JPS6161364A - Alkaline battery - Google Patents

Alkaline battery

Info

Publication number
JPS6161364A
JPS6161364A JP59184026A JP18402684A JPS6161364A JP S6161364 A JPS6161364 A JP S6161364A JP 59184026 A JP59184026 A JP 59184026A JP 18402684 A JP18402684 A JP 18402684A JP S6161364 A JPS6161364 A JP S6161364A
Authority
JP
Japan
Prior art keywords
battery
negative electrode
alkaline battery
copper layer
mercury
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59184026A
Other languages
Japanese (ja)
Inventor
Takao Yokoyama
孝男 横山
Tadashi Sawai
沢井 忠
Iwao Shirai
白井 巖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59184026A priority Critical patent/JPS6161364A/en
Publication of JPS6161364A publication Critical patent/JPS6161364A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/669Steels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PURPOSE:To retard hydrogen gas evolution and increase leakage resistant ability to stabilize performance of an alkaline battery by alloying a copper layer inside a negative container with a metal which increases hydrogen overvoltage. CONSTITUTION:A negative container of an alkaline battery is formed by a three layer clad plate comprising nickel, stainless steel, and copper in order from the outside. The copper layer is alloyed with one or more of In, Cd, S, Tl, Pb, Ca, Ag, and Bi to increase hydrogen overvoltage. The amount of metal for alloying is preferable to limit to 100-1,000ppm. By using this negative container in an alkaline battery, total amount of mercury in the battery can be reduced. Even if zinc powder having 0.5wt% Hg is used, hydrogen gas evolution is retarded to obtain a steady alkaline battery.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ電池の負極容器に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a negative electrode container for an alkaline battery.

従来の技術 正極に酸化銀、酸化水銀、二酸化マンガン等を用い、負
極に亜鉛、電解液に)アルカリ水溶液を用いる、いわゆ
るアルカリ電池においては、アルカリ電解液によって負
極の亜鉛が腐食され、それに伴なう水素ガス発生によっ
て自己放電が大きくなったり、場合によってふくれや電
池の破裂をきたすことがあった。
Conventional technology In so-called alkaline batteries, which use silver oxide, mercury oxide, manganese dioxide, etc. for the positive electrode, zinc for the negative electrode, and an alkaline aqueous solution for the electrolyte, the zinc in the negative electrode is corroded by the alkaline electrolyte, and as a result, The generation of hydrogen gas caused self-discharge to increase, and in some cases caused swelling and battery explosion.

この対策としては負極亜鉛の水素過電圧を高く維持させ
ることが必要となる。
As a countermeasure for this, it is necessary to maintain a high hydrogen overvoltage of the negative electrode zinc.

そのためにこれまで亜鉛に水銀を添加し氷化処理する方
法がとられてきた。その氷化率としては一般に亜鉛に対
し7〜15wt%のものが使用されている。
For this purpose, a method has been used so far to add mercury to zinc and treat it with ice. Generally, the freezing rate used is 7 to 15 wt% based on zinc.

ところが、最近になって水銀の問題が再びクローズアッ
プされてきた。
However, recently, the issue of mercury has come under the spotlight again.

発明が解決しようとする問題点 これに対応して氷化率を下げるために、負極亜鉛と異種
金属との合金化などの検討が進められ、氷化率も3〜5
wt%に下げることが可能となった。しかし水銀量を減
らすことによって、氷化亜鉛粉末が、アルカリ電解液の
存在のもとで、負極容器内面の銅層と接触してこの銅層
表面を永化されるが、その氷化速度は亜鉛の氷化量、氷
化亜鉛粉末と電解液との接触面積、負極容器内面の銅層
の表面状態などによって異なり、負極容器のみをみても
、物理的な歪、酸化腐食、汚れ、異物付着などを完全に
防ぐことができず、その部分の水化が極めて遅れる。又
完全氷化までに時間を要し、その間に水素過電圧の低い
ところから水素ガスの発生が見られた。
Problems to be Solved by the Invention In order to reduce the freezing rate in response to this, studies have been carried out on alloying negative electrode zinc with different metals, and the freezing rate has been reduced to 3 to 5.
It became possible to lower it to wt%. However, by reducing the amount of mercury, the frozen zinc powder comes into contact with the copper layer on the inner surface of the negative electrode container in the presence of an alkaline electrolyte, and the surface of this copper layer is made permanent, but the freezing rate is It varies depending on the amount of frozen zinc, the contact area between the frozen zinc powder and the electrolyte, the surface condition of the copper layer on the inside of the negative electrode container, etc., and even if you look only at the negative electrode container, physical distortion, oxidative corrosion, dirt, and foreign matter adhesion can occur. It is not possible to completely prevent such problems, and the hydration of the affected area is extremely delayed. Furthermore, it took time for complete ice to form, and during that time hydrogen gas was observed to be generated from areas where the hydrogen overvoltage was low.

そのため電池を密閉後も水素ガスの発生が続き、これが
電池のふくれや漏液の原因となっていた。
As a result, hydrogen gas continues to be generated even after the battery is sealed, causing the battery to swell and leak.

特に、小型のボタン電池の様に電池内の自由体積が小さ
いものではこの問題は大きくなる。
This problem becomes particularly serious in batteries where the free volume within the battery is small, such as small button batteries.

又、最近の機器の短薄軽小の傾向から、より小型なボタ
ン電池が開発されており、この場合は総水銀量も極めて
少なくなり、例えばR44サイズの接触面積車9の水銀
量を1とするとそれよりも小型の11130サイズでは
0,5.R1120サイズでは025の割合となる。
In addition, due to the recent tendency for devices to be shorter, thinner, lighter, and smaller, smaller button batteries have been developed, and in this case, the total amount of mercury is also extremely small. Then, the smaller 11130 size is 0.5. For R1120 size, the ratio is 025.

従って、更に小屋の726サイズなどでは、水銀量がよ
シ一層少なくなる。そのために、電池のふくれや漏液が
より一層加速されるという問題があった。
Therefore, the amount of mercury is even lower in the 726 size shed. Therefore, there was a problem in that the swelling and leakage of the battery were further accelerated.

本発明は、前述の問題を解決し、より安定したアルカリ
電池を提供することを自尊的としたものである。
The present invention aims to solve the above-mentioned problems and provide a more stable alkaline battery.

問題点を解決するための手段 本発明は負極容器内面の銅層の水素過電圧を高く維持さ
せるために、水素過電圧を高めうる少なくとも1種の金
属を合金化した銅層を用いたものである。
Means for Solving the Problems The present invention uses a copper layer alloyed with at least one metal capable of increasing the hydrogen overvoltage in order to maintain a high hydrogen overvoltage in the copper layer on the inner surface of the negative electrode container.

本発明の詳細についてLR4aR44サイズカリボタン
電池(直径11,811.高さ6.4gm)を例に説明
する。
The details of the present invention will be explained using an LR4aR44 size Caliper button battery (diameter 11,811. height 6.4 gm) as an example.

図は、このボタン電池の部分断面図で、図中1は正極容
器であり、2は二酸化マンガンと黒鉛の混合物を加圧成
型した正極で正極リング3と共に容器1内に加圧密着さ
せたものである。4は本発明の特徴とする負極容器で、
外側よりニッケルーステンレス鋼−銅の三層クラツド板
からなり、内側の銅層は、水素過電圧を高めるための金
属、例えばIn、Cd、Sn、TI、Pb、AI、Ca
、Ag、Bi  0群から選んだ少なくとも一種と合金
化したものである。
The figure is a partial cross-sectional view of this button battery. In the figure, 1 is a positive electrode container, and 2 is a positive electrode made of a pressure-molded mixture of manganese dioxide and graphite, which is tightly pressed into the container 1 together with a positive electrode ring 3. It is. 4 is a negative electrode container that is a feature of the present invention;
It consists of a three-layer clad plate of nickel-stainless steel-copper from the outside, and the inner copper layer is made of a metal such as In, Cd, Sn, TI, Pb, AI, Ca to increase the hydrogen overvoltage.
, Ag, Bi Alloyed with at least one member selected from the group 0.

その合金化する金属の添加量としては1100PPから
1ooQpPMが望ましい。その添加量が1100PP
未満では、水素ガスの発生を完全に抑制することができ
ない。又、11000PPよシも多量では水素ガス発生
は完全に抑制できるものの、電池構成時に、これらの物
質が亜鉛の反応を抑えるようになり、負極利用率の低下
をきたして逆効果となる。従って検討の結果100〜1
1000PPが最も好ましいといえる。このことは合金
化する金属が2種以上添加されるものであっても同じこ
とが言える。その添加量も総量で100〜11000P
Pとする。ここでは銅−In−Pbの3元合金を用い、
その添加量は、銅に対してIn 300PPM 、Pb
 3ooPPMとし、総添加量はeooPPMとしたも
のを用いた。
The amount of metal added for alloying is preferably 1100PP to 1ooQpPM. The amount added is 1100PP
If it is less than that, the generation of hydrogen gas cannot be completely suppressed. Furthermore, although hydrogen gas generation can be completely suppressed if the amount is as large as 11,000 PP, these substances come to suppress the reaction of zinc during battery construction, resulting in a decrease in the negative electrode utilization rate and having the opposite effect. Therefore, the result of consideration is 100-1
It can be said that 1000PP is the most preferable. The same thing can be said even if two or more metals to be alloyed are added. The total amount added is 100 to 11,000P.
Let it be P. Here, a ternary alloy of copper-In-Pb is used,
The amount of addition is In 300 PPM, Pb
3ooPPM and the total amount added was eooPPM.

5はナイロンよりなる封ロリ/グで、負極容器4とカッ
プリングされている。この容器内に0.5カリ電解液と
を収納する。
5 is a sealing roll made of nylon, which is coupled to the negative electrode container 4. A 0.5 potash electrolyte is stored in this container.

従来の電池では水素ガス発生を抑えるために、少なくと
も水銀量は6〜7wt%を必要としていたが、本発明で
は、o、swt%の水化であっても水素ガス発生の抑制
が可能となった。また封口板内面に汚れがあっても支障
はなく、水素過電圧を高めた銅層であるので、少ない水
銀量でも負極容器内面からの水素の発生は認められない
。7はセパレータ、8は含液材である。
In conventional batteries, the amount of mercury needs to be at least 6 to 7 wt% in order to suppress hydrogen gas generation, but in the present invention, it is possible to suppress hydrogen gas generation even when hydration is o, swt%. Ta. Further, even if there is dirt on the inner surface of the sealing plate, there is no problem, and since the copper layer has a high hydrogen overvoltage, no generation of hydrogen from the inner surface of the negative electrode container is observed even if the amount of mercury is small. 7 is a separator, and 8 is a liquid-containing material.

作用 これは、負極容器内面を氷化するによって水素ガス発生
を抑えるのではなく、水素過電圧の高い金属と銅とを合
金化することによって抑制させるためである。ととろが
負極活物質である亜鉛の氷化をOにすると、逆に合金の
効果はなくなる。この原因は明らかでないが、水銀と合
金化の相乗効果が何らかの形で発生したものと思われる
Effect This is because hydrogen gas generation is not suppressed by freezing the inner surface of the negative electrode container, but by alloying a metal with a high hydrogen overvoltage with copper. When Totoro changes the freezing of zinc, which is the negative electrode active material, to O, the effect of the alloy disappears. Although the cause of this is not clear, it is thought that a synergistic effect between mercury and alloying occurred in some way.

実施例 図に示す構造で氷化率1.6%の亜鉛を負極活物質に用
い、電解液には10MのKOHjCZnOを溶解したも
のを用いた本発明の電池人と従来の氷化率が高く、負極
容器内面を銅のみの層とした電池Bについて評価した。
Example The battery of the present invention has a structure shown in the figure, and the ice formation rate is 1.6% using zinc as the negative electrode active material, and the electrolyte is a solution of 10M KOHjCZnO. , Battery B in which the inner surface of the negative electrode container was made of only copper was evaluated.

水銀の公害性が問題となっているが、電池人の実際の使
用水銀量はBの約百の量に減少することが可能となった
Although the pollution of mercury has become a problem, it has become possible to reduce the amount of mercury actually used by battery manufacturers to about 100 times the amount of B.

また両電池を60°Cで保存した時の電池のふくれ数を
調べたところ第1表の通りであった。
In addition, when both batteries were stored at 60°C, the number of bulges in the batteries was investigated and the results were as shown in Table 1.

第1表             n=s。Table 1 n=s.

この結果、本発明の電池人は、水銀の使用量がBの職と
少いにもかかわらず全く問題は認められなかった。一方
、従来の電池Bは、初期より電池のふくれが確認された
。この原因としては、負極容器の銅層の汚れ、キズなど
が考えられ、分解して調べると、銅層の1部に黒変色が
あった。その部分において十分な氷化が進まなかったと
思われる。
As a result, no problems were observed in the battery engineer of the present invention, even though the amount of mercury used was as small as in Job B. On the other hand, in conventional battery B, swelling of the battery was confirmed from the beginning. The cause of this is thought to be dirt, scratches, etc. on the copper layer of the negative electrode container, and when it was disassembled and examined, a part of the copper layer was found to have black discoloration. It seems that sufficient ice formation did not occur in that area.

又、漏液試験においても第2表の結果が得られた。なお
保存条件は温度46°C1相対湿度90%とした。
Also, the results shown in Table 2 were obtained in the liquid leakage test. The storage conditions were a temperature of 46° C. and a relative humidity of 90%.

第2表             n=20本発明の電
池人は2000時間経過でも全く漏液は認められなかっ
た。この電池を分解すると、ナイロンリングと接触して
いる封口板の銅層の部分が全く変色していなく、電解液
の存在も認められなかった。又、負極亜鉛の状態をみる
と初期のままとなっており、黒変色、水銀による亜鉛の
ブロッキング現象がなかった。
Table 2: n=20 In the battery of the present invention, no leakage was observed even after 2000 hours. When this battery was disassembled, the copper layer of the sealing plate in contact with the nylon ring was not discolored at all, and no electrolyte was detected. Furthermore, the condition of the negative electrode zinc remained as it was at the initial stage, and there was no black discoloration or blocking phenomenon of zinc due to mercury.

一方、従来電池BではSOO時間経過で20コ中2コの
漏液が確認された、この電池を分解すると、内圧の上昇
が認められ、電解液がふき出してきて明らかなガス発生
があった。さらに負極容器内面の銅層をみると、前述と
同じく黒変色があった。これは銅層に汚れやキズなどの
原因によって氷化が十分に進まなかった部分が存在し、
ここから水素ガスが発生したものである。
On the other hand, in conventional battery B, leakage was confirmed in 2 out of 20 batteries after the SOO time elapsed. When this battery was disassembled, an increase in internal pressure was observed, and the electrolyte was blown out, causing obvious gas generation. . Furthermore, when looking at the copper layer on the inner surface of the negative electrode container, there was a black discoloration as described above. This is because there are parts of the copper layer where icing has not progressed sufficiently due to dirt, scratches, etc.
This is where hydrogen gas is generated.

本発明では前述のようなふくれや漏液は全くなかった。In the present invention, there was no blistering or leakage as described above.

本発明によれば、さらに小型のボタン電池の開発を可能
にし、負極容器面積に対して絶対水銀量の少ない電池で
は、その効果は一層顕著になる。
According to the present invention, it is possible to develop even smaller button batteries, and the effect becomes even more remarkable in batteries where the absolute amount of mercury is small relative to the area of the negative electrode container.

発明の効果 以上の様に、負極容器内面の銅層を水素過電圧を高めう
る金属で合金化することによって■ 総水銀の使用量を
これまでよりも大幅に低下できる。
As described above, by alloying the copper layer on the inner surface of the negative electrode container with a metal that can increase the hydrogen overvoltage, the total amount of mercury used can be significantly reduced compared to the past.

■ ガス発生による電池のふくれが防止できる。■ Prevents battery swelling due to gas generation.

■ 耐漏液特性の向上がはかれる。■ Improved leakage resistance.

など、安定した特性のアルカリ電池が得られる。Alkaline batteries with stable characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明におけるアルカリ電池の断面図である。 1・・・・・・正極容器、2・・・・・・正極、3・・
・・・・正極リング、4・・・・・・負極容器、6・・
・・・・封口リング、6・・・・・・負極活物質、ア・
・・・・・セパレータ、8・・・・・・含液材。
The figure is a sectional view of an alkaline battery according to the present invention. 1...Positive electrode container, 2...Positive electrode, 3...
...Positive electrode ring, 4...Negative electrode container, 6...
... Sealing ring, 6... Negative electrode active material, a.
... Separator, 8 ... Liquid-containing material.

Claims (2)

【特許請求の範囲】[Claims] (1)亜鉛を主とした負極活物質を収容する負極容器の
内面が銅層よりなり、前記銅層が水素過電圧を高める金
属少なくとも1種を合金化したものであるアルカリ電池
(1) An alkaline battery in which the inner surface of a negative electrode container containing a negative electrode active material mainly composed of zinc is made of a copper layer, and the copper layer is alloyed with at least one metal that increases hydrogen overvoltage.
(2)銅と合金化する金属が、インジウム、カドミウム
、鉛、スズ、タリウム、カルシウム、銀、及びビスマス
からなる群より選ばれた少なくとも1種である特許請求
の範囲第1項記載のアルカリ電池。
(2) The alkaline battery according to claim 1, wherein the metal alloyed with copper is at least one selected from the group consisting of indium, cadmium, lead, tin, thallium, calcium, silver, and bismuth. .
JP59184026A 1984-09-03 1984-09-03 Alkaline battery Pending JPS6161364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59184026A JPS6161364A (en) 1984-09-03 1984-09-03 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59184026A JPS6161364A (en) 1984-09-03 1984-09-03 Alkaline battery

Publications (1)

Publication Number Publication Date
JPS6161364A true JPS6161364A (en) 1986-03-29

Family

ID=16146047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59184026A Pending JPS6161364A (en) 1984-09-03 1984-09-03 Alkaline battery

Country Status (1)

Country Link
JP (1) JPS6161364A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602629B1 (en) 2000-05-24 2003-08-05 Eveready Battery Company, Inc. Zero mercury air cell
US7632605B2 (en) 2005-04-29 2009-12-15 Eveready Battery Co., Inc. Alkaline cell anode casing
WO2009157360A1 (en) 2008-06-25 2009-12-30 株式会社ニコンビジョン Relay zoom system
US7993508B2 (en) 2006-11-01 2011-08-09 Eveready Battery Company, Inc. Method of forming an electrode casing for an alkaline electrochemical cell with reduced gassing
WO2012069449A1 (en) 2010-11-25 2012-05-31 Varta Microbattery Gmbh Housing for mercury-free button cells
US8318340B2 (en) 2006-11-01 2012-11-27 Eveready Battery Company, Inc. Alkaline electrochemical cell with reduced gassing

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602629B1 (en) 2000-05-24 2003-08-05 Eveready Battery Company, Inc. Zero mercury air cell
US7632605B2 (en) 2005-04-29 2009-12-15 Eveready Battery Co., Inc. Alkaline cell anode casing
US7993508B2 (en) 2006-11-01 2011-08-09 Eveready Battery Company, Inc. Method of forming an electrode casing for an alkaline electrochemical cell with reduced gassing
US8318340B2 (en) 2006-11-01 2012-11-27 Eveready Battery Company, Inc. Alkaline electrochemical cell with reduced gassing
US8444840B2 (en) 2006-11-01 2013-05-21 Eveready Battery Company, Inc. Method of forming an electrode casing for an alkaline electrochemical cell with reduced gassing
WO2009157360A1 (en) 2008-06-25 2009-12-30 株式会社ニコンビジョン Relay zoom system
WO2012069449A1 (en) 2010-11-25 2012-05-31 Varta Microbattery Gmbh Housing for mercury-free button cells
DE102010062001A1 (en) 2010-11-25 2012-05-31 Varta Microbattery Gmbh Housing for mercury-free button cells

Similar Documents

Publication Publication Date Title
US5128222A (en) Zinc-alkaline batteries
JPS60175368A (en) Zinc-alkaline primary cell
JPS6161364A (en) Alkaline battery
JPH0371737B2 (en)
JPH0421310B2 (en)
JPH0371738B2 (en)
JPH08222194A (en) Button type alkaline battery
JPH0418671B2 (en)
JP3651852B2 (en) Manganese battery
JPS6154152A (en) Alkaline cell
JPS636749A (en) Zinc alkaline battery
JPS636747A (en) Zince alkaline battery
KR890004989B1 (en) Zinc-alkaline battery
JP2005235596A (en) Button type alkaline battery and its manufacturing method
JPH08222193A (en) Button type alkaline battery
JPH0560225B2 (en)
JPS6273565A (en) Zinc alkaline battery
JPS60175364A (en) Zinc-alkaline primary cell
JPS60175369A (en) Zinc-alkaline primary cell
JPS63178452A (en) Zinc alkaline battery
JPH0622118B2 (en) Zinc alkaline battery
JPS6177260A (en) Zinc alkaline battery
JPH0642369B2 (en) Zinc alkaline battery
JPS63133450A (en) Zinc alkaline battery
JPS63248067A (en) Zinc alkaline battery