JPS6161381B2 - - Google Patents

Info

Publication number
JPS6161381B2
JPS6161381B2 JP54082097A JP8209779A JPS6161381B2 JP S6161381 B2 JPS6161381 B2 JP S6161381B2 JP 54082097 A JP54082097 A JP 54082097A JP 8209779 A JP8209779 A JP 8209779A JP S6161381 B2 JPS6161381 B2 JP S6161381B2
Authority
JP
Japan
Prior art keywords
layer
photoconductive layer
photoconductive
image forming
forming member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54082097A
Other languages
Japanese (ja)
Other versions
JPS565551A (en
Inventor
Hidekazu Inoe
Isamu Shimizu
Toshuki Komatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP8209779A priority Critical patent/JPS565551A/en
Publication of JPS565551A publication Critical patent/JPS565551A/en
Publication of JPS6161381B2 publication Critical patent/JPS6161381B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

〔産業䞊の利甚分野〕 本発明は、光ここでは光矩の光で、玫倖光
線、可芖光線、赀倖光線、線、γ線等を瀺す
の様な電磁波に感受性があり、静電像圢成凊理を
斜されお、像圢成され埗る電子写真甚像圢成郚材
の補造法に関する。 〔埓来の技術〕 電子写真甚像圢成郚材等に斌ける光導電局を構
成する光導電材料ずしおは、高感床、高抵抗であ
぀お芖感床に出来る限り近いスペクトル特性を有
する事、補造時や䜿甚時に斌いお、人䜓に察しお
無公害である事は重芁な点である。而乍ら、埓来
の電子写真甚像圢成郚材の光導電局を構成する光
導電材料であるSe、CdS、ZnO等の無機光導電材
料やポリヌビニルカルバゟヌルPVK、トリ
ニトロフルオレノンTNF等の有機光導電材
料OPCは、䞊蚘の諞条件の総おを氎準以䞊
で必ずしも満足しおいるずは断蚀し難い。 䟋えば、Seを光導電局圢成材料ずする電子写
真甚像圢成郚材は、Se単独では、䟋えば、可芖
光領域の光を利甚する堎合、その分光感床領域が
狭いのでTeやAsを添加しお分光感床領域を拡げ
るこずが蚈られおいる。 而乍ら、この様な、TeやAsを含むSe系光導電
局を有する電子写真甚像圢成郚材は、光疲劎が倧
きくなる為に、同䞀原皿を連続的に繰返し、コピ
ヌするず耇写画像の画像濃床の䜎䞋やバツクグラ
ンドの汚れ癜地郚分のカブリを生じたり、
又、匕続き他の原皿をコピヌするず前の原皿の画
像が残像ずしお耇写されるゎヌスト珟象等の
欠点を有しおいる。 而も、Se、殊にAs、Teは人䜓に察しお極めお
有害な物質であるので、人䜓ぞの接觊がない様な
補造装眮を䜿甚する工倫が必芁である。曎には、
補造埌に斌いおも、光導電局が露呈しおいるず、
クリヌニング等の凊理を受ける際、光導電局衚面
は盎に摺擊される為に、その䞀郚が削り取られ
お、珟像剀䞭に混入したり、耇写機内に飛散した
り、耇写画像䞭に混入したりしお、人䜓に接觊す
る原因を䞎える結果を生む。又、Se系光導電局
は、その衚面がコロナ攟電に、連続的に倚数回繰
返し晒されるず、局の衚面付近が結晶化又は酞化
を起しお光導電局の電気的特性の劣化を招く堎合
が少なくない。或いは、又、光導電局衚面が露呈
しおいるず、静電像の可芖化珟像に際し、液
䜓珟像剀を䜿甚する堎合、その溶剀ず接觊する為
に耐溶剀性耐液珟圚に優れおいるこずが芁求
されるが、この点に斌いお、Se系光導電局は必
ずしも満足しおいるずは断蚀し難い。 又、Se系光導電局は、電子写真甚像圢成郚材
の光導電局ずしおの高暗抵抗を保有する為に、ア
モルフアス状態に圢成されるが、Seの結晶化が
箄65℃ず極めお䜎い枩床で起る為に、補造埌の取
扱い䞭に、又は䜿甚䞭に斌ける呚囲枩床や画像圢
成プロセス䞭の他の郚材ずの摺擊による摩擊熱の
圱響を倚分に受けお結晶化珟象を起し、暗抵抗の
䜎䞋を招き易いずいう耐熱性䞊にも欠点がある。 䞀方、ZnO、CdS等を光導電局構成材料ずしお
所謂バむンダヌ系光導電局を有する像圢成郚材
は、Se系光導電局を有する像圢成郚材に范べお
補造䞊に斌いお有利であ぀お、比范的補造コスト
の䜎䞋を蚈るこずが出来る。 而乍ら、バむンダヌ系光導電局は、光導電材料
粒子が暹脂結着剀䞭に均䞀に分散されお圢成され
なければならない特殊性の為に、光導電局の電気
的及び光導電的特性や物理的化孊的特性を決定す
るパラメヌタヌが倚く再珟性良く圢成するこずが
出来ずに歩留りの䜎䞋を招き量産性に欠けるずい
う欠点がある。 又、バむンダヌ系光導電局は、分散系ずいう特
殊性故に、局党䜓がポヌラスにな぀おおり、その
為に湿床䟝存性が著しく、倚湿雰囲気䞭で䜿甚す
るず電気的特性の劣化を来たし、高品質の耇写画
像が埗られなくなる堎合が少なくない。 曎には、光導電局のポヌラス性は、珟像の際の
珟像剀の局䞭ぞの䟵入を招来し、離型性、クリヌ
ニング性が䜎䞋するばかりか䜿甚䞍胜を招く原因
ずもなる。 又、CdSを䜿甚する堎合には、CdS自䜓の人䜓
ぞの圱響がある為に、人䜓に接觊したり、或い
は、呚囲環境䞋に飛散したりするこずのない様に
する必芁がある。ZnOを䜿甚する堎合には、ZnO
バむンダヌ系光導電局は光感床が䜎く、分光感床
領域が狭い、光疲劎が著しい、光反応性が悪い等
の欠点を有しおいる。 又、最近泚目されおいるPVKやTNF等の有機
光導電材料を䜿甚する電子写真甚像圢成郚材に斌
いおは、耐湿性、耐コロナむオン性、クリヌニン
グ性に欠け、又光感床が䜎い、可芖光領域に斌け
る分光感床領域が狭く䞔぀短波長偎に片寄぀おい
る等の欠点を有し、極限定された範囲でしか䜿途
に䟛されおいない。然もこれ等の有機光導電材料
の䞭には発癌性物質の疑いがあるものもある等、
人䜓に察しおその倚くは党く無害であるずいう保
蚌がなされおいない。 埓぀お、䞊述の諞問題点の解決された優れた光
導電郚材が埗られる様な第の材料が所望されお
いる。 その様な材料ずしお最近有望芖されおいるもの
の䞭に䟋えばアモルフアスシリコン以埌−Si
ず略蚘するがある。 −Si膜は、開発初期のころは、その補造法や
補造条件によ぀お、その構造が巊右される為に
皮々の電気的特性、光孊的特性を瀺し、再珟性の
点に倧きな問題を抱えおいた。 而乍ら、アモルフアスでは、、制埡が䞍可
胜ずされおいたのが、−Siに斌いお、1976幎初
頭にアモルフアスずしお初めお−接合が実珟
し埗るずいう報告Applid Physics Letter
Vol 28、No.、15January、1976が成されお以
来、倧きな関心が集められ、以埌䞻ずしお倪陜電
池ぞの応甚に研究開発力が泚がれお来おいる。 この為、これ迄に報告されおいる−Si膜は、
倪陜電池甚ずしお開発されたものであるので、そ
の電気的特性、光孊的特性の点に斌いお、電子写
真甚像圢成郚材や撮像管等の光導電局ずしおは䜿
甚し埗ないのが珟状である。即ち、倪陜電池は、
倪陜゚ネルギヌを電流の圢に倉換しお取り出すの
で、SN比〔光電流ip暗電流id〕が良く
お、効率良く電流を取り出すには、−Si膜の抵
抗は比范的小さくなければならないが、䜙り抵抗
が小さ過ぎるず光感床が䜎䞋し、SN比が悪くな
るので、その特性の䞀぀ずしおの抵抗は105〜108
Ω・cm皋床が芁求される。 而乍ら、この適床の抵抗暗抵抗暗所での抵
抗を有する−Si膜では、電子写真甚像圢成郚
材の光導電局ずしおは、䜙りにも抵抗暗抵抗
が䜎過ぎお、珟圚、知られおいる電子写真法を適
甚するのでは党く䜿甚し埗ない。 又、これ迄の−Si膜に関する報告では、暗抵
抗を増倧させるず光感床が䜎䞋し、䟋えば、暗抵
抗が1010Ω・cmでの−Si膜は、光電利埗入
射photon圓りの光電流が䜎䞋しおおり、この
点に斌いおも、埓来の−Si膜は電子写真甚像圢
成郚材の光導電局ずは成り埗なか぀た。 又、埓来の倪陜電池甚に開発された−Si膜
は、静電像圢成の為に、その衚面に垯電凊理を斜
した堎合、垯電衚面に斌ける電荷保持胜が䜎く、
暗枛衰が著しく速いので汎甚性に欠ける。又、別
には、この様な−Si膜は倖郚環境の雰囲気䟝存
性、殊に湿床䟝存性が高く、倚湿雰囲気䞭では、
垯電特性が著しく䜎䞋する傟向を瀺す。 本発明は、この様な䞊蚘諞点に鑑み成されたも
ので、アモルフアス氎玠化シリコン以埌−
Siず略蚘するの電子写真ぞの適甚ずいう芳
点から、その電子写真特性の改良の実隓怜蚎を重
ねた結果、特定の衚面状態を有する−Si局
が電子写真甚像圢成郚材の光導電局ずしお極めお
優れおいるこずを芋出した点に基づいお成された
ものである。 即ち、−Si局の衚面電気特性の向䞊の芳
点から、その衚面に吞着される分子皮を皮々倉化
させお、圢成される−Si局の垯電特性を枬
定し怜蚎分析した結果、ある特定の関係を満足す
る様な分子皮を−Si局衚面に吞着させお衚
面吞着局を圢成したものが極めお良奜な垯電特性
を瀺し、汎甚性があ぀お、電荷保持胜に優れおい
るこずを芋出した点に本発明は基づいおいる。 本発明の所期の目的を達成する為の電子写真甚
像圢成郚材の補造法は支持䜓䞊に〜40原子量
の氎玠を含有するアモルフアス氎玠化シリコンか
ら成る光導電局を圢成し、次いで該光導電局の圢
成盎埌の状態にある衚面に、アモルフアス氎玠化
シリコンに察しお電子受容性の分子又は電子䟛䞎
性の分子のいずれか䞀方の吞着局を蚭ける事を特
城ずする。 この様に本発明の補造法によ぀お埗られる電子
写真甚像圢成郚材は、実甚䞊の芳点から、脱着の
起り難い新たな分子を−Si局衚面に吞着さ
せるこずで、衚面を安定化され、それに䌎぀お
−Si局内郚に新たな電子分垃を圢成するこず
で、静電像圢成時の垯電特性の向䞊が蚈られおい
るものである。 即ち、本発明の補造法によ぀お埗られる電子写
真甚像圢成郚材は、−Si局の衚面を埌述す
る吞着分子で芆うこずで衚面局を安定化させ、䞔
぀吞着分子皮の遞択によ぀おその衚面の電気特性
を制埡されるものである。 本発明に斌ける電子写真甚像圢成郚材の吞着局
を圢成する吞着分子は、光導電局を圢成する−
Siに察しお電子受容性又は電子䟛絊性のもの
が遞択されお適甚される。埓぀お、同䞀皮の吞着
分子であ぀おも−Siが型か型かによ぀
お、電子䟛䞎性及び電子受容性の䞡者を取り埗る
ものである。 本発明に斌いお、−Si局衚面に䞊蚘の劂
くの吞着局を蚭けるには、適甚される吞着分子雰
囲気䞭に−Si局衚面を晒すこずによ぀お成
される。䟋えば、電子写真甚の支持䜓䞊に所定の
条件ず手順によ぀お−Si局を圢成し、該
−Si局を、その圢成時のフレツシナな状態の
時に、吞着分子のガス雰囲気䞭に所定の時間晒す
こずで目的ずする吞着局が圢成され、汎甚性があ
り、垯電特性に優れた像圢成郚材が䞎えられる。
又は、吞着分子をむオン化或いはプラズマ化等掻
性化しお、その掻性化吞着分子雰囲気䞭に−
Si局衚面を晒しお、吞着局圢成凊理を斜しお
も良い。 これ等、吞着分子を−Si 局衚面に吞着さ
せる堎合、−Si局を加熱しお、所定枩床に
維持しお行な぀おも良い。 本発明に斌いおは、所望の局厚及び面積で、所
望の支持䜓䞊に圢成した−Si局の衚面に吞
着分子局を蚭ける際の吞着分子ずしおは、電子䟛
䞎性吞着分子ずしお、䟋えばNH3H2Oナフタ
レンビスプニルフルオレノンアセトラセ
ンプナントレンアセナフトレンアセナフ
チレンクリセンピレン・−ゞメトキシ
ベンれンゞプニルアミン・2′−ゞナフチ
ルアミン・−ゞ゚トキシナフタレン−
プニルむンドヌルカルバゟヌルプノチア
ゞン・−ビス4′−ゞ゚チルアミノプニ
ル−・・−オキシゞアゟヌル・−
ビス4′−ゞ゚チルアミノプニル−・・
−トリアゟヌル等を初めずするこれらの類䌌の
倚数の化合物が有効なものずしお挙げられ、電子
受容性吞着分子ずしおはO2、・−ゞニトロ
ナフタレン、・−ゞニトロナフタレン・
・−トリニトロナフタレン・・・
−テトラニトロフルオレノン・−ゞクロロ
ナフタレン・−ゞブロモナフタレン・
10−ゞブロモアントラセン無氎フタル酞テト
ラクロロ無氎フタル酞−クロラニル・
−ベンゟアントラキノンベンゞルピレン−
−アルデヒド−アセチルアントラセン等を初
めずする、これ等ず類䌌の倚数の化合物が有効な
ものずしお挙げられる。 これ等の有効な吞着分子は、気䜓状で又は液䜓
状で、曎には、それ等をプラズマ化、むオン化又
はラゞカル化等の掻性化しお、奜たしくは、圢成
した−Si局の局圢成盎埌の衚面ず接觊され
お、所望の吞着局を圢成する。 本発明に斌いおは、䞊蚘に列挙した劂き、吞着
分子は、同様の特性を䞎えるもの同志を所望の割
合で混合しお䜿甚するこずも出来る。 本発明は斌いおは、−Siで圢成される光
導電局は、以䞋に述べる支持䜓䞊に圢成される。 䟋えば、ステンレス、Al、Cr、Mo、Au、Ir、
Nb、Ta、、Ti、Pt、Pd等の金属又はこれ等の
合金等の導電性支持䜓、又は、これらの金属が、
蒞着された導電性支持䜓或いは、耐熱性、少なく
ずも局圢成時の枩床に斌いお耐熱性を瀺す合成暹
脂のフむルム又はシヌト、又はガラス、セラミツ
ク等の電気絶瞁性支持䜓等が有効なものずしお挙
げられる。支持䜓はその䞊に−Siが堆積さ
れる前に、䞀連の枅浄凊理が斜される。この様な
枅浄凊理に斌いお、䞀般的には、䟋えば金属性支
持䜓であれば、゚ツチングによ぀お衚面を効果的
に枅浄化するアルカリ性又は酞性の溶液ず接觊さ
れる。その埌、支持䜓は枅浄雰囲気䞭で也燥さ
れ、その埌の準備凊理がなければ、次いで攟電珟
象を利甚しお−Siを支持䜓䞊に堆積させる
装眮の堆積宀内の所定䜍眮に蚭眮される。電気絶
瞁性支持䜓の堎合には、必芁に応じお、その衚面
を導電凊理される。 䟋えば、ガラスであれば、In2O3、SnO2等で、
その衚面が導電凊理され、或いはポリむミドフむ
ルム等の合成暹脂フむルムであれば、Al、Ag、
Pb、Zn、Ni、Au、Cr、Mo、Ir、Nb、Ta、、
Ti、Pt等の金属を以぀お真空蒞着、電子ビヌム
蒞着、スパツタリング等で凊理し、又は前蚘金属
でラミネヌト凊理しお、その衚面が導電凊理され
る。支持䜓の圢状ずしおは、円筒状、ベルト状、
板状等、任意の圢状ずし埗、所望によ぀お、その
圢状は決定されるが、電子写真に適甚する堎合連
続高速耇写甚ずするには、無端ベルト状又は円筒
状ずするのが望たしい。 支持䜓の厚さは、所望通りの像圢成郚材が圢成
される様に適宜決定されるが、可撓性が芁求され
る堎合には、支持䜓ずしおの機胜が充分発揮され
る範囲内であれば、可胜な限り薄くされる。而乍
ら、この様な堎合、支持䜓の補造䞊及び取扱い
䞊、機械的匷床等の点から、通垞は、10Ό以䞊ず
される。 本発明に斌ける光導電局は、䞋蚘のタむプの
−Siの䞭の䞀皮類で局圢成するか又は少なく
ずも二皮類を遞択し、異なるタむプのものが局接
合される状態ずしお局圢成する事によ぀お埗られ
る。 型    ドナヌdonorのみを含むも
の、或いは、ドナヌずアクセプタヌ
acceptorずの䞡方を含み、ドナヌの濃床
Ndが高いもの。 型    アクセプタヌのみを含むもの、
或いは、ドナヌずアクセプタヌずの䞡方を含
み、アクセプタヌの濃床Naが高いもの。 型    NaNdのもの又は、Na
Ndのもの。 本発明に斌ける光導電局を構成する局ずしおの
〜のタむプの−Si局は、グロヌ攟電法
や反応スパツタリング法等による局圢成の際に、
型䞍玔物又は、型䞍玔物、或いは䞡䞍玔物
を、−Siから成る光導電局の局䞭にその量
を制埡しおドヌピングしおやる事によ぀お圢成さ
れる。 この堎合、本発明者等の実隓結果からの知芋に
よれば、局䞭の䞍玔物の濃床を1015〜1019cm-3の
範囲内に調敎するこずによ぀お、より匷い型
又はより匷い型の−Siからより匱い
型又はより匱い型の−Siを圢成す
る事が出来る。 〜のタむプの−Siから成る光導電局
は、グロヌ攟電法、スパツタリング法、むオンむ
ンプランテヌシペン法、むオンプレヌテむング法
等によ぀お圢成される。 −Siから成る光導電局は、目的ずする特
性を有する可く、その暗抵抗及び光電利埗が、そ
の圢成時に含有されるの量を制埡しお制埡され
る。ここに斌いお、「光導電局䞭にが含有され
る」ずいうこずは、「が、Siず結合した状態」、
「がむオン化しお局䞭に取り蟌たれおいる状
態」又は「H2ずしお局䞭に取り蟌たれおいる状
態」の䜕れかの又はこれ等の耇合されおいる状態
を意味する。−Siから成る光導電局ぞの
の含有は、局を圢成する際、補造装眮系内に
SiH4、Si2H6等の化合物又はH2の圢で導入し、気
䜓攟電によ぀お、それらの化合物又はH2を分解
しお、局䞭に、局の成長に䜵せお含有させる。 本発明に斌いお、圢成される像圢成郚材を実際
面に充分適甚され埗る為には、光導電局䞭に含有
されるの量は通垞の堎合1.0〜40atomic原
子、奜適には〜30atomicずされるのが
望たしい。 −Siから成る光導電局䞭ぞのの含有
は、䟋えば、グロヌ攟電法では、−Siを圢
成する出発物質がSiH4、Si2H6等の氎玠化合物を
䜿甚するので、SiH4、Si2H6等の氎玠化合物が分
解しお局が圢成される際は自動的に局䞭に含有
されるが、曎にの局䞭ぞの含有を䞀局効率良く
行なうには、局を圢成する際に、グロヌ攟電を行
なう装眮系内にH2ガスを導入しおやれば良い。 スパツタリング法による堎合にはAr等の䞍掻
性ガス又はこのガスをベヌスずした混合ガス雰囲
気䞭で、Siをタヌゲツトずしおスパツタリングを
行なう際に、H2ガスを導入しおやるか又は
SiH4、Si2H6等の氎玠化硅玠ガス、或いは、䞍玔
物のドヌピングも兌ねおB2H6、PH3等のガスを導
入しおやれば良い。 −Siは、補造時の䞍玔物のドヌピングに
よ぀お前蚘〜のタむプに制埡するこずができ
る。 −Si䞭にドヌピングされる䞍玔物ずしお
は、−Siを型にするには、呚期埋衚第
族の元玠、䟋えば、Al、Ga、In、Tl等が奜
適なものずしお挙げられ、型にする堎合には、
呚期埋衚第族の元玠、䟋えば、、As、
Sb、Bi等が奜適なものずしお挙げられる。 −Si䞭にドヌピングされる䞍玔物の量
は、所望される電気的・光孊的特性に応じお適宜
決定されるが、呚期埋衚第族の䞍玔物の堎合
には通垞10-6〜10-3atomic原子、奜適には
10-5〜10-4atomic、呚期埋衚第族の䞍玔物
の堎合には、通垞10-8〜10-3atomic、奜適には
10-8〜10-4atomicずされるのが望たしい。 これ等䞍玔物の−Si䞭ぞのドヌピング方
法は、−Si局を圢成する際に採甚される補
造方法によ぀お各々異なるものであ぀お、具䜓的
には、以降の説明又は実斜䟋に斌いお詳述され
る。 光導電局の局厚ずしおは、所望される電気的・
光孊的特性及び電子写真に適甚する堎合には電子
写真特性曎には䜿甚条件、䟋えば、可撓性が芁求
されるか吊か等に応じお適宜決定されるものであ
るが、通垞の堎合〜80Ό、奜適には〜70Ό、
最適には〜50Όずされるのが望たしい。 以䞋、実斜䟋に埓぀お、本発明の顕著なる効果
を説明する。 実斜䟋  枅浄にされた×cmアルミニりム基板をグロ
ヌ攟電堆積槜内の基板ホルダヌに固定し、槜内を
×10-5torrの真空床にし、か぀基板枩床を230
℃に保぀た。続いお、シランガスを毎分30ml槜内
に流入させお、槜内を0.1〜torrの内圧に保぀た
埌、電極間に、13.56MHzのRF電力を投入しおグ
ロヌ攟電を起し、30Wの電力が入力されるように
マツチング回路を調敎した。こうしお時間攟電
を継続しお、Ό厚の−Si膜を圢成したの
ち攟電を䞭止させ、基板枩床が60℃以䞋になるた
で堆積槜内で真空䞭に攟眮しおから倧気䞭に取り
出した。 こうしお埗られた−Si膜を、真空ポンプ
にストツプバルブを介しお連結し、か぀ガス
O2、NH3等ボンベずもストツプバルブを介し
お連結しおいるクラむオスタツト内に固定した。
クラむオスタツト内を×10-3torrの真空床に保
ちながら150℃で30分間熱凊理しお吞着ガスの脱
着を蚈぀た。続いお、真空を保぀たたたで宀枩た
で攟冷した埌、真空ポンプぞ連結したバルブを閉
じ、続いおO2ガスを気圧たで導入しお時間
攟眮し。こうしお埗られた−Si膜を盎ちに
6KVのコロナ垯電噚で垯電した埌、15 lux・
secの露光量で画像露光を行ない、静電朜像を圢
成し、荷電粉䜓トナヌ200Ό鉄粉キダリア
ヌでカスケヌド珟像しお、静電転写−加熱定着
した所、良質な画像が埗られた。䞀方6KVのコ
ロナ垯電で荷電粉䜓トナヌの組み合わせでは、
実甚䞊䜿甚され埗ない画像濃床ず、鮮明床共に䜎
い画像しか埗られなか぀た。 実斜䟋  実斜䟋ず同様にしお䜜られた−Si膜を、堆
積槜から取り出し、クラむオスタツト内で同様の
前凊理埌、O2のかわりにNH3ガスを気圧導入し
た堎合の−Si膜に぀いお実斜䟋ず同様の
詊隓を行な぀た結果を、第衚に実斜䟋の堎合
も含めお瀺した。
[Industrial Application Field] The present invention relates to light (here, light in the sense of light, which refers to ultraviolet rays, visible rays, infrared rays, X-rays, γ-rays, etc.)
The present invention relates to a method for producing an electrophotographic imaging member which is sensitive to electromagnetic radiation such as, and which can be imaged by electrostatic imaging processing. [Prior Art] The photoconductive material constituting the photoconductive layer in an electrophotographic image forming member, etc. must have high sensitivity, high resistance, and spectral characteristics as close as possible to the luminous sensitivity. It is important that there is no pollution to the human body during use. However, inorganic photoconductive materials such as Se, CdS, and ZnO, poly-N vinyl carbazole (PVK), and trinitrofluorenone (TNF) are photoconductive materials that constitute the photoconductive layer of conventional electrophotographic image forming members. It is difficult to assert that organic photoconductive materials (OPCs) such as those described above necessarily satisfy all of the above-mentioned conditions to a higher level. For example, in an electrophotographic image forming member using Se as a photoconductive layer-forming material, Se alone has a narrow spectral sensitivity range when using light in the visible light region, so Te or As is added to produce a spectral sensitivity. The aim is to expand the sensitivity range. However, such an electrophotographic image forming member having a Se-based photoconductive layer containing Te or As suffers from large optical fatigue, so if the same original is continuously copied, the image of the copied image will be distorted. This may cause a decrease in density or background stains (fogging on white areas),
Furthermore, when another document is subsequently copied, the image of the previous document is copied as an afterimage (ghost phenomenon). However, since Se, especially As and Te, are extremely harmful substances to the human body, it is necessary to devise ways to use manufacturing equipment that does not allow them to come into contact with the human body. Furthermore,
Even after manufacturing, if the photoconductive layer is exposed,
When undergoing processing such as cleaning, the surface of the photoconductive layer is directly rubbed, so some of it is scraped off and gets mixed into the developer, scattered inside the copying machine, or mixed into the copied image. and produce results that cause contact with the human body. Furthermore, when the surface of a Se-based photoconductive layer is continuously and repeatedly exposed to corona discharge many times, crystallization or oxidation occurs near the surface of the layer, leading to deterioration of the electrical properties of the photoconductive layer. There are many cases. Alternatively, if the surface of the photoconductive layer is exposed, when a liquid developer is used to visualize (develop) an electrostatic image, it will come into contact with the solvent, resulting in excellent solvent resistance (currently liquid resistance). However, it is difficult to say with certainty that the Se-based photoconductive layer always satisfies this requirement. In addition, the Se-based photoconductive layer is formed in an amorphous state in order to have high dark resistance as a photoconductive layer of an electrophotographic image forming member, but Se crystallization occurs at an extremely low temperature of approximately 65°C. Therefore, crystallization occurs during handling after manufacturing or during use, and is greatly affected by the ambient temperature and frictional heat caused by rubbing with other parts during the image forming process. However, it also has a drawback in terms of heat resistance, in that it tends to cause a decrease in dark resistance. On the other hand, an image forming member having a so-called binder-based photoconductive layer using ZnO, CdS, etc. as a photoconductive layer constituent material is advantageous in manufacturing compared to an image forming member having an Se-based photoconductive layer. It is possible to reduce the manufacturing cost. However, because the binder-based photoconductive layer must be formed by uniformly dispersing photoconductive material particles in a resin binder, the electrical and photoconductive properties of the photoconductive layer There are many parameters that determine the physical and chemical properties, and it cannot be formed with good reproducibility, resulting in a decrease in yield and a lack of mass productivity. Furthermore, due to the unique nature of the binder-based photoconductive layer being a dispersed system, the entire layer is porous, and as a result, it is highly dependent on humidity, resulting in deterioration of electrical properties when used in a humid atmosphere. In many cases, it becomes impossible to obtain a copy of the image. Furthermore, the porous nature of the photoconductive layer causes developer to enter the layer during development, which not only reduces mold releasability and cleaning properties but also causes unusability. Furthermore, when using CdS, since CdS itself has an effect on the human body, it is necessary to prevent it from coming into contact with the human body or scattering into the surrounding environment. When using ZnO, ZnO
Binder-based photoconductive layers have drawbacks such as low photosensitivity, narrow spectral sensitivity range, significant optical fatigue, and poor photoreactivity. In addition, electrophotographic image forming members using organic photoconductive materials such as PVK and TNF, which have been attracting attention recently, lack moisture resistance, corona ion resistance, and cleaning properties, and also have low light sensitivity and visible It has drawbacks such as a narrow spectral sensitivity region in the optical region and is biased towards short wavelengths, and is therefore of use only within an extremely limited range. However, some of these organic photoconductive materials are suspected of being carcinogenic.
Many of them are not guaranteed to be completely harmless to the human body. Therefore, there is a need for a third material that can provide an excellent photoconductive member that overcomes the above-mentioned problems. Among the materials that have recently been viewed as promising as such materials is amorphous silicon (hereinafter a-Si).
). In the early stages of development, a-Si films exhibited various electrical and optical properties due to their structure being influenced by the manufacturing method and manufacturing conditions, which caused major problems in terms of reproducibility. I was holding it. However, in early 1976, it was reported that p-n junctions could be realized in a-Si for the first time in amorphous materials (Applied Physics Letter; it was thought that p-n control was impossible in amorphous materials).
Vol. 28, No. 2, 15January, 1976), there has been a great deal of interest in this technology, and research and development efforts have since focused primarily on its application to solar cells. For this reason, the a-Si films reported so far are
Since it was developed for use in solar cells, it cannot currently be used as a photoconductive layer in electrophotographic image forming members or image pickup tubes due to its electrical and optical properties. be. That is, the solar cell is
Since solar energy is extracted by converting it into the form of current, the resistance of the a-Si film must be relatively small in order to have a good signal-to-noise ratio [photocurrent (ip)/dark current (id)] and to extract current efficiently. However, if the resistance is too small, the photosensitivity will decrease and the signal-to-noise ratio will deteriorate, so one of the characteristics is that the resistance should be 10 5 to 10 8
Approximately Ω・cm is required. However, the a-Si film, which has this moderate resistance (dark resistance: resistance in a dark place), has too little resistance (dark resistance) to be used as a photoconductive layer of an electrophotographic image forming member.
is so low that it cannot be used at all by applying currently known electrophotographic methods. In addition, previous reports on a-Si films have shown that increasing the dark resistance decreases the photosensitivity. In this respect as well, the conventional a-Si film could not serve as a photoconductive layer of an electrophotographic image forming member. In addition, when the a-Si film developed for conventional solar cells is subjected to charging treatment on its surface for electrostatic image formation, the charge retention ability on the charged surface is low;
Dark decay is extremely fast, so it lacks versatility. In addition, such a-Si films are highly dependent on the external environment, especially humidity, and in a humid atmosphere,
Charging characteristics tend to deteriorate significantly. The present invention has been made in view of the above-mentioned points, and is based on amorphous silicon hydride (hereinafter a-
From the perspective of applying Si:H (abbreviated as Si:H) to electrophotography, we have repeatedly conducted experiments to improve the electrophotographic properties of the a-Si:H layer, which has a specific surface condition. The invention was based on the discovery that the photoconductive layer is extremely excellent as a photoconductive layer. That is, from the viewpoint of improving the surface electrical properties of the a-Si:H layer, we measured and analyzed the charging properties of the a-Si:H layer formed by variously changing the molecular species adsorbed on the surface. As a result, a surface adsorption layer formed by adsorbing a molecular species that satisfies a certain relationship on the surface of the a-Si:H layer exhibits extremely good charging characteristics, is versatile, and has charge retention ability. The present invention is based on the discovery that it is excellent in A method for producing an electrophotographic imaging member to achieve the intended purpose of the present invention comprises forming on a support a photoconductive layer consisting of amorphous hydrogenated silicon containing hydrogen in an amount of 1 to 40 atomic percent; Next, an adsorption layer of either an electron-accepting molecule or an electron-donating molecule to the amorphous hydrogenated silicon is provided on the surface of the photoconductive layer immediately after its formation. As described above, from a practical point of view, the electrophotographic image forming member obtained by the production method of the present invention is made by adsorbing new molecules that are difficult to desorb onto the surface of the a-Si:H layer. stabilized and, accordingly, a
By forming a new electron distribution inside the -Si:H layer, the charging characteristics during electrostatic image formation are improved. That is, the electrophotographic image forming member obtained by the production method of the present invention stabilizes the surface layer by covering the surface of the a-Si:H layer with adsorbed molecules described below, and also stabilizes the surface layer by covering the surface of the a-Si:H layer with adsorbed molecules, which will be described later. The electrical properties of the surface are controlled by The adsorbed molecules forming the adsorbed layer of the electrophotographic image forming member in the present invention are the a-
An electron-accepting or electron-donating material for Si:H is selected and applied. Therefore, even adsorbed molecules of the same type can exhibit both electron-donating and electron-accepting properties depending on whether a-Si:H is p-type or n-type. In the present invention, the adsorption layer as described above is provided on the surface of the a-Si:H layer by exposing the surface of the a-Si:H layer to an atmosphere of adsorbed molecules. For example, an a-Si:H layer is formed on a support for electrophotography according to predetermined conditions and procedures, and the a-Si:H layer is
-The desired adsorption layer is formed by exposing the Si:H layer, in its fresh state at the time of its formation, to a gas atmosphere of adsorbed molecules for a predetermined period of time, making it a versatile image with excellent charging characteristics. A forming member is provided.
Alternatively, the adsorbed molecules are activated by ionization or plasma formation, and a- is added to the atmosphere of the activated adsorbed molecules.
The surface of the Si:H layer may be exposed and subjected to adsorption layer formation treatment. When these adsorbed molecules are adsorbed onto the surface of the a-Si H layer, the a-Si:H layer may be heated and maintained at a predetermined temperature. In the present invention, when an adsorbed molecule layer is provided on the surface of an a-Si:H layer formed on a desired support with a desired layer thickness and area, the adsorbed molecules are electron-donating adsorbed molecules. , such as NH 3 ; H 2 O; naphthalene; bisphenyl; fluorenone; acetracene; phenanthrene; acenaphthrene; acenaphthylene; chrysene; pyrene; 1,4-dimethoxybenzene; diphenylamine; 2,2'-dinaphthylamine; 1,5-diethoxy Naphthalene; 2-
Phenylindole; Carbazole; Phenothiazine; 2,4-bis(4'-diethylaminophenyl)-1,3,4-oxydiazole; 2,4-
Bis(4'-diethylaminophenyl)-1・3・
A number of compounds similar to these, including 4-triazole, etc., are effective, and electron-accepting adsorption molecules include O 2 , 1,5-dinitronaphthalene, 1,8-dinitronaphthalene;
4,5-trinitronaphthalene; 2,4,5,7
-tetranitrofluorenone; 1,5-dichloronaphthalene; 1,4-dibromonaphthalene; 9.
10-dibromoanthracene; phthalic anhydride; tetrachlorophthalic anhydride; p-chloranil; 1,2
-Benzanthraquinone; Benzyl; Pyrene-3
-Aldehyde; Many compounds similar to these, including 9-acetylanthracene, etc., are effective. These effective adsorbed molecules are in gaseous or liquid form, and are preferably activated by plasma, ionization, radicalization, etc. to form an a-Si:H layer. is contacted with the immediate surface to form the desired adsorption layer. In the present invention, adsorbent molecules such as those listed above that provide similar properties can also be used by mixing them in a desired ratio. In the present invention, a photoconductive layer formed of a-Si:H is formed on a support described below. For example, stainless steel, Al, Cr, Mo, Au, Ir,
A conductive support such as metals such as Nb, Ta, V, Ti, Pt, Pd or alloys thereof, or these metals,
Vapor-deposited conductive supports, heat-resistant films or sheets of synthetic resins that exhibit heat resistance at least at the temperature during layer formation, and electrically insulating supports such as glass and ceramics are effective. It will be done. The support is subjected to a series of cleaning treatments before the a-Si:H is deposited thereon. In such cleaning treatments, typically, for example, a metallic support is contacted with an alkaline or acidic solution that effectively cleans the surface by etching. Afterwards, the support is dried in a clean atmosphere and, without any further preparatory treatment, is then placed in place in the deposition chamber of an apparatus that deposits a-Si:H onto the support using electrical discharge phenomena. . In the case of an electrically insulating support, its surface is subjected to conductive treatment, if necessary. For example, for glass, In 2 O 3 , SnO 2 , etc.
If the surface is conductive-treated or made of synthetic resin film such as polyimide film, Al, Ag,
Pb, Zn, Ni, Au, Cr, Mo, Ir, Nb, Ta, V,
The surface is treated with a metal such as Ti or Pt by vacuum evaporation, electron beam evaporation, sputtering, etc., or laminated with the metal, so that the surface thereof is conductive. The shape of the support body is cylindrical, belt-shaped,
It may have any shape, such as a plate shape, and the shape is determined as desired. However, in the case of electrophotography, it is preferable to use an endless belt shape or a cylindrical shape for continuous high-speed copying. The thickness of the support is determined as appropriate so that the desired image forming member is formed, but if flexibility is required, the thickness of the support may be determined within a range that allows the support to function adequately. If possible, it will be made as thin as possible. However, in such a case, the thickness is usually set to 10Ό or more in view of manufacturing and handling of the support, mechanical strength, etc. The photoconductive layer in the present invention is of the following type a.
-Si:H can be obtained by forming a layer with one type of H, or by selecting at least two types and forming a layer in a state where different types are bonded. N-type: contains only a donor, or contains both a donor and an acceptor, and has a high donor concentration (Nd). p-type...contains only acceptor,
Or one that contains both a donor and an acceptor and has a high acceptor concentration (Na). i type

NaNd0 or Na
Nd's. The a-Si:H layer of type ~ as a layer constituting the photoconductive layer in the present invention is formed by a glow discharge method, a reactive sputtering method, etc.
It is formed by doping an n-type impurity, a p-type impurity, or both impurities into the photoconductive layer made of a-Si:H in a controlled amount. In this case, according to the findings from the experimental results of the present inventors, by adjusting the impurity concentration in the layer within the range of 10 15 to 10 19 cm -3 , stronger n-type (or stronger A weaker n-type (or weaker p-type) a-Si:H can be formed from a strong p-type a-Si:H. The photoconductive layer made of a-Si:H of the type ~ is formed by a glow discharge method, a sputtering method, an ion implantation method, an ion plating method, or the like. A photoconductive layer composed of a-Si:H can have desired properties, and its dark resistance and photoelectric gain are controlled by controlling the amount of H contained during its formation. Here, "H is contained in the photoconductive layer" means "a state in which H is combined with Si",
It means either "a state in which H is ionized and incorporated into the layer" or "a state in which H is incorporated into the layer as H 2 " or a combination thereof. H to the photoconductive layer consisting of a-Si:H
is contained in the manufacturing equipment system when forming the layer.
Introduced in the form of compounds such as SiH 4 and Si 2 H 6 or H 2 , these compounds or H 2 are decomposed by gas discharge and incorporated into the layer as the layer grows. In the present invention, the amount of H contained in the photoconductive layer is usually 1.0 to 40 atomic %, preferably 1.0 to 40 atomic %, in order that the formed image forming member can be sufficiently applied to practical applications. It is desirable that the content be 5 to 30 atomic%. Incorporation of H into the photoconductive layer composed of a-Si:H can be achieved by using, for example, a glow discharge method in which a hydrogen compound such as SiH 4 or Si 2 H 6 is used as the starting material for forming a-Si:H. Therefore, when hydrogen compounds such as SiH 4 and Si 2 H 6 are decomposed and a layer is formed, H is automatically contained in the layer. In this case, when forming the layer, H 2 gas may be introduced into the apparatus system that performs glow discharge. When using the sputtering method, H 2 gas is introduced when sputtering is performed using Si as a target in an atmosphere of an inert gas such as Ar or a mixed gas based on this gas, or
A silicon hydride gas such as SiH 4 or Si 2 H 6 or a gas such as B 2 H 6 or PH 3 which also serves as impurity doping may be introduced. a-Si:H can be controlled to the above-mentioned types by doping with impurities during manufacturing. In order to make a-Si:H p-type, suitable impurities to be doped into a-Si:H include elements of group A of the periodic table, such as B, Al, Ga, In, and Tl. In the case of n-type,
Elements of group A of the periodic table, such as N, P, As,
Preferred examples include Sb and Bi. The amount of impurity doped into a-Si:H is appropriately determined depending on the desired electrical and optical properties, but in the case of impurities in group A of the periodic table, it is usually 10 -6 ~ 10 -3 atomic%, preferably
10 -5 to 10 -4 atomic%, in the case of impurities of group A of the periodic table, usually 10 -8 to 10 -3 atomic%, preferably
It is desirable that it be 10 -8 to 10 -4 atomic%. The method of doping these impurities into a-Si:H differs depending on the manufacturing method adopted when forming the a-Si:H layer, and the details are explained below. Or it will be explained in detail in the examples. The thickness of the photoconductive layer is determined by the desired electrical
When applied to optical properties and electrophotography, it is determined appropriately depending on the electrophotographic properties and usage conditions, such as whether flexibility is required, but in normal cases 1 to 1. 80Ό, preferably 3-70Ό,
The optimum thickness is preferably 5 to 50Ό. Hereinafter, the remarkable effects of the present invention will be explained according to Examples. Example 1 A cleaned 4 x 4 cm aluminum substrate was fixed to a substrate holder in a glow discharge deposition tank, the tank was made to have a vacuum of 5 x 10 -5 torr, and the substrate temperature was set to 230 °C.
It was kept at ℃. Next, silane gas was flowed into the tank at 30 ml per minute to maintain the internal pressure in the tank at 0.1-torr, and then 13.56 MHz RF power was applied between the electrodes to generate a glow discharge and a power of 30 W was generated. The matching circuit was adjusted so that . After continuing the discharge for 4 hours and forming a 5ÎŒ thick a-Si:H film, the discharge was stopped and the substrate was left in a vacuum in the deposition tank until the temperature dropped to below 60℃, and then exposed to the atmosphere. I took it out. The a-Si:H film thus obtained was fixed in a cryostat which was connected to a vacuum pump via a stop valve and also to a gas (O 2 , NH 3 , etc.) cylinder via a stop valve.
Desorption of the adsorbed gas was measured by heat treatment at 150° C. for 30 minutes while maintaining a vacuum of 2×10 −3 torr inside the cryostat. Subsequently, after cooling to room temperature while maintaining the vacuum, the valve connected to the vacuum pump was closed, and then O 2 gas was introduced to 1 atm and left for 1 hour. The a-Si:H film thus obtained was immediately
After being charged with a 6KV corona charger, 15 lux・
Image exposure was performed with an exposure amount of sec to form an electrostatic latent image, cascade development was performed with charged powder toner (200 Ό iron powder carrier), and electrostatic transfer/heat fixation was performed, resulting in a high quality image. . Whereas with the combination of charged powder toner with 6KV corona charging,
Only images with low image density and sharpness that could not be used practically were obtained. Example 2 The a-Si film produced in the same manner as in Example 1 was taken out of the deposition tank and subjected to the same pretreatment in a cryostat, and then 1 atm of NH 3 gas was introduced instead of O 2 . -Si:H films were subjected to the same tests as in Example 1, and the results are shown in Table 1, including the case of Example 1.

【衚】 実斜䟋  実斜䟋ず同様にしお−Si膜Ό圢成し
た埌、B2H6ガスを200vol ppm混合したシランガ
スで曎に10分間グロヌ攟電を行な぀お型膜を積
局した膜を䜜補し、実斜䟋、ず同様な凊理を
斜しお、詊隓を行な぀た結果を第衚に瀺した。
[Table] Example 3 After forming a 5 ÎŒm a-Si:H film in the same manner as in Example 1, glow discharge was performed for another 10 minutes using silane gas mixed with 200 vol ppm of B 2 H 6 gas, and a p-type film was laminated. A film was prepared, subjected to the same treatment as in Examples 1 and 2, and tested. The results are shown in Table 2.

【衚】 画像評䟡及び比范䟋の䜜成手順は
実斜䟋2ず同様
実斜䟋  実斜䟋で積局したB2H6200ppmのかわりに
PH3100ppmを混合したシランガスを甚いお積局
を行な぀た局に぀いお同様な詊隓を行な぀た結果
を第衚に瀺した。
[Table] The procedure for image evaluation and creation of comparative examples is the same as in Example 2. Example 4 Instead of B 2 H 6 200ppm laminated in Example 3
Table 3 shows the results of a similar test conducted on layers laminated using silane gas mixed with 100 ppm of PH 3 .

【衚】 画像評䟡及び比范䟋の䜜成手順は
実斜䟋2ず同様
実斜䟋  実斜䟋、で甚いた局(A)、実斜䟋で甚いた
å±€(B)、実斜䟋で甚いた局(C)ず同様にしおそれぞ
れに䜜補した局に぀いお、クラむオスタツト䞭で
150℃真空䞋で30分間凊理された埌、攟冷され、
倧気にリヌクした盎埌の、、局をパラ
クロラニルのベンれン溶液に浞しおすぐ匕き䞊
げ、80℃の也燥噚䞭で時間也燥した。その埌倧
気䞭で時間攟眮埌、詊隓した結果を第衚に瀺
した。
[Table] The procedure for image evaluation and creation of comparative examples is the same as in Example 2. Example 5 Layer (A) used in Examples 1 and 2, Layer (B) used in Example 3, Layer (B) used in Example 4 For each layer prepared in the same manner as layer (C), in a cryostat.
After being treated under vacuum at 150℃ for 30 minutes, it was left to cool.
Immediately after leaking into the atmosphere, layers A, B, and C were immersed in a 5% parachloranil benzene solution, taken out immediately, and dried in a dryer at 80° C. for 2 hours. After that, the test results were shown in Table 4 after being left in the atmosphere for 6 hours.

【衚】 実斜䟋  実斜䟋ず同様の、、膜を、パラクロラ
ニルのかわりにのゞプニルアミンのベンれ
ン溶液に浞しお、同様に也燥−攟眮しお詊隓した
結果を第衚に瀺した。
[Table] Example 6 Membranes A, B, and C similar to those in Example 5 were immersed in a benzene solution of 5% diphenylamine instead of parachloranil, dried in the same manner, and then left to stand for testing. Table 5 shows the results. It was shown to.

【衚】【table】

Claims (1)

【特蚱請求の範囲】  支持䜓䞊に〜40原子量の氎玠を含有する
アモルフアス氎玠化シリコンから成る光導電局を
圢成し、次いで該光導電局の圢成盎埌の状態にあ
る衚面に、アモルフアス氎玠化シリコンに察しお
電子受容性の分子又は電子䟛䞎性の分子のいずれ
か䞀方を気䜓状又は液䜓状で接觊させお吞着局を
蚭ける事を特城ずする電子写真甚像圢成郚材の補
造法。  前蚘吞着局を蚭ける前に前蚘光導電局衚面に
脱気凊理を斜す特蚱請求の範囲第項に蚘茉の電
子写真甚像圢成郚材。
[Scope of Claims] 1. A photoconductive layer made of amorphous hydrogenated silicon containing hydrogen in an amount of 1 to 40 atomic % is formed on a support, and then on the surface of the photoconductive layer immediately after formation, A method for manufacturing an electrophotographic image forming member, characterized in that an adsorption layer is provided by contacting amorphous silicon hydride with either an electron-accepting molecule or an electron-donating molecule in gaseous or liquid form. . 2. The electrophotographic image forming member according to claim 1, wherein the surface of the photoconductive layer is subjected to deaeration treatment before providing the adsorption layer.
JP8209779A 1979-06-27 1979-06-27 Image forming member for electrophotography Granted JPS565551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8209779A JPS565551A (en) 1979-06-27 1979-06-27 Image forming member for electrophotography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8209779A JPS565551A (en) 1979-06-27 1979-06-27 Image forming member for electrophotography

Publications (2)

Publication Number Publication Date
JPS565551A JPS565551A (en) 1981-01-21
JPS6161381B2 true JPS6161381B2 (en) 1986-12-25

Family

ID=13764910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8209779A Granted JPS565551A (en) 1979-06-27 1979-06-27 Image forming member for electrophotography

Country Status (1)

Country Link
JP (1) JPS565551A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2755301B2 (en) * 1986-12-25 1998-05-20 日立金属株匏䌚瀟 Tool steel for hot working

Also Published As

Publication number Publication date
JPS565551A (en) 1981-01-21

Similar Documents

Publication Publication Date Title
US4461819A (en) Image-forming member for electrophotography
US4877709A (en) Image forming member for electrophotography
JPS6035059B2 (en) Electrophotographic photoreceptor and its manufacturing method
JPS6226458B2 (en)
JPS6226459B2 (en)
FR2490839A1 (en) PHOTOCONDUCTIVE ELEMENT
JPS639221B2 (en)
JPS6161103B2 (en)
JPS649623B2 (en)
JPS6161102B2 (en)
JPS6247303B2 (en)
JPS6161381B2 (en)
JPS6216419B2 (en)
JPS636865B2 (en)
JPS6227388B2 (en)
JPS6215856B2 (en)
JP2558210B2 (en) Electrophotographic image forming member
JPS6216420B2 (en)
JPS6161105B2 (en)
JPS58111950A (en) Image forming member for electrophotography
JPS58171048A (en) Photoconductive material
JPS6215855B2 (en)
JPS59222846A (en) Photoconductive member
JPS6161101B2 (en)
JPS58171043A (en) Photoconductive material