JPS6161533B2 - - Google Patents

Info

Publication number
JPS6161533B2
JPS6161533B2 JP55005817A JP581780A JPS6161533B2 JP S6161533 B2 JPS6161533 B2 JP S6161533B2 JP 55005817 A JP55005817 A JP 55005817A JP 581780 A JP581780 A JP 581780A JP S6161533 B2 JPS6161533 B2 JP S6161533B2
Authority
JP
Japan
Prior art keywords
glass
semiconductor wafer
slurry
film
organic substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55005817A
Other languages
Japanese (ja)
Other versions
JPS56104443A (en
Inventor
Masaaki Takahashi
Yutaka Misawa
Komei Yatsuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP581780A priority Critical patent/JPS56104443A/en
Publication of JPS56104443A publication Critical patent/JPS56104443A/en
Publication of JPS6161533B2 publication Critical patent/JPS6161533B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3178Coating or filling in grooves made in the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/291Oxides or nitrides or carbides, e.g. ceramics, glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、半導体装置の製造方法に係り、特に
ZnO,B2O3及びSiO2の3成分から成る結晶質ガ
ラスと有機物質とから構成されるガラススラリー
をpn接合部の表面安定化用に用いた半導体装置
の製造方法に関する。 最近、半導体装置のpn接合部の絶縁被覆膜に
ZnO系ガラス組成物を焼き付ける方法がしばしば
用いられている。ガラス粉末を薄く塗布する方法
としては、電気泳動法、遠心沈降法および印刷法
等がある。これらの中でも電気泳動法は、作業
性、装置の簡便さ等の利点を有するために一般的
に良く用いられている方法である。しかし、この
方法は、14μm以下の非常に微細な粉末を必要と
し、このためガラス組成物製造工程において、粉
砕あるいは分級を行なうことが必要となるが、例
えば粉砕にボールミル等を用いて長時間放置した
場合、ガラス組成物の平均粒径は小さくなつて
も、ボールミル等からの不純物が入り込み、半導
体装置の素子特性を低下させる要因となる。そこ
で微細な粉末を得るためには、一般的には分級と
いう工程を設ける必要がある。この場合、分散媒
には、イソプロピルアルコールあるいはエチルア
ルコールが良く用いられる。この分級工程で得ら
れる微細な粉末の収率は大体50%程度であるの
で、半分近くは使われないのが現状である。ま
た、電気泳動法でガラス組成物を半導体装置の
pn接合部に酸化膜をマスクとして選択的に付着
する方法が一般的であるが、トランジスタのごと
き、酸化膜表面が清浄であることを要求される半
導体装置及び極微細な電極形状を求められる半導
体装置等では、ガラスの微粉により酸化膜表面が
汚染され、電気特性不良となることの外に、電極
パターン不良等の原因ともなる。 さらに、電気泳動法では添加する電解質の種
類、量、水分、ガラス分散液濃度、泳動電圧、被
付着物と電極との距離など多くの要因によりガラ
ス付着速度が左右されるためガラス膜厚の均一
性、再現性を確保するのが困難である。 上記した、種々の欠点を補うガラス被膜形成方
法として、スクリーン印刷法がある。この方法の
利点としては、第1にガラス粉末の粒子径がスク
リーンマスクの網目の径により規定され、大体
325メツシユ(43μ)である点が挙げられる。パ
ツシベーシヨン用として一般的に市販されている
ガラス粉末が大体325メツシユ(43μ)であるの
で全てのガラス粉末を使うことができる。さらに
電気泳動法で粉末塗布の難しいPbO系ガラス粉末
もパツシベーシヨンすることが可能である。 第2の利点は、この方法を、酸化膜表面の清浄
さを求められるトランジスタの如き半導体装置お
よび極微細な電極を求められる半導体装置等に適
用した場合に認められる。すなわち、この方法に
よれば、ガラス粉末の不必要部分はスクリーンマ
スクによつて完全に保護されるため、電気泳動法
の如き付着法に比べ、酸化膜表面にガラス粉末が
付着されることがなく、酸化膜表面へのガラス粉
末の溶着による電極パターンの不良、電気特性の
不良が惹き起されないという利点がある。 スクリーン印刷法によるガラスパツシベーシヨ
ン技術は既に周知の方法であり、PbO系ガラスを
スクリーン印刷した例は多い。PbO系ガラスの場
合、流れが良く、シリコン表面によくなじみ、気
孔が少ないという利点を有する。しかし、PbO系
ガラスの熱膨張係数は一般的にZnO系ガラスに比
べ大きく、パツシベーシヨン以降の工程における
熱シヨツク等に弱く、半導体装置の電気特性が劣
下する原因ともなつている。また、PbO自体が可
動イオンとして働くため、半導体装置の信頼性が
ZnO系に比較して悪い傾向がある。 ZnOを主成分としたガラスは、PbO系ガラスに
比較して、熱膨張係数が小さいこと、半導体装置
の信頼性が良いことおよび電気泳動法で簡便にガ
ラスを付着できることなどから一般的に良く用い
られているが、スクリーン印刷法に用られた例は
ほとんどない。この理由はPbOを主成分としたガ
ラスに比較して、流れが悪く、均一な被膜を形成
できないこと、ピンホールが多いことおよび被膜
中に気泡ができ易い等の欠点を有し歩留りが非常
に悪いためと考えられる。さらに、半導体の初期
特性、例えば、逆もれ電流が大きく規定の耐圧が
得られないという欠点を有するためである。 本発明の目的は、上記した従来技術の欠点を改
良し、ZnOを主成分とするガラススラリーを用い
てスクリーン印刷法により半導体装置を製造する
方法を提供することにある。 本発明のこの目的は、ZnOが主成分の結晶質ガ
ラスと有機物質により構成されるガラススラリー
を印刷してモート(溝)に選択的に埋め、次いで
これを焼成して有機物質を灰化あるいは飛散さ
せ、更にガラスを軟化点付近で一度保持した後結
晶化点付近で焼成することを特徴とする半導体装
置の製造方法により達成された。 以下本発明の実施例を説明する。第1図は、本
発明の方法により、pn接合部の露出したモート
14に、ZnOを主成分とするガラスと有機物質で
構成されるガラススラリーをスクリーン印刷付着
せしめ、焼付ガラス膜11にすることにより得ら
れたガラスパツシベーシヨントランジスタの概略
断面図を示すものである。なお、図中、12は
SiO2膜、13は電極である。 本発明の半導体装置の製造方法は、これを具体
的に述べれば、以下の連続する10工程より成る。 (1) ウエハ拡散 不純物拡散等の終了したトランジスタウエハ
のpn接合部以外をホトレジスト膜等で被覆す
る。 (2) モートエツチ 弗酸、硝酸等のエツチング液で溝(モート)
を堀る。 (3) ガラス印刷 エツチングの終了したトランジスタウエハの
pn接合の露出せる溝および溝の近傍の肩部に
ZnOを主成分とするガラスと有機物質で構成さ
れるガラススラリーを印刷し付着せしめる。 (4) 有機物焼成 印刷が容易にできるように配合された有機物
質を灰化あるいは飛散せしめるために、ガラス
スラリーを付着せしめたウエハをガラスの軟化
点以下で熱処理する。 (5) ガラス焼成 ガラスを焼き付ける。この場合、ZnO系のガ
ラスはPbO系ガラスに比較して流れが悪く、特
に前の工程(4)で有機物の抜けたあとが、気泡お
よびピンホールの原因となる。ガラスの焼き付
けは上記した欠点を除くため、ガラスをガラス
の軟化点付近で保持する工程とガラスを結晶化
点付近に保持し結晶化させ熱膨張係数を低下さ
せる工程とを設ける必要がある。 (6) エミツタ・ベース面SiO2エツチ ガラスを焼き付けた半導体ウエハはホトレジ
スト膜をマスクにしてエミツタ、ベース電極を
形成する部分のSiO2膜をエツチングし除去す
る。従来の電気泳動法でガラスを付着した場合
は、エミツタ、ベース面にも微細なガラスが付
着しているため、あらかじめそのガラスを除去
する工程を設けねばならない。 (7) 電極蒸着 前工程(6)でSiO2膜を除去した後の半導体ウ
エハはSiO2膜エツチング用ホトレジストを残
したまま電極金属を蒸着し付着せしめる。 (8) レジストバーンオフ 窒素等の雰囲気中約400℃の温度で熱処理す
る。この工程で工程(6)で付けたホトレジスト膜
は熱分解あるいは飛散する。 (9) リフトオフ ホトレジストの付いていた不要な電極金属を
テープ等ではぎとるリフトオフを行う。 (10) コレクタ面電極蒸着 コレクタ面に電極を蒸着し付着せしめる。 次に本発明において用いられるZnOを主成分と
するガラスと有機物質で構成されるガラススラリ
ーについて説明する。 第1表は、印刷用ガラススラリー中のガラス組
成とその軟化温度を示す。表中、ガラスNo.1〜2
が従来のガラス、No.3〜9が本発明で用いられる
ガラスを示す。熱的性質は示差熱分析装置により
測定した。
The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device.
The present invention relates to a method of manufacturing a semiconductor device using a glass slurry composed of a crystalline glass composed of three components of ZnO, B 2 O 3 and SiO 2 and an organic substance for stabilizing the surface of a pn junction. Recently, insulating coating films for pn junctions in semiconductor devices have been
A method of baking ZnO-based glass compositions is often used. Examples of methods for applying a thin layer of glass powder include electrophoresis, centrifugal sedimentation, and printing. Among these, electrophoresis is a commonly used method because it has advantages such as workability and simple equipment. However, this method requires extremely fine powder of 14 μm or less, and therefore requires pulverization or classification in the glass composition manufacturing process. In this case, even if the average particle size of the glass composition is reduced, impurities from ball mills and the like will enter, causing deterioration of the element characteristics of the semiconductor device. Therefore, in order to obtain fine powder, it is generally necessary to provide a step called classification. In this case, isopropyl alcohol or ethyl alcohol is often used as the dispersion medium. The yield of fine powder obtained in this classification process is approximately 50%, so currently nearly half of it is not used. Additionally, glass compositions can be applied to semiconductor devices using electrophoresis.
The common method is to selectively attach an oxide film to the p-n junction using a mask, but this method is used for semiconductor devices such as transistors that require a clean oxide film surface and semiconductors that require extremely fine electrode shapes. In devices, etc., the surface of the oxide film is contaminated by glass fine powder, which not only causes poor electrical characteristics but also causes poor electrode patterns and the like. Furthermore, in electrophoresis, the glass deposition rate is affected by many factors such as the type and amount of electrolyte added, water content, glass dispersion concentration, electrophoresis voltage, and the distance between the adherend and the electrode, so the glass film thickness is uniform. It is difficult to ensure accuracy and reproducibility. A screen printing method is a method for forming a glass film that compensates for the various drawbacks mentioned above. The advantage of this method is that the particle size of the glass powder is determined by the mesh size of the screen mask, and is approximately
The point is that it is 325 meters (43μ). Since the glass powder commonly available on the market for passivation is approximately 325 mesh (43μ), all types of glass powder can be used. Furthermore, it is possible to passivate PbO-based glass powder, which is difficult to powder coat, using electrophoresis. The second advantage is realized when this method is applied to semiconductor devices such as transistors that require a clean oxide film surface and semiconductor devices that require extremely fine electrodes. In other words, according to this method, unnecessary parts of the glass powder are completely protected by the screen mask, so the glass powder is not deposited on the oxide film surface compared to deposition methods such as electrophoresis. This has the advantage that defects in the electrode pattern and defects in electrical characteristics due to welding of glass powder to the surface of the oxide film do not occur. Glass patination technology using screen printing is already a well-known method, and there are many examples of screen printing of PbO glass. PbO-based glass has the advantages of good flow, good adhesion to silicon surfaces, and few pores. However, the coefficient of thermal expansion of PbO-based glass is generally larger than that of ZnO-based glass, making it vulnerable to thermal shocks in processes subsequent to passivation, which also causes deterioration in the electrical characteristics of semiconductor devices. In addition, since PbO itself acts as a mobile ion, the reliability of semiconductor devices is reduced.
It tends to be worse than ZnO type. Glasses containing ZnO as the main component are commonly used because they have a smaller coefficient of thermal expansion than PbO-based glasses, are more reliable for semiconductor devices, and can be easily attached using electrophoresis. However, there are very few examples of it being used in screen printing. The reason for this is that compared to glass whose main component is PbO, it flows poorly, cannot form a uniform film, has many pinholes, and tends to form bubbles in the film, and has very low yields. It is thought that this is due to bad reasons. Furthermore, this is because the semiconductor has a disadvantage in that the initial characteristics of the semiconductor, for example, the reverse leakage current is large and a specified withstand voltage cannot be obtained. An object of the present invention is to improve the drawbacks of the prior art described above and to provide a method for manufacturing semiconductor devices by screen printing using a glass slurry containing ZnO as a main component. This purpose of the present invention is to print a glass slurry composed of ZnO-based crystalline glass and an organic substance, selectively fill the moat (grooves), and then sinter it to incinerate or incinerate the organic substance. This was achieved by a method of manufacturing a semiconductor device, which is characterized by scattering the glass, holding the glass once near its softening point, and then firing it near its crystallization point. Examples of the present invention will be described below. FIG. 1 shows that, by the method of the present invention, a glass slurry composed of glass containing ZnO as a main component and an organic substance is attached by screen printing to the exposed moat 14 of the p-n junction to form a baked glass film 11. 1 shows a schematic cross-sectional view of a glass percussion transistor obtained by the method. In addition, in the figure, 12 is
SiO 2 film, 13 is an electrode. Specifically speaking, the method for manufacturing a semiconductor device of the present invention consists of the following 10 consecutive steps. (1) Wafer diffusion After impurity diffusion, etc., the transistor wafer is coated with a photoresist film, etc., except for the pn junction. (2) Mortetch Grooves (mote) with etching liquid such as hydrofluoric acid or nitric acid
dig. (3) Glass printing On the transistor wafer after etching
In the exposed groove of the p-n junction and the shoulder near the groove
A glass slurry consisting of ZnO-based glass and an organic substance is printed and adhered. (4) Organic substance firing The wafer to which the glass slurry is attached is heat-treated at a temperature below the softening point of glass in order to incinerate or scatter the organic substances blended to facilitate printing. (5) Glass firing: Baking glass. In this case, ZnO-based glass has poor flow compared to PbO-based glass, and especially after the organic matter has escaped in the previous step (4), it causes bubbles and pinholes. In order to eliminate the above-mentioned drawbacks in baking glass, it is necessary to provide a step of holding the glass near its softening point and a step of holding the glass near its crystallization point to crystallize and lower the coefficient of thermal expansion. (6) Emitter/Base Surface SiO 2 Etching The semiconductor wafer with baked glass is etched and removed using a photoresist film as a mask to remove the SiO 2 film in the areas where the emitter and base electrodes will be formed. When glass is deposited using the conventional electrophoresis method, fine glass is also deposited on the emitter and base surfaces, so a process must be provided in advance to remove the glass. (7) Electrode deposition After the SiO 2 film has been removed in the previous step (6), electrode metal is deposited on the semiconductor wafer while leaving the photoresist for etching the SiO 2 film. (8) Resist burn-off Heat treatment at a temperature of approximately 400°C in an atmosphere such as nitrogen. In this step, the photoresist film applied in step (6) is thermally decomposed or scattered. (9) Lift-off Perform lift-off to remove unnecessary electrode metal attached to the photoresist using tape, etc. (10) Collector surface electrode deposition. Electrodes are deposited and adhered to the collector surface. Next, a glass slurry composed of a glass containing ZnO as a main component and an organic substance used in the present invention will be explained. Table 1 shows the glass composition in the printing glass slurry and its softening temperature. Glass No. 1-2 in the table
Nos. 3 to 9 represent conventional glasses, and Nos. 3 to 9 represent glasses used in the present invention. Thermal properties were measured using a differential thermal analyzer.

【表】 本発明で用いられるガラススラリーは以下のよ
うに調製される。上記ガラス粉末と媒体としての
有機物質を混合し、スラリー状にする。有機物質
としては、ブチルカルビトールあるいはブチルカ
ルビトールにエチルセルローズ等の繊維素を重量
比で〜10%程度溶解したものを用いる。この場
合、エチルセルローズ等の繊維素の多くはアルカ
リ物質が混入しているため、10%を越える量を加
えると半導体装置の電気特性が期待できない。 ガラス粉末と有機物質の配合割合は印刷性を考
慮して、ガラススラリーの粘度が1000〜30000cp
程度になるよう調整する。この場合、粘度が
30000cpを越えるとパターンニングの際ガラスス
ラリーがスクリーンを通らず半導体装置のパツシ
ベーシヨンに適さない。また、粘度が1000cpよ
りも小さい場合はスクリーンマスクと半導体ウエ
ハの合せ目からガラスを付けたくない半導体装置
表面にガラススラリーがしみ込み、その表面をガ
ラスによつて汚染してしまう。その結果、トラン
ジスタのごとき半導体装置のエミツタ、ベース面
にガラスが付着し、電流増幅率を低下させること
や電極パターン不良が多数発生する。 次にトランジスタに本発明の方法を適用した例
について説明する。 第2図はトランジスタの阻止特性を示し、図中
31は電気泳動法により第1表ガラスNo.8のガラ
スを付着した例、32はガラスNo.8のガラスをス
クリーン印刷した例である。スクリーン印刷した
場合(図中32)、従来の電気泳動によるガラス
付着法(図中31)に比べ遜色がなく耐圧も高
い。 第3図は上記したトランジスタの耐圧分布を示
す。図中、41は第1表におけるNo.8のガラスを
電気泳動法で付着した例、42はNo.8のガラスを
スクリーン印刷した例である。本発明の方法を実
施した場合(図中42)、従来の電気泳動法(図
中41)に比べ遜色がないことがわかる。 スクリーン印刷法によりパツシベーシヨンした
トランジスタは、その他の方法によりパツシベー
シヨンしたものに比較して、その後の電極パター
ン形成工程におけるホトレジストの切れ、SiO2
膜の切れが良く、電流増幅率等の電気特性不良が
少ない。 さらに、本発明で用いられたガラススラリー
は、ガラス粉末および有機物質で構成されてお
り、長時間の保存も耐えるため、ダイオード等比
較的構造の簡単な半導体装置の場合、電気泳動法
に比較して製造コストを低くすることができる利
点がある。 以上、トランジスタについて本発明の実施例を
説明したが、本発明はその他の溝をもつ半導体装
置、例えばサイリスタやダイオードあるいは、プ
レナ型半導体装置のパツシベーシヨン等にも適用
できることはもちろんである。 以上説明したように本発明によれば従来スクリ
ーン印刷法には適用されていなかつたZnOを主成
分とするガラススラリーを用いてスクリーン印刷
法により半導体装置を製造することができる。
[Table] The glass slurry used in the present invention is prepared as follows. The above glass powder and an organic substance as a medium are mixed to form a slurry. As the organic substance, butyl carbitol or a solution of about 10% by weight of cellulose such as ethyl cellulose in butyl carbitol is used. In this case, since most of the cellulose such as ethyl cellulose contains alkaline substances, if more than 10% is added, the electrical properties of the semiconductor device cannot be expected. The blending ratio of glass powder and organic substance is determined by considering printability, and the viscosity of glass slurry is 1000~30000 cp.
Adjust to the desired level. In this case, the viscosity is
If it exceeds 30,000 cp, the glass slurry will not pass through the screen during patterning, making it unsuitable for passivation of semiconductor devices. Furthermore, if the viscosity is less than 1000 cp, the glass slurry will seep into the surface of the semiconductor device where glass should not be attached through the joint between the screen mask and the semiconductor wafer, contaminating the surface with glass. As a result, glass adheres to the emitter and base surfaces of semiconductor devices such as transistors, reducing the current amplification factor and causing many electrode pattern defects. Next, an example in which the method of the present invention is applied to a transistor will be described. FIG. 2 shows the blocking characteristics of a transistor. In the figure, 31 is an example in which glass No. 8 on the first surface was attached by electrophoresis, and 32 is an example in which glass No. 8 was screen printed. In the case of screen printing (32 in the figure), it is comparable to the conventional electrophoretic glass attachment method (31 in the figure) and has a high withstand voltage. FIG. 3 shows the breakdown voltage distribution of the above transistor. In the figure, 41 is an example in which glass No. 8 in Table 1 was attached by electrophoresis, and 42 is an example in which glass No. 8 was screen printed. It can be seen that when the method of the present invention is carried out (42 in the figure), it is comparable to the conventional electrophoresis method (41 in the figure). Transistors passivated by the screen printing method are more prone to photoresist breakage and SiO 2 in the subsequent electrode pattern formation process than those passivated by other methods.
The film has good cutting properties, and there are few defects in electrical characteristics such as current amplification factor. Furthermore, the glass slurry used in the present invention is composed of glass powder and organic substances and can withstand long-term storage, making it more suitable for semiconductor devices with relatively simple structures such as diodes compared to electrophoresis. This has the advantage of lowering manufacturing costs. Although the embodiments of the present invention have been described above regarding transistors, the present invention is of course applicable to other semiconductor devices having grooves, such as thyristors, diodes, and passivation of planar semiconductor devices. As explained above, according to the present invention, a semiconductor device can be manufactured by a screen printing method using a glass slurry containing ZnO as a main component, which has not been applied to the conventional screen printing method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はガラスパツシベーシヨントランジスタ
の概略断面図、第2図、第3図はトランジスタの
電気特性を示すグラフである。 11……焼付ガラス膜、12……SiO2膜、1
3……電極、14……モート。
FIG. 1 is a schematic cross-sectional view of a glass partition transistor, and FIGS. 2 and 3 are graphs showing the electrical characteristics of the transistor. 11... Baked glass film, 12... SiO 2 film, 1
3...electrode, 14...moat.

Claims (1)

【特許請求の範囲】 1 半導体ウエハに形成された少なくとも1個の
pn接合を横切る溝を形成し、 ZnOを主成分とするガラス粉末と有機物質から
なるガラススラリーをスクリーン印刷法により上
記溝に埋め、 前記ガラススラリーを埋めた半導体ウエハを前
記ガラスの軟化点以下の温度に加熱して前記ガラ
ススラリー中の前記有機物質を灰化飛散させ、 前記ガラスの軟化点付近に前記半導体ウエハの
加熱温度を保持し、 前記ガラスの結晶化点付近に加熱温度を高め前
記ガラスを焼成することを特徴とする半導体装置
の製造方法。
[Claims] 1. At least one semiconductor wafer formed on a semiconductor wafer.
A groove is formed across the p-n junction, a glass slurry made of glass powder containing ZnO as a main component and an organic substance is filled in the groove by screen printing, and the semiconductor wafer filled with the glass slurry is heated to a temperature below the softening point of the glass. heating the semiconductor wafer to a temperature that incinerates and scatters the organic substance in the glass slurry; maintaining the heating temperature of the semiconductor wafer near the softening point of the glass; increasing the heating temperature near the crystallization point of the glass; 1. A method for manufacturing a semiconductor device, comprising firing.
JP581780A 1980-01-23 1980-01-23 Manufacture of semiconductor device Granted JPS56104443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP581780A JPS56104443A (en) 1980-01-23 1980-01-23 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP581780A JPS56104443A (en) 1980-01-23 1980-01-23 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS56104443A JPS56104443A (en) 1981-08-20
JPS6161533B2 true JPS6161533B2 (en) 1986-12-26

Family

ID=11621629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP581780A Granted JPS56104443A (en) 1980-01-23 1980-01-23 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS56104443A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61164045U (en) * 1986-03-20 1986-10-11
US5448111A (en) * 1993-09-20 1995-09-05 Fujitsu Limited Semiconductor device and method for fabricating the same
WO2008079948A2 (en) 2006-12-21 2008-07-03 Johnsondiversey, Inc. Floor finish application assembly and method
US9099483B2 (en) * 2012-01-31 2015-08-04 Shindengen Electric Manufacturing Co., Ltd. Glass composition for protecting semiconductor junction, method of manufacturing semiconductor device and semiconductor device
CN103890919B (en) * 2012-05-08 2016-07-06 新电元工业株式会社 Semiconductor bond protection glass composite, the manufacture method of semiconductor device and semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS491611A (en) * 1972-04-19 1974-01-09
JPS5128813A (en) * 1974-09-04 1976-03-11 Hitachi Ltd HANDOTAISOCHIHIFUKUYOGARASU NO SEIZOHOHO

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS491611A (en) * 1972-04-19 1974-01-09
JPS5128813A (en) * 1974-09-04 1976-03-11 Hitachi Ltd HANDOTAISOCHIHIFUKUYOGARASU NO SEIZOHOHO

Also Published As

Publication number Publication date
JPS56104443A (en) 1981-08-20

Similar Documents

Publication Publication Date Title
US2794846A (en) Fabrication of semiconductor devices
US5698451A (en) Method of fabricating contacts for solar cells
US4104091A (en) Application of semiconductor diffusants to solar cells by screen printing
US4097834A (en) Non-linear resistors
JPH0364964B2 (en)
JPS6161533B2 (en)
TWI657512B (en) Method for manufacturing semiconductor device
CN116959979B (en) Production process of high temperature resistant GPP chip
US20150099352A1 (en) COMPOSITION FOR FORMING n-TYPE DIFFUSION LAYER, METHOD OF PRODUCING n-TYPE DIFFUSION LAYER, AND METHOD OF PRODUCING PHOTOVOLTAIC CELL ELEMENT
JPS6396809A (en) Conducting paste
TWI612567B (en) Semiconductor device manufacturing method
KR101384874B1 (en) COMPOSITION FOR FORMING n-TYPE DIFFUSION LAYER, METHOD FOR PRODUCING n-TYPE DIFFUSION LAYER, AND METHOD FOR PRODUCING SOLAR CELL ELEMENT
US3432405A (en) Selective masking method of silicon during anodization
JP6582747B2 (en) Composition for forming n-type diffusion layer, method for producing semiconductor substrate having n-type diffusion layer, and method for producing solar cell
JPS6018152B2 (en) Method for manufacturing solar cell device
JP2643001B2 (en) Method for manufacturing semiconductor device
JPH07106336A (en) Manufacture of planar diode
JPS5846058B2 (en) Manufacturing method of semiconductor device
JPS6246505B2 (en)
JPH0730138A (en) Manufacture of cds sintered film
JPS6156617B2 (en)
JP2017028121A (en) N-type diffusion layer forming composition, method for manufacturing semiconductor substrate with n-type diffusion layer, method for manufacturing solar cell element, and solar cell element
CN117174760A (en) TVS chip with field ring structure and manufacturing method thereof
WO2016068315A1 (en) Composition for forming n-type diffusion layer, method for producing n-type diffusion layer, and method for manufacturing solar cell element
JP2017028122A (en) N-type diffusion layer forming composition, method for manufacturing semiconductor substrate with n-type diffusion layer, method for manufacturing solar cell element, and solar cell element