JPS6161470A - Nonvolatile semiconductor memory device - Google Patents

Nonvolatile semiconductor memory device

Info

Publication number
JPS6161470A
JPS6161470A JP18280984A JP18280984A JPS6161470A JP S6161470 A JPS6161470 A JP S6161470A JP 18280984 A JP18280984 A JP 18280984A JP 18280984 A JP18280984 A JP 18280984A JP S6161470 A JPS6161470 A JP S6161470A
Authority
JP
Japan
Prior art keywords
floating gate
side wall
tunnel
film
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18280984A
Other languages
Japanese (ja)
Inventor
Ryohei Kirisawa
桐澤 亮平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18280984A priority Critical patent/JPS6161470A/en
Publication of JPS6161470A publication Critical patent/JPS6161470A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation
    • H01L29/7883Programmable transistors with only two possible levels of programmation charging by tunnelling of carriers, e.g. Fowler-Nordheim tunnelling

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To enable to rewrite a nonvolatile semiconductor memory device at higher speed by extending a conductive projection on a reverse conductive type high density impurity region to a semiconductor substrate through a tunnel insulating film along the side wall of a floating gate, thereby reducing a tunnel region. CONSTITUTION:A projection 16 is extended along a side wall through a tunnel insulating film 19 remaining on the side wall of a floating gate 13, and is contacted directly with an N<+> type layer 122. Thus, electrons are communicated through the film 19 on the side wall of the gate 13, and since the occupying area of the tunnel region depends upon the thickness of the gate 13, the tunnel region can be reduced. Accordingly, a rewriting can be performed with a low writing voltage by the electric field concentration upon reducing of the tunnel region. Since the film 19 extends perpendicularly to a P type silicon substrate 11, the occupying are of the film 9 in a memory cell becomes extremely small to be adapted for microminiaturization of the memory cell.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、浮遊ゲートと1uu御ゲートを有する不揮発
性メモリメモリ装置に係り、侍に′に気的に書き換え可
能なメモリ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a non-volatile memory device having a floating gate and a 1UU control gate, and relates to a memory device that can be permanently rewritten.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

浮遊ゲートを有する電気的に書き換え可能な不揮発性メ
モリとして、例えば第3図に示すものが知られている。
For example, the one shown in FIG. 3 is known as an electrically rewritable nonvolatile memory having a floating gate.

第3図の(a)は平面図であり、(b)l(C)はそれ
ぞれ(a)のA−A’ 、 B−B’断面図である。P
型シリコン基板(11)に形成されたn中層(121)
 (122) 、これらのn中層(121)*(122
)間に絶縁膜を介して積層された浮遊ゲートμjとこの
浮遊ゲート(13上に絶縁膜を介して積層された制御ゲ
ート(14)によシメモリトランジスタが溝成されてい
る。またn中層(122)、(123とこれらのn中層
(122) 、 (123)間に、Sa膜を介して形成
されたゲート電極霞により選択用トランジスタが溝成さ
れている。記憶内容の書き換えはn中層(122)と連
続的に形成されたn中層(124)上にトンネル電流の
流れうる薄い絶縁膜σηを介して浮遊ゲート1L3t−
延在させて浮遊ゲートUりとn中層(124)間の電荷
の授受により行なわれる。Hはフィールド絶縁膜である
FIG. 3(a) is a plan view, and FIG. 3(b) and (C) are sectional views taken along line AA' and line BB' in FIG. 3(a), respectively. P
n middle layer (121) formed on a type silicon substrate (11)
(122), these n middle layers (121)*(122
) and a control gate (14) stacked on the floating gate (13) with an insulating film interposed between them. Between (122), (123) and these n-middle layers (122) and (123), a selection transistor is formed by a gate electrode haze formed through a Sa film.Rewriting of the memory contents is possible in the n-middle layer. The floating gate 1L3t-
This is done by extending the floating gate U and receiving and receiving charges between the N middle layer (124). H is a field insulating film.

この様な構造のメモIJ )ランジスタにおいては。In a memo IJ) transistor with such a structure.

n中層(124)と浮遊ゲートu3)間で電子の注入及
び放出を行うため、トンネル絶縁膜は7)を微細化する
事が困難であった。従って、書き込み条件において、低
いパルス電圧で高速に書き換えを可能とする素−子の実
現には限度があシ、記憶素子自体の微細化にも限界があ
った。また記憶保持を向上する上でも、トンネル領域は
小さい方が望ましい。
Since electrons are injected and emitted between the n-middle layer (124) and the floating gate u3), it has been difficult to miniaturize the tunnel insulating film 7). Therefore, under writing conditions, there is a limit to the realization of an element that allows high-speed rewriting with a low pulse voltage, and there is also a limit to miniaturization of the memory element itself. Furthermore, in order to improve memory retention, it is desirable that the tunnel region be small.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に鑑みなされたもので、トンネル領域
を小さくシ、より高速に書き換えが可能で、素子の微細
化に適し、記憶保持を向上させる記憶素子を提供する事
を目的としている。
The present invention has been made in view of the above points, and an object of the present invention is to provide a memory element that has a smaller tunnel region, can be rewritten at higher speed, is suitable for miniaturization of the element, and improves memory retention.

〔発明の概要〕[Summary of the invention]

本発明では例えば第1図に示す如く、浮遊ゲートαjの
側壁に残置されたトンネル絶縁膜αIy&:介して、突
起部αeが側壁部に沿って延在し、この突起部(1eが
n中層(122)と直接、接触している。電子の授受は
浮遊ゲート(13の側壁部におけるトンネル絶縁膜fl
l全通して行なわれ、トンネル領域が占める面積は浮遊
ゲートasの膜厚に依存するため、トンネル領域の縮小
が可能となる。従ってトンネル領域の縮小化に伴う電界
集中によシ、低い書き込み電圧で高速に書き換えが可能
となる。!、たトンネル酸化膜(LlがP型シリコン基
板(iυに対して垂直方向に延在するため、記憶素子に
おけるトンネル絶縁膜Uの占める面積が極めて小となり
、記憶素子の微細化に適する。
In the present invention, for example, as shown in FIG. 1, a protrusion αe extends along the sidewall via the tunnel insulating film αIy &: left on the sidewall of the floating gate αj, and this protrusion (1e) extends from the n middle layer ( 122).Electrons are exchanged through the tunnel insulating film fl on the side wall of the floating gate (13).
Since the area occupied by the tunnel region depends on the film thickness of the floating gate AS, the tunnel region can be reduced. Therefore, due to the electric field concentration caused by the reduction of the tunnel region, high-speed rewriting is possible with a low write voltage. ! Since the tunnel oxide film (L1) extends perpendicularly to the P-type silicon substrate (iυ), the area occupied by the tunnel insulating film U in the memory element becomes extremely small, making it suitable for miniaturization of the memory element.

〔発明の効果〕〔Effect of the invention〕

本発明によればトンネル領域を局小化する事ができるた
め、それに伴う電界集中ばよシ、従来の書き込み条件よ
シも、より低い電圧で書き換えの高速化を図る事ができ
、記憶保持特性を向上させなり、又、シリコン基板に対
してトンネル領域が垂直方向に延在するため、記憶素子
の微細化が出来る。
According to the present invention, since the tunnel region can be localized, the electric field concentration associated with it can be reduced, the rewriting speed can be increased with a lower voltage than the conventional write conditions, and the memory retention characteristics can be increased. Furthermore, since the tunnel region extends perpendicularly to the silicon substrate, the memory element can be miniaturized.

〔発明の実施例〕[Embodiments of the invention]

次に本発明′t−第1図(a) 、 (b) 、第2図
(a) 〜(d) K示す。第2図(a)に示す如<、
Paシリコン基板住υ上に、例えば酸化膜住ηをシリコ
ン露出面全面に30CIA成長させ、その上に、気相成
長により多結晶ケイ素よシ成る選択用トランジスタのゲ
ート電極(L51及び浮遊ゲート(L3t−マスク材o
1)を用いて所望の形に形成する。賭はフィールド絶縁
膜である。次に(b)に示す如く、酸化膜を表面に例え
ば200A形成し、異方性エツチング(反応性イオンエ
ツチング法)により、ゲート電極α9及び浮遊ゲート1
贈の側壁部以外は酸化膜を除去する。次に(C)に示す
如く、表面に多結・晶ケイ素層(2G’を堆積し、リン
拡散を行なった後、アニール等によシ、P型シリコン基
板(lυにn中層(121)〜(123)を形成する。
Next, the present invention is shown in FIGS. 1(a), (b) and 2(a) to (d). As shown in Figure 2(a),
For example, an oxide film η is grown for 30 CIA on the entire exposed silicon surface on a Pa silicon substrate, and on top of that, a gate electrode (L51) and a floating gate (L3t) of a selection transistor made of polycrystalline silicon are grown by vapor phase growth. -Mask material o
1) into the desired shape. The bet is field insulation. Next, as shown in (b), an oxide film of, for example, 200 Å is formed on the surface, and anisotropic etching (reactive ion etching method) is performed to form the gate electrode α9 and the floating gate 1.
The oxide film is removed except for the sidewalls of the base. Next, as shown in (C), a polycrystalline silicon layer (2G') is deposited on the surface and phosphorus is diffused. (123) is formed.

次に異方性エツチング(反応性イオン・エツチング法)
によシゲート電極霞及び浮遊ゲートa3の側壁部を残し
て、多結晶ケイ素を除去する。この時、n中層(122
)と結合し友突起部ueが形成される。
Next, anisotropic etching (reactive ion etching method)
The polycrystalline silicon is removed, leaving behind the gate electrode haze and the side wall of the floating gate a3. At this time, the n middle layer (122
) to form a friend protrusion ue.

それ以外のゲート電極α9及び、浮遊ゲートQ3の側壁
部に残置した多結晶ケイ素は、突起部1eをマスク材で
マスクした後5等方性エツチング(ドライ・エツチング
法)によシ除去する(d)。以降は公知の如く、気相成
長により多結晶ケイ素よシ成る制御ゲートを積層し、素
子を形成する。
The polycrystalline silicon remaining on the side walls of the other gate electrode α9 and the floating gate Q3 is removed by isotropic etching (dry etching method) after masking the protrusion 1e with a mask material (5). ). Thereafter, as is well known, a control gate made of polycrystalline silicon is laminated by vapor phase growth to form an element.

この素子は、例えばn中層(122)がo■、浮遊ゲー
トに容量結合する制御ゲートIが20Vの時電子が注入
され、夫々20V、OVの時電子が放出されて消去とな
る。注入、放出は浮遊ゲートの側壁部のトンネル絶縁膜
においてのみ生じ、その面積は小さい念め保持性能が高
く、また電界集中によp高速な書き換えに有効である。
In this element, for example, electrons are injected when the n middle layer (122) is o2 and the control gate I capacitively coupled to the floating gate is 20V, and electrons are emitted and erased when the voltage is 20V and OV, respectively. Injection and emission occur only in the tunnel insulating film on the side wall of the floating gate, and its area is small, providing high retention performance and effective for high-speed rewriting due to electric field concentration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) (b)は本発明の詳細な説明するための
平面図及び断面図、第2図(a)〜(d)は本発−〇−
実施例を示す断面図、第S図(a)は従来例を説明する
ための平面図、 (b)(C)はその断面図である。 図において、11・・・P型シリコン基板、13・・・
浮遊ゲート、14・・・制御ゲート、15・・・ゲート
電極、16・・・突起部、17・・・ゲート絶縁膜、1
8・・・フィールド絶縁膜、19・・・トンネル酸化膜
、20・・・多結晶ケイ素薄膜、21・・・マスク材、
121〜124・・・n中層。 代理人 弁理士 則近憲佑(ほか1名)第  1 図 (d) 第  2 図 (α) 図
FIGS. 1(a) and 1(b) are plan views and sectional views for explaining the present invention in detail, and FIGS. 2(a) to (d) are the present invention.
A cross-sectional view showing the embodiment, FIG. S (a) is a plan view for explaining a conventional example, and FIGS. In the figure, 11...P-type silicon substrate, 13...
floating gate, 14... control gate, 15... gate electrode, 16... protrusion, 17... gate insulating film, 1
8... Field insulating film, 19... Tunnel oxide film, 20... Polycrystalline silicon thin film, 21... Mask material,
121-124...n middle layer. Agent Patent attorney Kensuke Norichika (and one other person) Figure 1 (d) Figure 2 (α) Figure

Claims (1)

【特許請求の範囲】[Claims]  浮遊ゲートとこの浮遊ゲートに容量結合して設けられ
た制御ゲートを有する電気的書き換え可能な不揮発性半
導体記憶装置において、半導体基体表面に形成された前
記半導体基板と逆導電型の高濃度不純物領域上に導電性
の突起部がトンネル絶縁膜を介して前記浮遊ゲートの側
壁部に沿って延在し、前記浮遊ゲートヘの電荷の授受は
前記導電性の突起部との間で前記トンネル絶縁膜を介し
て行なわれる事を特徴とする不揮発性半導体記憶装置。
In an electrically rewritable nonvolatile semiconductor memory device having a floating gate and a control gate capacitively coupled to the floating gate, a highly concentrated impurity region of a conductivity type opposite to that of the semiconductor substrate formed on the surface of the semiconductor substrate is provided. A conductive protrusion extends along the side wall of the floating gate via a tunnel insulating film, and charge is transferred to and from the floating gate via the tunnel insulating film. A non-volatile semiconductor memory device characterized by:
JP18280984A 1984-09-03 1984-09-03 Nonvolatile semiconductor memory device Pending JPS6161470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18280984A JPS6161470A (en) 1984-09-03 1984-09-03 Nonvolatile semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18280984A JPS6161470A (en) 1984-09-03 1984-09-03 Nonvolatile semiconductor memory device

Publications (1)

Publication Number Publication Date
JPS6161470A true JPS6161470A (en) 1986-03-29

Family

ID=16124814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18280984A Pending JPS6161470A (en) 1984-09-03 1984-09-03 Nonvolatile semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS6161470A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01196876A (en) * 1988-02-02 1989-08-08 Matsushita Electron Corp Manufacture of semiconductor storage device
JPH01211979A (en) * 1988-02-19 1989-08-25 Toshiba Corp Nonvoltaile semiconductor memory
US6845935B2 (en) 2001-11-20 2005-01-25 Fuji Photo Film Co., Ltd. Recording tape cartridge
US6988686B2 (en) 2001-11-20 2006-01-24 Fuji Photo Film Co., Ltd. Recording tape cartridge
US7021579B2 (en) 2001-10-15 2006-04-04 Fuji Photo Film Co., Ltd. Recording tape cartridge
US7051968B2 (en) 2001-10-15 2006-05-30 Fuji Photo Film Co., Ltd. Recording tape cartridge

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01196876A (en) * 1988-02-02 1989-08-08 Matsushita Electron Corp Manufacture of semiconductor storage device
JPH01211979A (en) * 1988-02-19 1989-08-25 Toshiba Corp Nonvoltaile semiconductor memory
US7021579B2 (en) 2001-10-15 2006-04-04 Fuji Photo Film Co., Ltd. Recording tape cartridge
US7051968B2 (en) 2001-10-15 2006-05-30 Fuji Photo Film Co., Ltd. Recording tape cartridge
US7204447B2 (en) 2001-10-15 2007-04-17 Fujifilm Corporation Recording tape cartridge
US6845935B2 (en) 2001-11-20 2005-01-25 Fuji Photo Film Co., Ltd. Recording tape cartridge
US6988686B2 (en) 2001-11-20 2006-01-24 Fuji Photo Film Co., Ltd. Recording tape cartridge

Similar Documents

Publication Publication Date Title
JP2921653B2 (en) Trench memory structure and method of manufacturing the same
JP4104133B2 (en) Nonvolatile semiconductor memory device and manufacturing method thereof
KR940006094B1 (en) Nonvolatile semiconductor memory device and fabricating method thereof
KR100221062B1 (en) A flash memory and manufacturing method of the same
US5506431A (en) Double poly trenched channel accelerated tunneling electron (DPT-CATE) cell, for memory applications
JPH09120998A (en) Flash eeprom cell, its preparation, program method and read method
US5614429A (en) Method for fabricating EEPROM with control gate in touch with select gate
JP2980012B2 (en) Nonvolatile semiconductor memory device
JPH07240478A (en) Preparation of nonvolatile semiconductor memory device
JPS6161470A (en) Nonvolatile semiconductor memory device
US5793080A (en) Nonvolatile memory device
JPH02308571A (en) Semiconductor memory device
US20040171217A1 (en) Method of manufacturing a floating gate and method of manufacturing a non-volatile semiconductor memory device comprising the same
JPH01278781A (en) Nonvolatile semiconductor memory device
EP0166208B1 (en) Charge storage structure for nonvolatile memory
KR0135239B1 (en) Flash eeprom cell and its fabrication
JP2598523B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
JPH03280580A (en) Semiconductor storage device and its manufacture
JPS60106175A (en) Semiconductor memory device
JPS611056A (en) Nonvolatile semiconductor memory device
JP3139165B2 (en) Method for manufacturing nonvolatile memory cell
KR100240276B1 (en) Eeprom cell and manufacturing method therefor
JP2608965B2 (en) Semiconductor memory device and method of manufacturing the same
JPS6161469A (en) Nonvolatile semiconductor memory device
JPS63144577A (en) Nonvolatile semiconductor storage device