JPS6161545B2 - - Google Patents

Info

Publication number
JPS6161545B2
JPS6161545B2 JP1790580A JP1790580A JPS6161545B2 JP S6161545 B2 JPS6161545 B2 JP S6161545B2 JP 1790580 A JP1790580 A JP 1790580A JP 1790580 A JP1790580 A JP 1790580A JP S6161545 B2 JPS6161545 B2 JP S6161545B2
Authority
JP
Japan
Prior art keywords
film
polycrystalline silicon
insulating film
silicon film
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1790580A
Other languages
Japanese (ja)
Other versions
JPS56115566A (en
Inventor
Satoshi Myauchi
Kentaro Yoshioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP1790580A priority Critical patent/JPS56115566A/en
Publication of JPS56115566A publication Critical patent/JPS56115566A/en
Publication of JPS6161545B2 publication Critical patent/JPS6161545B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【発明の詳細な説明】 この発明はMOS型半導体装置の製造方法に係
り、特に半導体基板あるいはゲート電極と配線金
属とを結合させるためのコンタクト穴を絶縁膜に
形成する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a MOS type semiconductor device, and more particularly to a method of forming a contact hole in an insulating film for coupling a semiconductor substrate or a gate electrode to a wiring metal.

従来のMOS型半導体装置の製造方法、特に上
記コンタクト穴の形成方法および配線の形成方法
は次の方法が公知である。すなわち、第1図aに
おいて、1はシリコン基板、2はシリコン基板1
と反対導電型の拡散層、3はゲート酸化膜、4は
通常導電型の多結晶シリコンが用いられるゲート
電極、5は寄生容量効果を防ぐため、通常厚い膜
が使用されるフイールド部の酸化膜であり、まず
これらの全面に絶縁膜6を形成する(第1図b参
照)。この絶縁膜6は、通常化学気相蒸着法によ
り形成され、一般にはパツシベーシヨン効果被覆
性などを考慮し、リンガラス膜(P2O5/SiO2)が
用いられる。
The following methods are known as conventional methods for manufacturing MOS semiconductor devices, particularly for forming the contact holes and wiring. That is, in FIG. 1a, 1 is a silicon substrate, 2 is a silicon substrate 1
3 is a gate oxide film, 4 is a gate electrode in which polycrystalline silicon of normal conductivity type is used, and 5 is an oxide film in the field part, which is usually thick to prevent parasitic capacitance effects. First, an insulating film 6 is formed on these entire surfaces (see FIG. 1b). This insulating film 6 is usually formed by chemical vapor deposition, and generally a phosphorous glass film (P 2 O 5 /SiO 2 ) is used in consideration of passivation effect and coverage.

次いで、上記絶縁膜6上にホトレジスト材を塗
布してホトレジスト膜7を形成し、さらに写真食
刻によりパターニングを行つてホトレジスト膜7
に開口部8を形成する(第1図c参照)。
Next, a photoresist material is applied on the insulating film 6 to form a photoresist film 7, and patterning is performed by photolithography to form the photoresist film 7.
An opening 8 is formed in (see FIG. 1c).

そして、このホトレジスト膜7をマスクとして
絶縁膜6を拡散層2およびゲート電極4に至るま
で化学エツチを行い、コンタクト穴9を形成する
(第1図d参照)。
Then, using the photoresist film 7 as a mask, the insulating film 6 is chemically etched down to the diffusion layer 2 and the gate electrode 4 to form a contact hole 9 (see FIG. 1d).

しかる後は、ホトレジスト膜7を除去した上で
配線金属10を蒸着し、さらに写真食刻、エツチ
ングにより配線金属10を所定のパターンに形成
するものである(第1図e参照)。
Thereafter, the photoresist film 7 is removed and the wiring metal 10 is deposited, and the wiring metal 10 is further formed into a predetermined pattern by photolithography and etching (see FIG. 1e).

しかるに、このような従来の方法は次のような
欠点を有する。
However, such conventional methods have the following drawbacks.

(1) 絶縁膜6のエツチングのマスクとしてホトレ
ジスト膜7を用いているが、ホトレジスト膜7
の場合は、絶縁膜6とホトレジスト膜7との密
着性の問題により界面におけるエツチング液の
浸み込みが発生し、安定した形状のコンタクト
穴9を再現性よく得られない。そこで、上記界
面の密着性を改善する手段として、ベーキング
を繰り返すことが通常行われるが、やはり安定
した形状のコンタクト穴9を再現性よく得るこ
とは困難であり、しかもこの場合は工程が非常
に繁雑となる。
(1) The photoresist film 7 is used as a mask for etching the insulating film 6;
In this case, the problem of adhesion between the insulating film 6 and the photoresist film 7 causes the etching solution to seep into the interface, making it impossible to obtain a contact hole 9 with a stable shape with good reproducibility. Therefore, as a means to improve the adhesion of the interface, repeated baking is usually performed, but it is still difficult to obtain a contact hole 9 with a stable shape with good reproducibility, and in this case, the process is extremely difficult. It becomes complicated.

(2) コンタクト穴9の形状としては、できる限り
傾斜が緩いことが望ましいが、そのように再現
性よく制御することが困難であり、第1図dの
ように急峻になることが多い。そして、コンタ
クト穴9の傾斜が急峻になると、第1図eに示
すようにその開口端部において配線金属10の
厚みが薄くなり易く、信頼性上問題がある。
(2) Although it is desirable that the shape of the contact hole 9 be as gentle as possible, it is difficult to control the shape with good reproducibility, and the shape often becomes steep as shown in FIG. 1d. If the slope of the contact hole 9 becomes steep, the thickness of the wiring metal 10 tends to become thinner at the opening end, as shown in FIG. 1e, which poses a problem in terms of reliability.

(3) 絶縁膜6が露出した状態で、その上に配線金
属10を蒸着することになるが、配線金属10
を電子ビームやスパツタ方式で蒸着すると、露
出している絶縁膜6中にイオンなどを励起して
半導体装置の完成後に、正電荷のスロートラツ
ピング効果などの特性変動を生じ易くなる。
(3) With the insulating film 6 exposed, the wiring metal 10 is deposited on it.
When evaporated by an electron beam or sputtering method, ions and the like are excited in the exposed insulating film 6, which tends to cause characteristic fluctuations such as slow trapping effect of positive charges after the semiconductor device is completed.

この発明は上記の点に鑑みなされたもので、
簡便な方法により、安定した形状のコンタクト
穴を再現性よく得ることができるとともに、コ
ンタクト穴を望ましい形状とすることができ、
しかも配線金属蒸着時の絶縁膜の電子線損傷を
防止することが可能となり、工程の簡素化、歩
留り、信頼性の向上を図ることができるMOS
型半導体装置の製造方法を提供することを目的
とする。
This invention was made in view of the above points,
By using a simple method, it is possible to obtain a contact hole with a stable shape with good reproducibility, and also to make the contact hole into a desired shape.
Moreover, it is possible to prevent electron beam damage to the insulating film during wiring metal evaporation, making it possible to simplify the process and improve yield and reliability.
The object of the present invention is to provide a method for manufacturing a type semiconductor device.

以下この発明の実施例を図面を参照して説明す
る。第2図aないしhはこの発明の実施例を説明
するための図である。第2図aにおいて、11は
単結晶のシリコン基板(半導体基板)、12はシ
リコン基板11と反対導電型の拡散層、13はゲ
ート酸化膜、14はゲート電極、15はフイール
ド酸化膜である。実施例では、まず、上記拡散層
12などを有するるシリコン基板11の全表面
に、たとえばリンガラスからなる絶縁膜16を形
成し、さらにその上に多結晶シリコン膜17を形
成する(第2図a参照)。
Embodiments of the present invention will be described below with reference to the drawings. FIGS. 2a to 2h are diagrams for explaining an embodiment of the present invention. In FIG. 2a, 11 is a single crystal silicon substrate (semiconductor substrate), 12 is a diffusion layer of the opposite conductivity type to the silicon substrate 11, 13 is a gate oxide film, 14 is a gate electrode, and 15 is a field oxide film. In this embodiment, first, an insulating film 16 made of phosphorus glass, for example, is formed on the entire surface of the silicon substrate 11 having the diffusion layer 12, etc., and then a polycrystalline silicon film 17 is formed thereon (see FIG. 2). (see a).

次に、多結晶シリコン膜17上にホトレジスト
材を塗布してホトレジスト膜18を形成した後、
それのパターニングを行い、開口部19をホトレ
ジスト膜18に形成することにより多結晶シリコ
ン膜17を露出させる(第2図b参照)。
Next, after coating a photoresist material on the polycrystalline silicon film 17 to form a photoresist film 18,
The polycrystalline silicon film 17 is exposed by patterning it and forming an opening 19 in the photoresist film 18 (see FIG. 2b).

しかる後は、ホトレジスト膜18の開口部19
を通して、つまりホトレジスト膜18をマスクと
して多結晶シリコン膜17を除去し、多結晶シリ
コン膜17に除去部20を形成することにより絶
縁膜16を露出させる(第2図c参照)。
After that, the opening 19 of the photoresist film 18 is
In other words, the polycrystalline silicon film 17 is removed using the photoresist film 18 as a mask, and the insulating film 16 is exposed by forming a removed portion 20 in the polycrystalline silicon film 17 (see FIG. 2c).

次いで、ホトレジスト膜18のい突開口部19
および多結晶シリコン膜17の除去部20を通し
て、つまりホトレジスト膜18と多結晶シリコン
膜17をマスクとして絶縁膜16をエツチングす
る。この場合、絶縁膜16は、拡散層12および
ゲート電極14に達するまでエツチングせずに、
全膜厚の半分程度でエツチングを中止する。その
結果、絶縁膜16には皿状の空胴部21が形成さ
れる(第2図d参照)。
Next, the protruding opening 19 of the photoresist film 18 is
Then, the insulating film 16 is etched through the removed portion 20 of the polycrystalline silicon film 17, that is, using the photoresist film 18 and the polycrystalline silicon film 17 as a mask. In this case, the insulating film 16 is not etched until it reaches the diffusion layer 12 and the gate electrode 14.
Etching is stopped when the total film thickness is about half. As a result, a dish-shaped cavity 21 is formed in the insulating film 16 (see FIG. 2d).

その後、再度ホトレジスト膜18をマスクして
多結晶シリコン膜17のエツチングを行う。この
場合は、多結晶シリコン膜17の除去部20を拡
張させるために、多結晶シリコン膜17と絶縁膜
16の界面より、除去部20側方の多結晶シリコ
ン膜17をサイドエツチングするものである(第
2図e参照)。
Thereafter, the polycrystalline silicon film 17 is etched while masking the photoresist film 18 again. In this case, in order to expand the removed portion 20 of the polycrystalline silicon film 17, the polycrystalline silicon film 17 on the side of the removed portion 20 is side-etched from the interface between the polycrystalline silicon film 17 and the insulating film 16. (See Figure 2e).

しかる後は、ホトレジスト膜18を除去した上
で、多結晶シリコン膜17の拡張された除去部2
0を通して、つまりり多結晶シリコン膜17をマ
スクとして絶縁膜16をエツチングすることによ
り、拡散層12およびゲート電極14に到達する
階段状ののテーパコンタクト穴22を絶縁膜16
に形成する(第2図f参照)。
After that, after removing the photoresist film 18, the expanded removed portion 2 of the polycrystalline silicon film 17 is removed.
In other words, by etching the insulating film 16 using the polycrystalline silicon film 17 as a mask, a step-like tapered contact hole 22 reaching the diffusion layer 12 and the gate electrode 14 is formed in the insulating film 16.
(see Figure 2 f).

そして、上記コンタクト穴22を形成した後
は、多結晶シリコン膜17を残存させた状態で全
面に配線金属23を蒸着し、さらに写真食刻、エ
ツチングを行つて配線金属23を所定のパターン
に形成するものである(第2図g,h参照)。こ
の場合、必然的にコンタクト部分以外のフイール
ド上のの配線は、配線金属23、多結晶シリコン
膜17の二層構造となる。
After forming the contact hole 22, a wiring metal 23 is deposited on the entire surface with the polycrystalline silicon film 17 remaining, and then photolithography and etching are performed to form the wiring metal 23 into a predetermined pattern. (See Figure 2 g and h). In this case, the wiring on the field other than the contact portion inevitably has a two-layer structure of the wiring metal 23 and the polycrystalline silicon film 17.

以上実施例で詳述したように、この発明の方法
では、絶縁膜上に多結晶シリコン膜を形成し、こ
の多結晶シリコン膜をマスクとして絶縁膜のエツ
チングを行う。したがつて、簡単な工程により、
絶縁膜とマスクとの密着性の問題を考慮すること
なく極めて安定した形状のコンタクト穴を再現性
よく得ることができ、歩留りが向上する。
As described in detail in the embodiments above, in the method of the present invention, a polycrystalline silicon film is formed on an insulating film, and the insulating film is etched using this polycrystalline silicon film as a mask. Therefore, through a simple process,
Contact holes with extremely stable shapes can be obtained with good reproducibility without considering the problem of adhesion between the insulating film and the mask, improving yield.

また、多結晶シリコン膜奪の除去部を通して絶
縁膜を全膜厚の半分程度皿状にエツチングした
後、多結晶シリコン膜の除去部を拡張した上で、
再度その拡張された除去部を通して絶縁膜をエツ
チングすることによりコンタクト穴を形成する。
したがつて、階段状テーパのコンタクト穴を得る
ことができ、このコンタクト穴によれば、その開
口端部において配線金属が薄くなることが防止さ
れ、配線の信頼性を上げることができる。この効
果は、特に配線金属膜厚に対して絶縁膜厚が大き
い場合、顕著である。
In addition, after etching the insulating film into a dish shape through the removed portion of the polycrystalline silicon film, about half of the total film thickness, and after expanding the removed portion of the polycrystalline silicon film,
A contact hole is formed by etching the insulating film through the expanded removed portion again.
Therefore, a step-like tapered contact hole can be obtained, and this contact hole prevents the wiring metal from becoming thinner at the open end, thereby increasing the reliability of the wiring. This effect is particularly noticeable when the thickness of the insulating film is greater than the thickness of the wiring metal film.

さらに、エツチングマスクとして用いた多結晶
シリコン膜を絶縁膜上に残した状態で配線金属の
蒸着を行う。したがつて、配線金属蒸着時の絶縁
膜の電子線損傷を防止することができ、信頼性を
上げることができる。また、フイールド上の配線
構造が二層となるので、配線金属としてアルミニ
ウムなどを用いた場合、エレクトロマイグレーシ
ヨンが減少され配線寿命の向上が期待される。
Furthermore, wiring metal is vapor-deposited while the polycrystalline silicon film used as an etching mask remains on the insulating film. Therefore, damage to the insulating film by electron beams during wiring metal deposition can be prevented, and reliability can be improved. Furthermore, since the wiring structure on the field is two-layered, when aluminum or the like is used as the wiring metal, it is expected that electromigration will be reduced and the life of the wiring will be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aないしeは従来のMOS型半導体装置
の製造方法におけるコンタクト穴の形成方法およ
び配線の形成方法を説明するための図、第2図a
ないしhはこの発明によるMOS型半導体装置の
製造方法の実施例を説明するための図である。 11……シリコン基板、16……絶縁膜、17
……多結晶シリコン膜、18……ホトレジスト
膜、19……開口部、20……除去部、21……
空胴部、22……コンタクト穴。
Figures 1a to 1e are diagrams for explaining the method of forming contact holes and the method of forming interconnections in the conventional manufacturing method of MOS type semiconductor devices, and Figure 2a
1 to 3 are diagrams for explaining an embodiment of a method for manufacturing a MOS type semiconductor device according to the present invention. 11...Silicon substrate, 16...Insulating film, 17
... Polycrystalline silicon film, 18 ... Photoresist film, 19 ... Opening, 20 ... Removal section, 21 ...
Cavity part, 22...Contact hole.

Claims (1)

【特許請求の範囲】 1 半導体基板の表面に絶縁膜を形成する工程
と、この絶縁膜上に多結晶シリコン膜を形成する
工程と、この多結晶シリコン膜上にレジスト膜を
塗布した後、多結晶シリコン膜の表面を露出させ
るため、レジスト膜に開口部を形成する工程と、
この開口部を通して上記多結晶シリコン膜を除去
し、上記絶縁膜の表面を露出させる工程と、上記
開口部および多結晶シリコン膜の除去部を通して
絶縁膜を除去し、絶縁膜に皿状の空胴部を形成す
る工程と、上記多結晶シリコン膜の除去部を拡張
するため、除去部側方の多結晶シリコン膜をサイ
ドエツチングする工程と、上記レジスト膜を除去
した後、上記多結晶シリコン膜の拡張された除去
部を通して上記絶縁膜をエツチングすることによ
り、階段状のテーパコンタクト穴を絶縁膜に形成
する工程とを具備することを特徴とするMOS型
半導体装置の製造方法。 2 絶縁膜がリンガラス、半導体基板が単結晶シ
リコンからなることを特徴とする特許請求の範囲
第1項記載のMOS型半導体装置の製造方法。
[Claims] 1. A process of forming an insulating film on the surface of a semiconductor substrate, a process of forming a polycrystalline silicon film on this insulating film, and a process of forming a polycrystalline silicon film on the polycrystalline silicon film after applying a resist film on the polycrystalline silicon film. forming an opening in the resist film to expose the surface of the crystalline silicon film;
removing the polycrystalline silicon film through the opening to expose the surface of the insulating film; and removing the insulating film through the opening and the removed portion of the polycrystalline silicon film to form a dish-shaped cavity in the insulating film. a step of side etching the polycrystalline silicon film on the sides of the removed portion in order to expand the removed portion of the polycrystalline silicon film; and a step of side etching the polycrystalline silicon film on the side of the removed portion after removing the resist film A method of manufacturing a MOS type semiconductor device, comprising the step of etching the insulating film through the expanded removal portion to form a step-like tapered contact hole in the insulating film. 2. The method of manufacturing a MOS type semiconductor device according to claim 1, wherein the insulating film is made of phosphorus glass and the semiconductor substrate is made of single crystal silicon.
JP1790580A 1980-02-18 1980-02-18 Manufacture of mos semiconductor device Granted JPS56115566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1790580A JPS56115566A (en) 1980-02-18 1980-02-18 Manufacture of mos semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1790580A JPS56115566A (en) 1980-02-18 1980-02-18 Manufacture of mos semiconductor device

Publications (2)

Publication Number Publication Date
JPS56115566A JPS56115566A (en) 1981-09-10
JPS6161545B2 true JPS6161545B2 (en) 1986-12-26

Family

ID=11956752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1790580A Granted JPS56115566A (en) 1980-02-18 1980-02-18 Manufacture of mos semiconductor device

Country Status (1)

Country Link
JP (1) JPS56115566A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115857A (en) * 1988-10-26 1990-04-27 Buyoudou Seisanbu:Kk Method for registration of ps plate and plural sheets of films
JPH02115856A (en) * 1988-10-26 1990-04-27 Buyoudou Seisanbu:Kk Method for registration of ps plate and plural sheets of films

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01255265A (en) * 1988-04-05 1989-10-12 Nec Corp Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115857A (en) * 1988-10-26 1990-04-27 Buyoudou Seisanbu:Kk Method for registration of ps plate and plural sheets of films
JPH02115856A (en) * 1988-10-26 1990-04-27 Buyoudou Seisanbu:Kk Method for registration of ps plate and plural sheets of films

Also Published As

Publication number Publication date
JPS56115566A (en) 1981-09-10

Similar Documents

Publication Publication Date Title
US6855610B2 (en) Method of forming self-aligned contact structure with locally etched gate conductive layer
JP2604631B2 (en) Method for manufacturing semiconductor device
US4337115A (en) Method of forming electrodes on the surface of a semiconductor substrate
JPS6110256A (en) Method of automatically positioning mutual connection line to connecting hole of integrated circuit
US5874357A (en) Method of forming wiring structure of semiconductor device
JP2882301B2 (en) Method for manufacturing semiconductor device
JPH098130A (en) Viahole formation of semiconductor device
JP2822430B2 (en) Method of forming interlayer insulating film
JPS6161545B2 (en)
JP2720023B2 (en) Method for manufacturing semiconductor device
JP3200475B2 (en) Method for manufacturing semiconductor device
US6303491B1 (en) Method for fabricating self-aligned contact hole
JP2692918B2 (en) Method for manufacturing semiconductor device
KR100191710B1 (en) Metal wiring method of semiconductor device
US5958797A (en) Planarization of a patterned structure on a substrate using an ion implantation-assisted wet chemical etch
KR0182176B1 (en) Method for forming meatal contact hall of semiconductor device
JPS6362104B2 (en)
JPH0476207B2 (en)
JPH0364933A (en) Manufacture of semiconductor device
KR0147716B1 (en) Formation method of elf alignment contact
JPH088208A (en) Formation method of contact hole in semiconductor element
JPH05259132A (en) Manufacture of semiconductor device
JPH0458538A (en) Manufacture of semiconductor device
JPH0358531B2 (en)
JPS58197853A (en) Manufacture of semiconductor device