JPS6161745A - Work-uncentering compensator - Google Patents

Work-uncentering compensator

Info

Publication number
JPS6161745A
JPS6161745A JP18001584A JP18001584A JPS6161745A JP S6161745 A JPS6161745 A JP S6161745A JP 18001584 A JP18001584 A JP 18001584A JP 18001584 A JP18001584 A JP 18001584A JP S6161745 A JPS6161745 A JP S6161745A
Authority
JP
Japan
Prior art keywords
workpiece
axis
probe
center
spindle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18001584A
Other languages
Japanese (ja)
Other versions
JPH0641088B2 (en
Inventor
Takeyoshi Ueno
上野 剛義
Masahito Okuyama
奥山 昌仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Seiki Co Ltd
Original Assignee
Hitachi Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiki Co Ltd filed Critical Hitachi Seiki Co Ltd
Priority to JP59180015A priority Critical patent/JPH0641088B2/en
Publication of JPS6161745A publication Critical patent/JPS6161745A/en
Publication of JPH0641088B2 publication Critical patent/JPH0641088B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To compensate a form error in a probe as well as to calculate the centering of a work, by making the prove of a touch sensor come into contact with a four-point work per one-axis direction. CONSTITUTION:A touch sensor probe is moved on an X-axis, turning the probe itself at one side of a work W, and a mean value X1 of two-point contact at 0 deg. and 180 deg. is secured and likewise a mean value X2 at the opposite side is secured. That is, X1=(B1+B2).1/2...(1) X2+(A1+A2).1/2-...(2), and next, in order to measure a direction (a Y direction) orthogonal with a moving direction of the probe P measured in an X direction, the probe P is situated on the Y- axis, and with movement in the Y-axis direction, it is secured likewise Y1=(D1+D2).1/2...(3) Y2=(C1+C2).1/2...(4), therefore a distance from a reference position in the Y-axis direction to the work center is Lx=(X1+X2).1/2...(5), and likewise it comes Ly=(Y1+Y2).1/2, thus the work center positions Lx and Ly are found out of a machine zero position.

Description

【発明の詳細な説明】 本発明は、NC旋盤や立形マシニングセンタなどの工作
機械における接触現計?jtl+装置に関し、特にX軸
、Y軸およびZ軸制御の立形マシニングセンタ等で使用
されるタッチセンサのプローブ中心とワークの中心とを
近似させて高精度の測定値を得るワーク芯ズレ補正装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides contact calculation methods for machine tools such as NC lathes and vertical machining centers. jtl+ device, particularly a workpiece misalignment correction device that approximates the center of a touch sensor probe and the center of a workpiece used in vertical machining centers that control the X, Y, and Z axes to obtain highly accurate measured values. .

従来より、NC旋盤やマシニングセンタなどの工作機械
において、タッチセンサを利用した計測装置は、被測定
ワークとプローブとの接触により、電気的に閉回路を形
成して信号を得るように構成されるのが通常である。即
ち第1図に示すような立形マシニングセンタにおいて、
加工作業はワークWを載置した水平面上移動可能なテー
ブルTと、スピンドルH端に工具を挿着し、コラムLに
上下動可能に取付けられた加工ヘッドZとワークWの水
平平面内での2方向の相対的な動きで実施される。
Conventionally, measurement devices using touch sensors in machine tools such as NC lathes and machining centers have been configured to form electrically closed circuits and obtain signals through contact between the workpiece and the probe. is normal. That is, in a vertical machining center as shown in Fig. 1,
The machining work is carried out using a table T on which the workpiece W is placed and movable on a horizontal plane, a tool inserted into the end of the spindle H, a machining head Z attached to a column L so as to be movable up and down, and the workpiece W within the horizontal plane. It is performed with relative movements in two directions.

スピンドルHに取付けられるツールはマガジンMからA
TC(図示せず)を介し自動的に交換可能であり、ワー
クなどの計測に際しては、タッチセンサTSをマガジン
Mから呼び出して取付けることもできる。
Tools attached to spindle H are magazines M to A.
It can be automatically replaced via a TC (not shown), and when measuring a workpiece, etc., the touch sensor TS can be called out from the magazine M and attached.

第2図(イ)は、従来の装置を用いた計測法の−例を示
す平面図である。同図において、スピンドル中心軸11
を通過するX、Y方向の動作によってワークWの外周面
をタッチセンサTSのプローブPに接触し、計測される
。この時スピンドル中心軸線11とプローブP中心とは
限ずしも一敗してない。またスピンドル中心軸線11は
必ずしもワークの中心12と一致するとは限らない。ワ
ークの外周面と紙面に垂直に主軸端に取付けられたプロ
ーブPとの接面S−8が常にタッチセンサTSの計測動
作の軸線22と直交する配置であれば、ワークWに対し
て、直交する2軸の双方向すなわち4方向から、プロー
ブを接触させて、それぞれの座標値を計測し、平均値を
算出することにより芯出しできる。しかし、第2図(ロ
)に示されるように、接面s−s’が前記計測動作の軸
線22と必ずしも直交しない場合が含まれると、平均値
の算出は芯出しにならなくなる。すなわち、タッチセン
サのプローブの移動軸線22は必ずしもワークの中心を
通過しないしプローブの形状も必ずしも完全同心球型で
ないので、また、主軸中心軸線上にプローブ中心が一致
せず従来の装置による計測法では、ワークの穴またはボ
スの芯出しに際して、測定誤差が生じ、高精度の測定値
が得られない欠点があった。
FIG. 2(A) is a plan view showing an example of a measurement method using a conventional device. In the same figure, the spindle center axis 11
The outer circumferential surface of the workpiece W is brought into contact with the probe P of the touch sensor TS and measured by the movement in the X and Y directions passing through the workpiece W. At this time, the spindle center axis 11 and the center of the probe P are not necessarily aligned. Further, the spindle center axis 11 does not necessarily coincide with the center 12 of the workpiece. If the contact surface S-8 between the outer circumferential surface of the workpiece and the probe P attached to the spindle end perpendicular to the plane of the paper is always orthogonal to the axis 22 of the measurement operation of the touch sensor TS, then the contact surface S-8 is perpendicular to the workpiece W. Centering can be performed by bringing the probe into contact with the probe from both directions of the two axes, that is, from four directions, measuring each coordinate value, and calculating the average value. However, as shown in FIG. 2(b), if there is a case where the tangent surface s-s' is not necessarily perpendicular to the axis 22 of the measurement operation, the calculation of the average value will not be centered. In other words, the moving axis 22 of the probe of the touch sensor does not necessarily pass through the center of the workpiece, and the shape of the probe is not necessarily completely concentric spherical. Also, the center of the probe does not coincide with the central axis of the main spindle, making measurement using conventional equipment difficult. However, when centering the hole or boss of the workpiece, a measurement error occurs and a highly accurate measurement value cannot be obtained.

本発明は、上記の問題点に鑑みてなされたもので、その
目的は、ワークの穴もしくはボスの芯出しに際して、プ
ローブの軸線力9亥穴もしくはボスの中心に一致しなく
ても、更に、それらのいずれかとが一致しなくても、測
定誤差の少ない高ヰN度の測定値を得ることのできるワ
ーク芯ズレ補正装置を提供することにある。
The present invention has been made in view of the above-mentioned problems, and its purpose is to reduce the axial force of the probe when centering a hole or boss of a workpiece, even if the axial force of the probe does not coincide with the center of the hole or boss. It is an object of the present invention to provide a workpiece misalignment correction device that can obtain a high-N degree measurement value with little measurement error even if any of them do not match.

本発明は、この目的を達成するために、中央制御手段1
と、ワーク芯出し計測手段2と、該計測手段2による計
測値の平均値を算出する演算手段3と、主軸を0°、1
80°の位置決めを行う反転位置決め装置4と、加工位
置などのデータを入力する情幸艮入力手段5と、ワーク
に対する加工ヘッドの位置決めをするモータ制御手段6
を設けた補正装置を用いてスピンドル中心軸線を通過す
るX、Y方向の交点の近傍で直交する2軸を設定し、タ
ッチセンサの計測動作を前記2軸に平行かつ双方向に実
施し、しかも前記計測動作の各方向につきプローブを1
80度回転させてそれぞれ測定を行いプローブを反対方
向に移動させ、同様の動作を繰返し、1軸につき合計4
回の計測結果より平均値を算出することを特徴とする。
To achieve this objective, the present invention provides a central control means 1
, a workpiece centering measuring means 2, a calculating means 3 for calculating the average value of the measured values by the measuring means 2,
A reversing positioning device 4 that performs 80° positioning, an input device 5 that inputs data such as machining position, and a motor control device 6 that positions the machining head relative to the workpiece.
Two orthogonal axes are set near the intersection of the X and Y directions that pass through the spindle center axis using a correction device equipped with a One probe for each direction of the measurement operation.
Rotate 80 degrees, take each measurement, move the probe in the opposite direction, and repeat the same operation, making a total of 4 measurements per axis.
The feature is that the average value is calculated from the measurement results.

以下、本発明を図面により詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

第3図は、本発明の装置を用いたワーク芯ズレ計測法の
一例におけるタッチセンサの計測動作を示す平面図であ
る。同図(イ)において、スピンドル中心軸線22Xは
必ずしもワークW自体の中心12と一敗していないので
、工作データの適用のために、まず芯出し計測を実施す
るわけである。
FIG. 3 is a plan view showing a measuring operation of a touch sensor in an example of a workpiece misalignment measuring method using the apparatus of the present invention. In the same figure (a), since the spindle center axis 22X is not necessarily aligned with the center 12 of the workpiece W itself, centering measurement is first performed in order to apply the machining data.

しかし、計測するタッチセンサ2の計測動作の軸線即ち
スピンドルの中心軸線22Xおよび22yもワーク中心
12からズしているものとして、計測の高精度を期そう
とするものである。本発明の原理としては、ワーク中心
の近傍で直交する2軸x−x ’およびY−Y ’を設
定し、この2軸に沿って、平行かつ双方向にタッチセン
ナ2の計測移動をさせればよい。
However, it is assumed that the axes of the measuring operation of the touch sensor 2 to be measured, that is, the central axes 22X and 22y of the spindle, are also offset from the workpiece center 12, and high accuracy of measurement is intended. The principle of the present invention is to set two orthogonal axes x-x' and Y-Y' near the center of the workpiece, and to move the touch sensor 2 for measurement in parallel and bidirectionally along these two axes. Bye.

さて、本発明の実施例に示す通り、プローブPを挿着し
た主軸がX、Y、Z軸制御で、立形マシニングセンタで
ワークの芯ズレ計測を行う場合における計測手順を説明
する。まず、第3図(イ)に示されるように、ワークの
直径を計測すべくプローブをX軸上で移動し、ワークの
片側でプローブ自身を旋回し、0°、180°の2点接
触の平均値×1を得、同様にワークの反対側の平均値X
2を得る。
Now, as shown in the embodiment of the present invention, a measurement procedure will be described when measuring the misalignment of a workpiece in a vertical machining center by controlling the X, Y, and Z axes of the main axis into which the probe P is inserted. First, as shown in Figure 3 (a), move the probe on the X-axis to measure the diameter of the workpiece, rotate the probe itself on one side of the workpiece, and make two-point contact at 0° and 180°. Obtain the average value x 1, and similarly calculate the average value x on the opposite side of the workpiece.
Get 2.

即ち、ワーク中心12が、スピンドルの中心軸線に対し
てXマイナス側に位置する場合の計測は、プローブをマ
イナス側から当接させ、続いて、プローブ自体を180
6回転させて2回の計測を行い、計測値B1およびB2
を得る。次にプローブを対面のXプラス側に移動し、前
記計測を繰返し、計測値A1およびA2を得る。
That is, for measurement when the workpiece center 12 is located on the X-minus side with respect to the central axis of the spindle, the probe is brought into contact with it from the minus side, and then the probe itself is
Rotate 6 times and measure twice, measured values B1 and B2
get. Next, the probe is moved to the opposite X-plus side, and the measurement is repeated to obtain measured values A1 and A2.

即ち、夫々の平均値は、 X+ = (B+  ”Bz )  ・1/2・・・・
・・・・・(1)X2 = <A、  ÷A2)・1/
2・・・・・・・・・(2)となる。
That is, the average value of each is: X+ = (B+ "Bz) ・1/2...
...(1)X2 = <A, ÷A2)・1/
2......(2).

つぎに、今X方向に計測したプローブPの移動方向に対
し直交する方向(Y方向)の計測をするため、プローブ
PをY軸上に位置させ、Y軸方向の移動で前記同様にワ
ーク径の計測を行う。即ち、第3図(0)に示されるよ
うに、ワークWに対し、プローブP;f:Yプラス側か
ら当接させて2回計測を行い、次にYプラス側よりYマ
イナス方向へ移動することにより計測値C3およびC2
と、逆方向の移動により計測値り、およびB2とを得る
Next, in order to measure in the direction (Y direction) perpendicular to the moving direction of the probe P that has been measured in the X direction, the probe P is positioned on the Y axis, and the workpiece diameter is Measurements will be made. That is, as shown in FIG. 3 (0), the probe P;f: is brought into contact with the workpiece W from the Y plus side and measured twice, and then moved from the Y plus side to the Y minus direction. Therefore, the measured values C3 and C2
, and by moving in the opposite direction, the measured values 1 and 2 are obtained.

即ち、夫々の平均値は、 Yl =(Dl +D2)・1/2・・・・・・・・・
(3)y2= (c、+C2)  ・1/2・・・・・
・・・・(4)となる。
That is, each average value is Yl = (Dl + D2)・1/2...
(3) y2= (c, +C2) ・1/2...
...(4).

つぎに、第4図に従ってワーク芯出し演算を説明する。Next, the workpiece centering calculation will be explained according to FIG.

第4図(イ)に示すようにX軸方向の原点である基準位
置GXからワークの各接触点X、、X2が得られ、ワー
ク中心までの距離LXは弐(1)、 (2+より   
     LX  =   (XI   +Xz  )
   ・ 1/2 ・・・・・・・・・(5)即′ら、
Lx  =  (+t1+3. +Az+Bz)  ・
1/4  ・・・(6)を得る。
As shown in Fig. 4 (A), each contact point X, , X2 of the workpiece is obtained from the reference position GX, which is the origin in the X-axis direction, and the distance LX to the center of the workpiece is 2 (1), (2+).
LX = (XI +Xz)
・ 1/2 ・・・・・・・・・(5) Immediately,
Lx = (+t1+3. +Az+Bz) ・
1/4 ...(6) is obtained.

また、同様◇こして第4図(+1)に示すようにYll
軸方向原点基準位置GYからワークの各接触点Y13Y
2が得られワーク中心までの距離L7は式(3)。
Similarly, as shown in Figure 4 (+1),
From the axial origin reference position GY to each contact point of the workpiece Y13Y
2 is obtained, and the distance L7 to the center of the workpiece is expressed by equation (3).

(4)より Lv = (Yl +Yz )  ・1/2・・・・・
・・・・(7)Ly =(CI+D+ +にz+Dz)
  ・1/4・・・・・・・・・(8)となる。
From (4), Lv = (Yl + Yz) ・1/2...
...(7) Ly = (CI+D+ +z+Dz)
・1/4・・・・・・(8)

式(6)、 +8)よりワーク中心位置が得られ、LX
The workpiece center position can be obtained from equations (6) and +8), and LX
.

Lvは機械原点からの距離を絶対値(アブソリュート)
として表わす。
Lv is the absolute value of the distance from the machine origin (absolute)
Expressed as

上記のとおり、本発明の装置による芯出ズレ計測はl軸
方向につき4点当接て求められることになる。即ち、プ
ローブP自体を回転させて180度間陥でA+ 、Az
 、B+およびB2の複数の計測値を得るのは、プロー
ブの形状誤差を補正するためである。そして、プローブ
を対面側に移動させて、双方向から計測をすることが芯
出しになる。
As described above, the centering deviation measurement using the device of the present invention is performed by contacting four points in the l-axis direction. That is, by rotating the probe P itself and turning it 180 degrees, A+, Az
, B+, and B2 are obtained in order to correct the shape error of the probe. Then, centering involves moving the probe to the facing side and measuring from both directions.

ここで第5図により、本発明の座標系補正(ワ−り芯ズ
レ計測)装置の一例を示す概略構成図を説明する。同図
において、加工位置の座標系補正装置は中央制御手順(
以下cpuと云う)lとワーク芯出し計測手段2と演算
手段3と主軸の計測プローブPを0度と180度に制?
111する主軸MSの位置決め手段4を備え、更にcp
ulからのメインハス41には、加工位置などのデータ
を入力する情報人力手段5とワークWに対する計測補正
や加工位置決めをするモーフ制御I手段6とが接続され
ている。
Here, a schematic configuration diagram showing an example of the coordinate system correction (work center deviation measurement) device of the present invention will be explained with reference to FIG. In the same figure, the coordinate system correction device for the machining position is the central control procedure (
(hereinafter referred to as CPU) L, workpiece centering measurement means 2, calculation means 3, and main axis measurement probe P are controlled at 0 degrees and 180 degrees.
111, and further includes a positioning means 4 for the main shaft MS, and a cp
Connected to the main lot 41 from the UL are an information manual means 5 for inputting data such as machining positions, and a morph control I means 6 for performing measurement correction and machining positioning for the workpiece W.

まず、X軸側のワーク中心を求める場合はcpuからの
指令でタッチセンサT5を、その主軸が0度の位置でX
軸のテーブルTとの相対移動によりワークWのB側外周
に当てる。この時、基準位置からタッチセンサT5の信
号が発生する位置までの距離を位置データα1として取
り込む。B1の位置データα、は1回目の測定信号とし
てA N Dゲートを介してF2AM31にB、の位置
データα1が入る。
First, to find the center of the workpiece on the X-axis side, use a command from the CPU to move the touch sensor T5 to the
By moving the axis relative to the table T, it hits the outer periphery of the workpiece W on the B side. At this time, the distance from the reference position to the position where the signal from the touch sensor T5 is generated is taken in as position data α1. The position data α1 of B1 is input to the F2AM31 via the A N D gate as a first measurement signal.

つついて、主軸モータM5により主軸を180度回軸回
転同様にワークWOB側の外周に当てる。
Then, the main shaft is rotated 180 degrees by the main shaft motor M5, and the main shaft is applied to the outer periphery of the workpiece WOB side.

この時の基準位置からのタッチセンサT、の信号が発生
する位置までの距離を位置データα2として取り込む、
B2の位置データα2は2回目の♂り定信号としてAN
Dゲートを介してRAM32にB2の位置データα2が
入る。
At this time, the distance from the reference position to the position where the signal of the touch sensor T is generated is taken in as position data α2,
The position data α2 of B2 is AN as the second constant signal.
The position data α2 of B2 is entered into the RAM 32 via the D gate.

つぎに、タッチセンサT5をワークWの対面A側に移動
し、A測外周に当て、同様にA1のデータα3をRAM
33に取り込む。
Next, move the touch sensor T5 to the facing A side of the workpiece W, apply it to the outer circumference of A, and similarly transfer the data α3 of A1 to the RAM.
33.

つぎに主軸を180度回軸回転同様にA2のデータα4
をRAM34に取込み、ラム31〜34のデータは演算
回路35で の計算を行い、X軸補正命令に従ってB8をcpul内
の補正メモリに記録する。
Next, rotate the main axis 180 degrees, and in the same way, data α4 of A2
is taken into the RAM 34, the data in the RAMs 31 to 34 are calculated in the arithmetic circuit 35, and B8 is recorded in the correction memory in the CPU according to the X-axis correction command.

つぎにRAM31.32.33.34の内容をクリアし
、上述したようにY軸方向のC,、C,。
Next, the contents of RAM 31.32.33.34 are cleared, and as described above, C,, C, in the Y-axis direction.

DIおよびり、のデータβ1.B2.B3およびB4を
RA M 4こ入力する。
Data β1 of DI and RI. B2. Input B3 and B4 in RAM 4.

Y軸側の中心を求めるため、cpuからの指令で演算回
路35で の計算を行い、Y軸補正命令Qこ従ってβ7をcpul
内の補正メモリに記録する。
In order to find the center on the Y-axis side, calculations are performed in the arithmetic circuit 35 according to instructions from the CPU, and according to the Y-axis correction command Q, β7 is sent to the CPU.
recorded in the internal correction memory.

前述した芯ズレ計測は主軸をZ方向にテーブルをx、X
方向に移動させるx、y、z軸制御の立形マンニングセ
ンタにおける機械構成について説明したが、主軸をX軸
にテーブルをY、Z方向に移動させるコラムトラベリン
グ型の機械構成にも利用でき、上記機械構成に限定され
るものではない。
The above-mentioned misalignment measurement is performed by moving the table along the main axis in the Z direction.
Although we have explained the mechanical configuration of a vertical manning center that uses x, y, and z-axis control to move the table in the It is not limited to mechanical configuration.

更に、この機械の構成がx、y、z、C軸制御による立
形マシニングセンタにおいて芯ズレを計測する場合は、
つぎのとおりである。
Furthermore, when measuring center misalignment in a vertical machining center whose configuration is x, y, z, and C-axis control,
It is as follows.

即ち、X軸上移動可能はC軸制御されるロータリーテー
ブルの略旋回中心軸上にワーク中心を合致させて載置し
、芯ズレ計測を行う。
That is, the center of the workpiece is placed on a rotary table that is movable on the X-axis and is controlled along the C-axis, with the center of the workpiece aligned approximately on the central axis of rotation, and the misalignment is measured.

この場合、前述したとおり、X軸上の平均値り。In this case, as mentioned above, the average value on the X axis.

×2を得、た後にテーブルを180°旋凹させた状態で
プローブを0度の位置及び180°回転させて計測し、
値Δ3.A4 、B:I’、B4を得る。
After obtaining ×2, the table was rotated 180 degrees and the probe was rotated 180 degrees to the 0 degree position and measured.
Value Δ3. A4, B:I', B4 are obtained.

夫々の平均値は X3− (AJ工As )/2・・・・・・・・・(9
)Xs = (B3”B4)/2・・・・・・・・・α
O)となり、このときのX軸方向の原点Gxからワーク
中心までの距離LX 18゜は L81uo−(XJ−I−X4)/2・・・・・・・・
・(11)を得る。
The average value of each is
)Xs = (B3"B4)/2......α
O), and the distance LX 18° from the origin Gx in the X-axis direction to the center of the workpiece at this time is L81uo-(XJ-I-X4)/2...
- Obtain (11).

つぎに、Y軸方向の計測値を求める場合、機械のデープ
ルの動きはY軸制御ができない構成であるため、X軸上
でC軸制御によりテーブルを90゜旋回し、プローブを
0度の位置及び180°回転させてワークの一方の面に
対してプローブを当接して計測し、つぎにX軸上移動さ
せワークの対面の計測を行う。
Next, when determining the measured value in the Y-axis direction, the table is rotated 90 degrees on the X-axis using C-axis control, and the probe is placed at the 0 degree position, since the machine's table movement cannot be controlled by the Y-axis. Then, the probe is rotated 180 degrees and measured by touching one side of the workpiece, and then moved on the X axis to measure the opposite side of the workpiece.

そのときの夫々の計測値C+ 、C2、Dl、Dzを得
それ等の平均値は前述の弐(31,(41よりYl。
At that time, the respective measured values C+, C2, Dl, and Dz were obtained and their average value was 2 (31, (from 41, Yl).

Y2が求められ、X軸方向の原点Oxからワーク中心ま
での距離LY9゜は LYQ。= (Y、+Y2)/2・・・・・・・・・・
・・(12)となる。
Y2 is calculated, and the distance LY9° from the origin Ox to the center of the workpiece in the X-axis direction is LYQ. = (Y, +Y2)/2・・・・・・・・・・
...(12).

つづいてテーブルをその位置から180°旋回した状態
で前記同様ワーク対面の計測を行い計測(直C3,C4
,D:l+  D、を得る。
Next, with the table turned 180 degrees from that position, measurements were taken on the opposite side of the workpiece (direct C3, C4).
,D:l+D, is obtained.

夫々の平均値は Y:l = ((,3+c< )/2・・・・・・・・
・(13)Y4 = (Dff +D4 )/2・・・
・・・・・・(14)となり、このときX軸方向の原点
Oxからワーク中心までの距離L7□7゜は り、27゜= (y3 +Y4 )/2・・・・・・・
・・(15)となる。
The average value of each is Y:l = ((,3+c< )/2...
・(13)Y4 = (Dff +D4)/2...
......(14), and at this time, the distance from the origin Ox to the center of the workpiece in the X-axis direction is L7□7°, 27° = (y3 + Y4)/2...
...(15).

ここで、最初の状態即ちテーブル旋回前の平均値しXと
1806旋回後の平均値LX 100 とから、原点G
XからX軸方向のデープル中心までの距離りが L = (LX + LX +110 ) / 2−−
−−−−=−<16)と算出される。Y軸方向のX軸上
に置き換えた、原点GXからX軸方向のテーブル中心ま
での距β111Mは同様にしてテーブル旋回前の平均値
LX’lGと180°旋回後の平均値LY□7oとから
M= (LY 9G+Ly zqo ) / 2−−・
・・(17)が得られる。
Here, from the initial state, that is, the average value X before table rotation and the average value LX 100 after 1806 rotations, the origin G
The distance from X to the center of the daple in the X-axis direction is L = (LX + LX +110) / 2--
-----=-<16) is calculated. The distance β111M from the origin GX to the table center in the X-axis direction, which is replaced on the X-axis in the Y-axis direction, is similarly calculated from the average value LX'lG before the table turns and the average value LY□7o after the table turns 180 degrees. M= (LY 9G+Ly zzo) / 2--・
...(17) is obtained.

つぎにワークの芯ズレ蚕を求める場合には、テーブルを
元の位置に戻したとき、テーブル中心とワーク中心のX
方向、およびY方向のズレ■a。
Next, when determining the center misalignment of the workpiece, when the table is returned to its original position,
direction, and deviation in the Y direction ■a.

bは a=L、I、X   ・・・・・・・・・・・・(18
)b =M−Lア、。・・・・・・・・・・・・(19
)を得る。即ち、本発明による芯出し計測は1軸方向に
つき8点当接で求められることになる。
b is a=L, I, X ・・・・・・・・・・・・(18
)b=M−La,.・・・・・・・・・・・・(19
). That is, centering measurement according to the present invention is determined by contacting eight points in one axis direction.

以上、説明したとおり、本発明によれば、ワークの穴も
しくはホスの芯出しに際して、タッチセンサの計測軸線
が液穴もしくはボスの中心に一敗していなくても、測定
誤差の小さい高精度の測定値を得るワーク芯ズレ補正装
置を提供することができ、NCj12 mやドリリング
マシンなどの工作機械の制御コ11に貴重な効果を発揮
するものである。
As explained above, according to the present invention, when centering a hole in a workpiece or a boss, even if the measurement axis of the touch sensor is not completely aligned with the center of the liquid hole or boss, high precision with small measurement errors can be achieved. It is possible to provide a workpiece misalignment correction device that obtains measured values, and this device exerts a valuable effect on the control unit 11 of machine tools such as NCj 12 m and drilling machines.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は立形マシニングセンタの全体側面図、第2図は
従来の計測法の平面図、第3図は本発明の装置を用いた
ワーク芯ズレ計Jll法の一例におけるクソチセンサの
計測動作を示す平面図、第4図は本発明によるワーク芯
ズレ計測法を示す平面図、第5図は本発明の庄標系補正
装置の構成図である。 1・・・ワーク   2・・・ワーク芯出し計測手段3
・・・演算手段    4・・・位置決め手段5・・・
入力手段    6・・・モータ制御手段1[・・・ス
ピンドル中心軸線 12・・・ワーク中心  21・・・プローブ22・・
・計測軸線 特許出願人   日立精機株式会社 第2図 (イ) 3−4図
Fig. 1 is an overall side view of a vertical machining center, Fig. 2 is a plan view of a conventional measurement method, and Fig. 3 is a measurement operation of a workpiece centering sensor in an example of the workpiece center deviation meter Jll method using the device of the present invention. FIG. 4 is a plan view showing a method for measuring workpiece misalignment according to the present invention, and FIG. 5 is a configuration diagram of a standard reference system correction device according to the present invention. 1... Workpiece 2... Workpiece centering measurement means 3
...Calculating means 4...Positioning means 5...
Input means 6...Motor control means 1 [...Spindle center axis 12...Workpiece center 21...Probe 22...
・Measurement axis patent applicant Hitachi Seiki Co., Ltd. Figure 2 (A) Figure 3-4

Claims (1)

【特許請求の範囲】[Claims] テーブル上に保持されたワークと主軸の工具との相対的
な移動で加工する工作機械のワーク芯ズレ補正装置にお
いて、前記テーブルまたは主軸に相対移動を与え位置決
めをするモータ制御手段と、前記主軸を0°または18
0°の2位置に主軸角度を位置決めする位置決め手段と
、前記主軸に取付けられ計測時にワークとの接触信号を
発生するワーク芯出し計測手段と、ワークを計測するた
めのワーク上を横切る任意の主軸軸線上で4個所計測し
その時のモータ制御手段が計測値の位置データの平均値
を算出する演算手段とから成るワーク芯ズレ補正装置。
In a workpiece misalignment correction device for a machine tool that performs processing by relative movement between a workpiece held on a table and a tool on a spindle, the device includes a motor control means for relative movement to the table or the spindle for positioning; 0° or 18
A positioning means for positioning the spindle angle at two positions of 0°, a workpiece centering measuring means attached to the spindle and generating a contact signal with the workpiece during measurement, and an arbitrary spindle that crosses the workpiece for measuring the workpiece. A workpiece misalignment correction device comprising a calculation means for measuring at four positions on an axis and a motor control means at that time calculating an average value of the position data of the measured values.
JP59180015A 1984-08-29 1984-08-29 Machine tool work centering method Expired - Lifetime JPH0641088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59180015A JPH0641088B2 (en) 1984-08-29 1984-08-29 Machine tool work centering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59180015A JPH0641088B2 (en) 1984-08-29 1984-08-29 Machine tool work centering method

Publications (2)

Publication Number Publication Date
JPS6161745A true JPS6161745A (en) 1986-03-29
JPH0641088B2 JPH0641088B2 (en) 1994-06-01

Family

ID=16075965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59180015A Expired - Lifetime JPH0641088B2 (en) 1984-08-29 1984-08-29 Machine tool work centering method

Country Status (1)

Country Link
JP (1) JPH0641088B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100429039C (en) * 2006-04-18 2008-10-29 上海富安工厂自动化有限公司 Space compensation method for numerical control tool shaft
CN100453266C (en) * 2004-08-06 2009-01-21 报国株式会社 Roundness working method and roundness working device in NC machine tool
JP2012223877A (en) * 2011-04-22 2012-11-15 Toyota Motor Corp Boring device and boring method
US8875603B2 (en) 2005-12-13 2014-11-04 Renishaw Plc Method of machine tool calibration
CN114029570A (en) * 2021-10-30 2022-02-11 吉云 New-generation digital precise mold manufacturing equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54142673A (en) * 1978-04-28 1979-11-07 Hitachi Ltd Automatic centering device
JPS5882649A (en) * 1981-09-15 1983-05-18 レニシヨウ パブリツク リミテツド カンパニ− Operation of machine tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54142673A (en) * 1978-04-28 1979-11-07 Hitachi Ltd Automatic centering device
JPS5882649A (en) * 1981-09-15 1983-05-18 レニシヨウ パブリツク リミテツド カンパニ− Operation of machine tool

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100453266C (en) * 2004-08-06 2009-01-21 报国株式会社 Roundness working method and roundness working device in NC machine tool
US8875603B2 (en) 2005-12-13 2014-11-04 Renishaw Plc Method of machine tool calibration
CN100429039C (en) * 2006-04-18 2008-10-29 上海富安工厂自动化有限公司 Space compensation method for numerical control tool shaft
JP2012223877A (en) * 2011-04-22 2012-11-15 Toyota Motor Corp Boring device and boring method
CN114029570A (en) * 2021-10-30 2022-02-11 吉云 New-generation digital precise mold manufacturing equipment
CN114029570B (en) * 2021-10-30 2024-01-12 深圳恒佳精密模具注塑有限公司 New generation digital precision die manufacturing equipment

Also Published As

Publication number Publication date
JPH0641088B2 (en) 1994-06-01

Similar Documents

Publication Publication Date Title
Zhang et al. Geometric error measurement and compensation for the rotary table of five-axis machine tool with double ballbar
Zargarbashi et al. Single setup estimation of a five-axis machine tool eight link errors by programmed end point constraint and on the fly measurement with Capball sensor
Xiang et al. Using a double ball bar to identify position-independent geometric errors on the rotary axes of five-axis machine tools
US4899094A (en) Method of calibration for an automatic machine tool
CA2537155C (en) Grinding machine with concentricity correction
WO2016101289A1 (en) Five-axis machine tool cutter posture and cutter tip position error synchronous detection mechanism
JP6538503B2 (en) Geometrical error identification method for machine tool and geometric error identification program
Slamani et al. Dynamic and geometric error assessment of an XYC axis subset on five-axis high-speed machine tools using programmed end point constraint measurements
Chen et al. Identification and compensation of position-dependent geometric errors of rotary axes on five-axis machine tools by using a touch-trigger probe and three spheres
JP2018142064A (en) Error identification method for machine tool
Liu et al. Identification of position independent geometric errors of rotary axes for five-axis machine tools with structural restrictions
CN107498388A (en) Pivot means for correcting for beat head
Huang et al. Identification of geometric errors of rotary axes on 5-axis machine tools by on-machine measurement
Lei et al. Error measurement of five-axis CNC machines with 3D probe–ball
Tsutsumi et al. Evaluation of synchronous motion in five-axis machining centers with a tilting rotary table
JPS6161745A (en) Work-uncentering compensator
Ni et al. Geometric Error Measurement and Identification for Rotational Axes of a Five-Axis CNC Machine Tool.
US20230152772A1 (en) Positional relationship measurement method and machining apparatus
JP3880030B2 (en) V-groove shape measuring method and apparatus
Jie-chi et al. Two dimensional tracing and measurement using touch trigger probes
Wang et al. Volumetric error modelling, measurement, and compensation for an integrated measurement-processing machine tool
JPS6114836A (en) Coordinates system correcting device of machining position
JP7321067B2 (en) Reversing error measurement method for machine tools
Praniewicz et al. Error qualification for multi-axis BC-type machine tools
CN113427320A (en) Multi-axis on-machine measurement planning method for reducing measurement uncertainty

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term