cans that does not have the disadvantages mentioned above, and have already filed an application (Patent Application No. 1973-
150577). In other words, since the above steel plate is for cans, the metals are limited to Fe and Sn, and the entire surface layer is completely alloyed to create an oxide film with excellent paintability (adhesion). In order to improve the surface composition and workability, the alloy layer has a finer or amorphous crystal structure, and in order to suppress the occurrence of cracks and improve corrosion resistance, it acts cathodically on the steel base and A surface layer with a highly polarized composition is formed. As a result of repeated detailed studies on the Sn--Fe system as described above, the present inventors have clarified the following. FeSn 2 is a columnar crystal with high porosity and is prone to processing cracks. A Sn-rich oxide film is formed on Sn and FeSn 2 , and this film has poor adhesion. By forming a thin Sn plating on iron and heat-treating it sufficiently, it is possible to obtain an alloy layer with an even higher Fe ratio than FeSn 2 , and on the surface of this alloy with a high Fe atomic ratio, an oxide film containing iron and tin is formed. is formed, and the adhesion of the film is good. When alloyed to the composition of FeSn, it becomes an amorphous alloy layer with a high coverage, and this FeSn layer is difficult to crack during processing. An alloy layer with a high Fe ratio behaves similar to iron in terms of welding workability, suppresses heating oxidation during welding, and has a potential closer to that of iron than FeSn 2 , making it easier to cathode polarize. In the present invention, the amount of tin in the Fe--Sn alloy layer coated on the steel plate is 0.05 to 0.7 g/ m2 , and furthermore, the entire amount of tin is formed into the Fe--Sn alloy, and the main body of the alloy layer is This invention relates to a steel plate for welded cans, which is made of FeSn and has an atomic ratio of 40 to 80% Fe, and has a chemical conversion coating on the alloy layer with a Cr content of 0.5 to 5 mg/ m2 . . To further explain these relationships, the relationship between the composition of the formed alloy surface layer and the Fe atomic ratio in the oxide film formed on that surface is based on the Fe atomic ratio of the alloy surface layer.
The Fe atomic ratio in the oxide film changes greatly in the range of 40 to 80% atomic ratio, preferably 45 to 60%, and in this case, the adhesion of the oxide film is determined when the Fe atomic ratio in the alloy surface layer is 40 to 80%. The adhesion of the oxide film can be made sufficiently high within the range,
Compared to the conventional FeSn 2 with an Fe atomic ratio of about 33%, a remarkable improvement in adhesion can be achieved. Therefore, the present invention appropriately utilizes this relationship, and if the previously unknown characteristics of the alloy layer with a high Fe ratio are utilized as described above, the drawbacks of conventional can materials of this type can be overcome. Wipe out,
It is possible to obtain a new surface-treated steel sheet that is superior in weldability to TFS, has the same or better paint adhesion, and has better corrosion resistance after painting than TFS tinplate. In order to accurately exhibit the characteristics of alloying and alloy layers as described above, it is necessary to uniformly deposit tin in the tin plating process prior to alloying, and in the present invention, tin is deposited uniformly at 0.05 to 0.7 g/m 2 ,Preferably
The required tin amount of 0.1 to 0.3 g/m 2 is uniformly deposited to achieve uniform alloying. In other words, the amount of tin plating is 0.05
g/m 2 , it is not possible to form a stable coating and a uniform alloy layer, and therefore an appropriate composite oxide film cannot be obtained. This means that favorable results cannot be obtained in terms of adhesion, welding workability, and post-painting corrosion resistance. Moreover, if the amount of tin plating exceeds 0.7 g/m 2 , a large amount of tin is required, which is not only uneconomical, but also requires a higher or longer heating temperature and heating time for alloying. Moreover, if the amount of tin plating exceeds 0.7 g/m 2 , the corresponding Sn--Fe alloy layer becomes too thick and tends to cause processing cracks. Of course, in order to obtain the desired amount of tin plating, the initial stage of a normal plating method may be used, but in the present invention, an alloy layer obtained by forming a relatively thin plating layer and alloying it. Since the density and uniformity of the metal are important, it is preferable that the pre-plating prior to alloying be improved over the conventional method. For example, SnSO 4 ,
It is advantageous to employ methods such as those using a plating bath consisting of H 2 SO 4 and a nonionic activator. However, as mentioned above, such a tin-plated plate
The heating method for obtaining an alloy layer with an Fe ratio of 40 to 80% may be either a continuous method or a batch method, but the heating time is appropriately determined in consideration of the Sn amount and heating temperature. One example is 0.2, which has a relatively small amount of Sn.
g/ m2 , the relationship between the Fe atomic ratio in the alloy surface layer obtained by the heating temperature and heating time is as follows:
As shown in the figure, the Sn content is relatively high at 0.7
The case of g/m 2 is as shown in Fig. 3, and the case of 0.5 g/m 2 , which falls between them, is as shown in Fig. 2. In the case of Figure 1, the heating temperature is 250℃
However, even if it takes a long time, alloying with an Fe atomic ratio of 40% or more cannot be achieved, so the heating temperature must be higher than that. If the heating temperature is 350℃, it will take more than 8 seconds.
Alloying with an Fe atomic ratio of 40% or more can be obtained in 3.5 seconds or more at 400℃ and 1 second or more at 450℃, but
10 seconds or more at 400℃, 4 seconds or more at 450℃
Fe atomic ratio becomes 80% or more. In the case of Figure 2, even if it takes a long time at the heating temperature of 350℃, the Fe atomic ratio is still 40%.
Since alloying cannot be achieved at a higher temperature, it is necessary to heat the alloy at a higher temperature. An alloy with an Fe atomic ratio of 40% or more can be obtained at a heating temperature of 400°C for 50 seconds or more, at 410°C for 32 seconds or more, at 430°C for 20 seconds or more, and at 450°C for 8 seconds or more, but at 480°C case 48
If the time is longer than 26 seconds at 450°C, the Fe atomic ratio will increase.
It will be more than 80%. In the case of FIG. 3, if the heating temperature is below 400°C, it is not possible to obtain an alloy with an Fe atomic ratio of 40% or more even if it takes a long time, so it is necessary to set the heating temperature to a higher temperature. At heating temperature 450℃
Alloying with an Fe atomic ratio of 40% or more can be obtained in 38 seconds or more, 22 seconds or more at 500°C, and 11 seconds or more at 600°C, but if it takes more than 40 seconds at 600°C, the Fe atomic ratio will decrease.
80% or more. Furthermore, a chemical conversion film is formed on the alloyed layer as described above, and the amount of Cr in this chemical conversion film is 0.5.
mg/ m2 to 5mg/ m2 . That is, if the amount of Cr in the chemical conversion coating does not reach 0.5 mg/m 2 , the treatment effect will not be recognized, and even if the weldability is appropriate, the corrosion resistance and paint adhesion will not necessarily be sufficient. Furthermore, if the Cr content is 5 mg/m 2 or more, even if corrosion resistance is sufficient, favorable results will not be obtained in terms of paintability and weldability after processing. Specific manufacturing examples according to the present invention and comparative examples thereof are described below. That is, the plating conditions for some examples actually produced by the present inventors are shown in Table 1 below.

【表】 又これらのものについての合金化のための加熱
処理条件は次の第2表の通りである。
[Table] The heat treatment conditions for alloying these materials are shown in Table 2 below.

【表】 更に上記のものに対する化成処理をなすに当
り、製造例〜のものは予めNaHCO3が20
g/で浴温が50℃の液中において陰極電流密度
8A/dm2の条件で前処理し、その他のものにつ
いてはそのままで化成処理した。この化成処理条
件は次の第3表に示す通りである。
[Table] Furthermore, when performing chemical conversion treatment on the above products, NaHCO 3 was added in advance to 20% of the production example ~.
Cathode current density in a solution with a bath temperature of 50℃ at g/
Pretreatment was carried out under the conditions of 8 A/dm 2 , and the other components were subjected to chemical conversion treatment as they were. The conditions for this chemical conversion treatment are as shown in Table 3 below.

【表】 上記したような各製造例によつて得られた鋼板
における合金層中の錫量、その原子比、化成処理
皮膜中Cr量と共にその溶接性、塗料密着性およ
び耐食性についての試験結果を従来のTFSの場
合(製造例)と併せて示すと次の第4表の通り
である。
[Table] Test results on the amount of tin in the alloy layer, its atomic ratio, the amount of Cr in the chemical conversion coating, as well as the weldability, paint adhesion and corrosion resistance of the steel sheets obtained in each of the above manufacturing examples. Table 4 below shows the case of conventional TFS (manufacturing example).

【表】 註:*は表層に純錫残留
なお上記第4表における試験方法及び判定基準
は以下の通りである。 (1) 溶接作業性 溶接部断面顕微鏡観察によるナゲツト形成状
況、Weld―Lob法による気密性保持に必要な
溶接電流範囲、チリ発生傾向および溶接部の酸
化性により判定し、〇は溶接性に優れている、
×は溶接性に劣ることを示す。 (2) 塗料密着性 レトルト後は、エポキシフエノール系塗料50
mg/dm2を塗布後210℃で10分間ベーキングし、
2t曲げ部の塗膜亀裂面積又は円形プレス成形後
加工部のセロテープ剥離状況を測定した。 0t曲げの測定値は鉄露出面積比(%)であ
り、円形プレスは◎が剥離なし、〇は剥離僅
少、×は剥離大である。 (3) 一次耐食性 裸湿潤テストはR・Hが95%以上、50℃の24
時間にわたる湿潤テストによる赤錆発生状況で
あり、室内曝露は、室温で3カ月間放置後であ
つて、各判定は◎が肉眼で判定できず、〇は肉
眼で僅かに確認、×は赤錆発生大である。 (4) 二次耐食性 上記(1)による塗装後、クロスカツト部の
0.1Nクエン酸中で35℃、48時間の腐食状況及
びエリクセン5mm押出し後0.1Nクエン酸中で
50℃、75時間の浸漬をなしセロテープ剥離状況
を判定した。 判定結果については、◎が剥離なし、〇は剥
離僅少、×は剥離大である。 即ちこのような結果によれば本発明による製造
例およびのものはそれら試験結果が何れも
良好であり、これに対しその他の比較例のものは
溶接性、塗料密着性および耐食性の何れか1つ又
はそれ以上の結果において本発明のものよりは相
当に劣ることが明かである。 以上説明したような本発明によるときはこの種
缶材として溶接性、塗料密着性及び塗装後の耐食
性の何れに関しても良好な特性を有する鋼板を得
ることができるものであり、即ち錫量の実質的全
体が合金化されることによつて低融点の純錫層を
解消して高融点化するから溶接時における電極の
汚れを有効に防止し、又その均一且つ不活性な合
金層によつて耐食性を向上し、しかもその化成処
理により塗料密着性を充分に高めて何れのテスト
においても好ましい製品を得ることができるもの
であつて、工業的にその効果の大きい発明であ
る。
[Table] Note: * indicates pure tin remains on the surface layer. The test method and judgment criteria in Table 4 above are as follows. (1) Welding workability Judged by the nugget formation status observed by cross-sectional microscopic observation of the weld, the welding current range necessary to maintain airtightness by the Weld-Lob method, the tendency to generate dust, and the oxidation property of the weld. 〇 indicates excellent weldability. ing,
× indicates poor weldability. (2) Paint adhesion After retorting, epoxyphenol paint 50
After applying mg/dm 2 , bake at 210℃ for 10 minutes,
The coating film crack area at the 2t bent section or the peeling status of cellophane tape at the processed section after circular press molding was measured. The measured value for 0t bending is the iron exposed area ratio (%), and for circular presses, ◎ means no peeling, 〇 means little peeling, and × means severe peeling. (3) Primary corrosion resistance Bare wet test was conducted at 24°C with R/H of 95% or more at 50°C.
This is the occurrence of red rust due to a wet test over a long period of time, and the indoor exposure was after being left at room temperature for 3 months. Each judgment is ◎ cannot be determined with the naked eye, ○ is slightly visible with the naked eye, and × is severe red rust. It is. (4) Secondary corrosion resistance After painting according to (1) above, the cross-cut area
Corrosion status in 0.1N citric acid at 35℃ for 48 hours and in 0.1N citric acid after extruding Erichsen 5 mm
The adhesive was immersed at 50°C for 75 hours, and the peeling status of the cellophane tape was determined. Regarding the judgment results, ◎ means no peeling, ○ means little peeling, and × means severe peeling. In other words, according to these results, the test results of the production examples and the products according to the present invention are all good, whereas the other comparative examples have poor weldability, paint adhesion, and corrosion resistance. It is clear that the results are considerably inferior to those of the present invention. According to the present invention as explained above, it is possible to obtain a steel sheet having good properties in terms of weldability, paint adhesion, and corrosion resistance after painting as this type of can material. By alloying the entire target, the pure tin layer with a low melting point is dissolved and the melting point becomes high, which effectively prevents electrode contamination during welding. It is an invention that has great industrial effects, as it improves corrosion resistance and can sufficiently increase paint adhesion through chemical conversion treatment to obtain a product that is favorable in all tests.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の技術的内容を示すものであつ
て、第1図乃至第3図は夫々Sn量0.2g/m2、0.5
g/m2及び0.7g/m2の場合について加熱時間に
よる合金表層におけるFe原子比の関係を示した
各図表である。
The drawings show the technical contents of the present invention, and FIGS. 1 to 3 show Sn amounts of 0.2 g/m 2 and 0.5, respectively.
Fig. 3 is a chart showing the relationship between the Fe atomic ratio in the alloy surface layer and the heating time in the case of g/m 2 and 0.7 g/m 2 .

Claims (1)

【特許請求の範囲】[Claims] 1 鋼板上を被覆したFe―Sn合金層中の錫量が
0.05〜0.7g/m2であり、しかも該錫量の全体が
前記Fe―Sn合金化され、該合金層の主体がFeSn
であつて原子比としてFeが40〜80%であり、こ
の合金層上にCr量が0.5〜5mg/m2の化成処理皮
膜を有することを特徴とする溶接塗装缶用鋼板。
1 The amount of tin in the Fe-Sn alloy layer coated on the steel plate is
0.05 to 0.7 g/m 2 , and the entire amount of tin is formed into the Fe-Sn alloy, and the alloy layer is mainly FeSn.
A steel sheet for welded coated cans, characterized in that the Fe content is 40 to 80% in terms of atomic ratio, and a chemical conversion coating having a Cr content of 0.5 to 5 mg/m 2 is provided on the alloy layer.
JP5778980A 1980-05-02 1980-05-02 Steel sheet for welded coating steel can Granted JPS56156788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5778980A JPS56156788A (en) 1980-05-02 1980-05-02 Steel sheet for welded coating steel can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5778980A JPS56156788A (en) 1980-05-02 1980-05-02 Steel sheet for welded coating steel can

Publications (2)

Publication Number Publication Date
JPS56156788A JPS56156788A (en) 1981-12-03
JPS6350431B2 true JPS6350431B2 (en) 1988-10-07

Family

ID=13065644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5778980A Granted JPS56156788A (en) 1980-05-02 1980-05-02 Steel sheet for welded coating steel can

Country Status (1)

Country Link
JP (1) JPS56156788A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151488A (en) * 1982-03-03 1983-09-08 Kawasaki Steel Corp Production of tin coated steel plate having excellent eye hole resistance
GB2157319A (en) * 1984-04-13 1985-10-23 Toyo Kohan Co Ltd Tin free steel and its production
NL189310C (en) * 1984-05-18 1993-03-01 Toyo Kohan Co Ltd COATED STEEL SHEET WITH IMPROVED WELDABILITY AND METHOD FOR MANUFACTURING.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516140A (en) * 1974-07-05 1976-01-19 Nippon Steel Corp

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516140A (en) * 1974-07-05 1976-01-19 Nippon Steel Corp

Also Published As

Publication number Publication date
JPS56156788A (en) 1981-12-03

Similar Documents

Publication Publication Date Title
US4608320A (en) Surface-treated steel strips adapted for electric resistance welding
JPS6358228B2 (en)
US4487663A (en) Steel sheets for preparing welded and coated cans and method for manufacturing the same
US4832800A (en) Process for preparing surface-treated steel strips adapted for electric resistance welding
JPH0649933B2 (en) Plated steel plate for cans
JPS6350431B2 (en)
JPS6017099A (en) Production of surface treated steel sheet for electric resistance welding
JPS6144158B2 (en)
JPS6086257A (en) Galvannealed steel plate excellent in painting property
JPS5817252B2 (en) High corrosion resistance alloy plated steel products
JPS63277794A (en) Production of steel sheet coated with sn-based multilayered plating and having superior adhesion to paint
JPH04371586A (en) Phosphated sn-plated steel sheet
JPS5941495A (en) Surface treated steel plate for welded can
JPH01116062A (en) Zn-based multilayered vapor-deposited plating material excellent in corrosion resistance on uncoated or coated metallic base material
JP2827709B2 (en) Surface treated steel sheet with multiple plating layers, excellent in filiform rust resistance, corrosion resistance and weldability
JPS6240396A (en) Surface treated steel sheet for can having superior weldability and corrosion resistance
JPS6379994A (en) Production of steel sheet for welded can
JP3111888B2 (en) Manufacturing method of galvanized steel sheet
JPH0536516B2 (en)
JP3224457B2 (en) Material for welding cans with excellent high-speed seam weldability, corrosion resistance, heat resistance and paint adhesion
JPS60262975A (en) Surface treated steel sheet having superior weldability and its manufacture
JPH11106953A (en) Steel sheet for welded can excellent in weldability, corrosion resistance and film adhesion
JPS6396294A (en) Production of steel sheet having excellent weldability and corrosion resistance
JPH04218660A (en) High corrosion resistant zn-si vapor deposition plated metallic material
JPS6067677A (en) Steel plate for welded can