JPS6160894B2 - - Google Patents

Info

Publication number
JPS6160894B2
JPS6160894B2 JP56108981A JP10898181A JPS6160894B2 JP S6160894 B2 JPS6160894 B2 JP S6160894B2 JP 56108981 A JP56108981 A JP 56108981A JP 10898181 A JP10898181 A JP 10898181A JP S6160894 B2 JPS6160894 B2 JP S6160894B2
Authority
JP
Japan
Prior art keywords
cross
hot rolling
steel
shrinkage ratio
corrosion cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56108981A
Other languages
Japanese (ja)
Other versions
JPS589918A (en
Inventor
Keiichiro Takitani
Takeo Ueno
Akio Ejima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10898181A priority Critical patent/JPS589918A/en
Publication of JPS589918A publication Critical patent/JPS589918A/en
Publication of JPS6160894B2 publication Critical patent/JPS6160894B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は油田や天然ガス田あるいはそれらの
化石資源を輸送するパイプライン等に好適に使用
される耐硫化物応力腐食割れ性の優れた鋼管の製
造方法に関するものである。 周知のように油田や天然ガス田、あるいはそれ
ら化石資源の輸送において使用される鋼管、例え
ば油井管あるいは油送管等は酸性環境、特に硫化
物雰囲気に曝されて応力腐食割れの危険が高いか
ら、この種の用途に使用される鋼材としては耐硫
化物応力腐食割れ性に優れたものを用いる必要が
ある。 従来、鋼材に耐硫化物応力腐食割れ性を附与す
る手段としては、鋼中のC量を0.40%以上に高め
たり、合金元素特に多量のMo,Vなどを添加し
て、焼入後高温で長時間焼もどしした後、炭化物
を充分に球状化させ、鋼材のかたさをHrc23以下
に調節する方法が知られている。しかしながらこ
の方法では、C量を多量にすれば熱処理中に焼割
れや焼ひずみが発生し易くなる問題が生じ、一方
Mo,V等の合金元素を多量に添加すればこれら
の合金元素が高価であるため製造コストを大幅に
上昇させる問題が生じる。そしてまた前記方法に
おける長時間焼もどしは通常1時間におよび、鋼
材の生産性を低下させる問題がある。さらに前記
方法においては、製造し得る耐硫化物腐食割れ鋼
の強度がかたさにしてせいぜいHRc23以下、すな
わち引張強さに換算して80Kg/mm2程度以下である
という致命的な欠点があり、したがつてそれ以上
の強度が要求される場合には高価な高合金鋼、特
にステンレス鋼を使用せざるを得なかつたのが実
情である。 上述のような事情から、安価な通常の鋼材を素
材として、耐硫化物応力腐食割れ性に優れしかも
強度的にも優れた鋼管を製造する方法の開発が強
く要望されている。 ところで本発明者等は継目無鋼管の製造方法と
して、鋼ビレツトを一次熱間加工により穿孔圧延
し、続いて二次熱間加工により外径調節のための
仕上圧延を行つた後、冷却せずにただちに焼入れ
(直接焼入れ)する方法の開発研究を進めてい
る。このような直接焼入れを適用した継目無鋼管
の製造方法について第1図を参照してさらに詳細
に説明すると、先ず素材としての鋼ビレツト1を
ロータリーフアーネス等の加熱炉2において1200
℃程度以上に加熱し、これをピアサ、エロンゲー
タ、プラグミル、リーラミル等の一連の穿孔圧延
工程3において熱間加工して、最終製品の断面に
近い断面寸法まで加工し、続いてウオーキングビ
ームフアーネス等の再加熱炉4に装入して900℃
程度に再加熱し、その再加熱された鋼材(素管)
をサイザミルあるいはストレツチレデユーサ等の
仕上圧延工程5によつて所定の外径に仕上げ、そ
の後ただちに焼入装置6により焼入れする方法で
ある。このような方法では、鋼ビレツト1の加熱
から焼入れまでが一連続の工程で行なわれるが、
その連続工程の最終段階である焼入れ装置6が何
らかの原因で停止した場合、上流側から加工・処
理されて送られて来る鋼材を焼入れ装置6に近い
段階で系外へ排出して一旦ストツクしておく必要
がある。この場合、一般にはサイザミル等の仕上
圧延工程5が終了した段階、すなわち最終製品の
寸法・形状まで加工された段階で鋼材を系外へ排
出してストツクしておき、その後焼入れ装置の復
旧に伴つて前記ストツクされていた鋼材を再加熱
し、焼入れするのが通常と考えられる。しかしな
がらこの場合には熱間加工後にただちに焼入れす
る所謂直接焼入れではなく、通常の焼入れとなる
から、得られる製品の品質が直接焼入れの場合よ
りも劣り、例えば同一の焼もどし条件を採用した
場合に引張強度が格段に劣る。このような事情か
ら本発明者等は前述のように焼入れ装置6が停止
した場合にサイザミル等の仕上圧延を行う直前、
すなわち再加熱炉4から排出された鋼材をそのま
まクーリングベツド7側へ送り、そこでストツク
することを考えた。そして焼入装置の復旧に伴つ
て、前記ストツクされていた鋼材を再加熱炉4に
おいて再び加熱し、これにサイザミル等の仕上圧
延工程5でわずかに熱間圧延を加えて、ただちに
焼入れする実験を行つたところ、単に強度的に優
れるばかりでなく、耐硫化物応力腐食割れ性に優
れた鋼管が得られる可能性があることを見出し
た。そこでさらに実験を繰返したところ、焼入れ
直前の熱間圧延(仕上圧延)における加工比を調
節することによつて、通常成分の鋼材でも優れた
耐応力腐食割れ性を有するものが得られること、
すなわち前述の要望を満足し得ることを見出し、
この発明をなすに至つたのである。 すなわちこの発明の耐硫化物応力腐食割れ鋼管
の製造方法は、例えば前述のような一連の継目無
鋼管製造工程のサイザミル等の仕上圧延工程の直
前で系外へ排出、ストツクされてAr1変態点以下
に冷却された鋼素管の如く、最終製品の断面寸
法・形状に近い寸法・形状に既に加工されている
鋼管を加熱して特定の範囲の加工比で熱間圧延
し、ただちに直接焼入れするものである。 より具体的には、この発明の方法は、C 0.15
〜0.40%、Si 0.1〜1.0%、Mn 0.4〜2.0%、Al
0.01〜0.10%、残部実質的にFeおよび不可避的不
純物よりなり、かつ製品の断面寸法・形状に近い
断面寸法・形状に予め加工されておりしかもAr1
変態点以下の温度まで冷却されている鋼管を、
Ac3変態点以上、オーステナイト結晶粒粗大化開
始温度以下の温度に加熱して、断面収縮比Rが
0.015以上となるようにサイザもしくはストレツ
チレデユーサにより熱間圧延した後、ただちに焼
入し、その後Ac1変態点以下の温度で焼もどすこ
とを特徴とするものである。但し、ここで断面収
縮比Rは、熱間圧延前後における主圧延方向に対
し直角な断面の面積収縮率、すなわちより正確に
は、熱間圧延前における前記断面の面積をS1、熱
間圧延後の面積をS2とすれば、 R=1−S/S によつてあらわされるものである。 以下この発明の方法をさらに詳細に説明する。 この発明で対象とする鋼材の成分範囲は、前述
のようにC 0.15〜0.40%、Si 0.1〜1.0%、Mn
0.4〜2.0%、Al 0.01〜0.10℃、残部実質的にFe
および不可避的不純物であり、このような成分限
定理由は次の通りである。 Cは0.15%未満では強度が不足し、また耐硫化
物応力腐食割れ性を高めるために必要な90%以上
のマルテンサイト比を確保することが困難であ
り、一方0.40%を越えれば熱処理時に焼割れや焼
歪みが発生し易くなる。 Siは脱酸および強度増加の目的から添加される
が、そのためには0.1%以上が必要であり、一方
Siが1.0%を越えれば靭性が急激に低下する。 Mnは強度および靭性の向上の目的から0.4%以
上添加することが必要であるが、2.0%を越えれ
ば偏析や焼割れが発生し易くなる。 Alは脱酸の目的および鋼中のNと結合して結
晶粒を微細化させるために添加されるが、そのた
めには0.010%以上が必要であり、一方0.10%を
越えればその効果が飽和する。 なおこのほか、耐硫化物応力腐食割れ性をさら
に向上させる目的から、Cu 0.05〜0.5%、Cr
0.05〜2.5%、Mo 0.05〜1.5%、Nb 0.01〜0.1
%、V 0.01〜0.2%、Ti 0.005〜0.1%、B
0.0005〜0.005%、Ca 0.002〜0.005%、REM
0.005〜0.05%のうちから選ばれた1種または2
種以上を用途等に応じて添加しても良い。 この発明の製造方法は上述のような成分範囲の
鋼を素材とするのであるが、ここでこの発明の製
造方法に供する素材は、予め製品断面に近い形
状・寸法に加工されておりしかもAr1変態点以下
の温度に冷却されている素管である。例えば前述
のように第1図に示す如き継目無鋼管の一連の製
造工程において、熱間仕上圧延工程5の直前で系
外へ排出されてAr1変態点以下に冷却された素
管、すなわち穿孔圧延工程3等の一次熱間加工が
既に施されている素管、あるいは第1図における
焼入れ装置6の直前で系外へ排出されてAr1変態
点以下に冷却された素管、すなわち穿孔圧延工程
3等の一次熱間加工および仕上圧延工程5等の二
次熱間圧延が既に施されて、当初予定していた製
品の断面形状・寸法(但し本発明ではさらに若干
の熱間圧延を施すから、本発明の製造方法におけ
る製品の断面形状・寸法とは異なる)に加工され
ている素管などが対象となる。ここで、Ar1変態
点以下に冷却されている素管を使用する理由は、
熱間圧延前に行なわれるオーステナイト化加熱に
際してフエライト→オーステナイト変態を起こす
ことにより結晶粒を微細にすることにある。後述
するように、結晶粒を微細化することは、耐応力
腐食割れ性を向上させるに有効である。このよう
な素管に対し、この発明の方法では先ずAc3変態
点以上、オーステナイト結晶粒粗大化開始温度以
下の温度に加熱する。この加熱は均一にオーステ
ナイト化するとともに鋼中の合金元素を充分に固
溶させるためにAc3変態点以上が必要であるが、
熱間圧延後のオーステナイト結晶粒を微細化する
ため、オーステナイト温度域の可及的に低温度に
加熱することが望ましく、少くともオーステナイ
ト結晶粒粗大化温度以下の温度とする。このよう
に加熱した素材は、ただちに得ようとする製品の
形状、寸法に応じたサイザもしくはストレツチレ
デユーサにより断面収縮比、すなわち主圧延方向
に直角な断面における圧延前の面積S1と圧延後の
面積S2とによつて定まる(1−S2/S1)の値が
0.015以上となるように熱間圧延する。この断面
収縮比が適当であることは後述する実施例に示す
ように本発明者等が実験により見出したのであ
り、断面収縮比を0.015以上とすることによつて
はじめて焼入れ―焼もどし後の鋼材に優れた耐硫
化物応力腐食割れ性が与えられ、断面収縮比が
0.015未満では良好な耐硫化物腐食割れ性が得ら
れない。なおこの熱間圧延における断面収縮比の
上限は特に限定しないが、実施例で示すように耐
硫化物応力腐食割れ性の効果は断面収縮比が
0.025〜0.030程度で飽和し、それ以上断面収縮比
を大きくしても効果は上昇せず、またそもそもこ
の発明で対象とする素材は予め製品に近い断面形
状・寸法に加工されているものであるから、断面
収縮比は通常は0.10程度以下とする。なおまた、
この熱間圧延においては、圧縮荷重をできるだけ
一挙に加えて0.015以上の断面収縮比を得ること
が望ましく、その観点から、3パス程度以下(但
し圧下が加えられた1組のロールを通過する過程
を1パスとする)で断面収縮比0.015以上に圧延
することが望ましい。4パス以上で圧延した場
合、熱間圧延工程全体としての断面収縮比が
0.015以上であつても1パス当りの断面収縮比が
著しく小さくなり、充分な耐硫化物応力腐食割れ
性能が得られなくなるおそれがある。 上述のようにして熱間圧延した鋼管は、これを
ただちに水焼入れする。すなわち臨界温度まで冷
却される以前に焼入れする。この焼入れは、内外
両面に長手方向に沿つた水流、すなわち軸流を流
して冷却する方式を採用することが望ましいがこ
れに限られるものではない。なおこの焼入れは、
通常の治金熱処理でいうところと同様に、Ar1
態点以下まで急冷することを意味することは勿論
である。焼入れした後にはAc1変態点以下に焼も
どしする。この焼もどしは、通常は620℃以上で
行うことが望ましく、また焼もどし後は常法にし
たがつて急冷する。このようにして熱間圧延後、
焼入れ焼もどしすることによりこの発明の方法に
おける最終製品である鋼管が得られる。 なお、この発明の製造方法における素材とし
て、第1図に示される継目無鋼管の製造ラインの
中途からライン外へ排出された素管を用いる場合
には、第1図におけるウオーキングビームフアー
ネス等の再加熱炉4をこの発明の製造方法におけ
る熱間圧延前の加熱に利用することが望ましい。
すなわち、例えば第2図の破線で示すように再加
熱炉4からクーリングベツド7の側への排出・ス
トツクされてAr1変態点以下に冷却された素管を
素材とする場合、第2図の実線で示すようにその
冷却された素管を再加熱炉4に再装入してAc3
態点以上オーステナイト結晶粒粗大化開始温度以
下に加熱し、これをサイザミル、ストレツチレデ
ユーサ等の仕上圧延工程5で断面収縮比0.015以
上に熱間圧延し、焼入れ焼もどしすれば良い。ま
た例えば第3図の破線で示すように、仕上圧延工
程5を経てからライン外のクーリングベツド7′
へ排出されて冷却された鋼管を素材とする場合
も、第3図の実線で示すようにその鋼管を再加熱
炉4に再装入し、再度仕上圧延工程5において断
面収縮比が0.015以上となるように熱間圧延し、
前記同様に焼入れ焼もどしすれば良い。 前述のようにして得られた鋼管は、その耐硫化
物応力腐食割れ性が著しく優れている。その理由
は次のように考えられる。すなわち、熱間圧延の
ための加熱をオーステナイト結晶粒粗大化開始温
度以下(但しAc3点以上)の低い温度とし、かつ
0.015以上の比較的大きい断面収縮比で熱間圧延
するため、熱間圧延後(焼入れ前)のオーステナ
イト結晶粒が著しく微細化されて、焼入れ焼もど
し後の結晶粒も微細化され、これによつてクラツ
クの伝播が阻止されることが第1の理由として挙
げられ、また硫化物応力腐食割れは、酸性腐食環
境下において鋼材に浸入する水素が特に硫化物系
非金属介在物に捕捉されてクラツクが発生し、割
れに至ると考えられているが、断面収縮比が
0.015以上の大きい加工率で熱間圧延することに
よつて、非金属介在物が展伸しさらには分断され
て、水素の捕捉されるサイトが分散することにな
り、その結果水素が分散されて吸着されるためク
ラツクが発生し難くなることが第2図の理由と考
えられる。 なお、結晶粒度の点だけから見れば、優れた耐
硫化物応力腐食割れ性を得るためには、熱間圧延
後のオーステナイト結晶粒度(JIS)が5.0以上あ
ることが望ましく、そのためには、例えば鋼材の
化学成分に結晶粒を微細化する添加元素の添加量
が少なければ熱間圧延における断面収縮比を大き
くし、反対にそれらの合金元素の添加量が多けれ
ば熱間圧延における断面収縮比を小さくして良い
と考えられる。しかしながら本発明者等の実験に
よれば、同じ結晶粒度でもそれが断面収縮比を大
にして得られた場合と合金元素の添加量を多くし
て得られた場合とを比較すれば前者の方が良好な
耐硫化物応力腐食割れ性が発揮されることが確認
されている。その理由は前述のように耐硫化物応
力腐食割れ性の向上が単に結晶粒度のみによるの
ではなく、熱間圧延による介在物の分断が大きく
影響しているためであると思われる。 以下にこの発明の実施例を記す。 実施例 第1表に示される3種の鋼材A〜Cについて予
め熱間加工により直径50〜130mm、肉厚6〜15mm
の素管に加工しておき、これを素材としてウオー
キングビームフアーネスにより890〜925℃に充分
に均熱した後、孔型熱間圧延機により1〜3パス
にて各種の断面収縮比となるように熱間圧延し
た。続いてただちに内外両面軸流焼入れ装置によ
り水焼入れし、その後620℃〜680℃程度に焼もど
しして、各鋼材の降伏強さ(σy)を80Kgf/mm2
にそろえた。
The present invention relates to a method for producing steel pipes with excellent sulfide stress corrosion cracking resistance, which are suitably used in oil fields, natural gas fields, pipelines for transporting fossil resources thereof, and the like. As is well known, steel pipes used in oil fields, natural gas fields, or in the transportation of fossil resources, such as oil country tubular goods or oil transmission pipes, are exposed to acid environments, especially sulfide atmospheres, and are at high risk of stress corrosion cracking. The steel used for this type of application must have excellent resistance to sulfide stress corrosion cracking. Conventionally, methods for imparting sulfide stress corrosion cracking resistance to steel materials include increasing the amount of C in the steel to 0.40% or more, adding alloying elements, especially large amounts of Mo and V, and heating the steel to high temperatures after quenching. A method is known in which the hardness of the steel material is adjusted to H rc 23 or less by sufficiently spheroidizing the carbides after long-term tempering. However, this method has the problem that if the amount of C is increased, quenching cracks and quenching distortions are likely to occur during heat treatment.
If large amounts of alloying elements such as Mo and V are added, a problem arises in that the manufacturing cost increases significantly because these alloying elements are expensive. Furthermore, the long-time tempering in the above method usually lasts for one hour, which poses a problem of lowering the productivity of the steel material. Furthermore, the above method has a fatal drawback in that the strength of the sulfide corrosion cracking-resistant steel that can be manufactured is at most H Rc 23 or less, that is, about 80 kg/mm 2 or less in terms of tensile strength. Therefore, when higher strength is required, the reality is that expensive high-alloy steel, especially stainless steel, has to be used. In view of the above-mentioned circumstances, there is a strong demand for the development of a method for manufacturing steel pipes that have excellent resistance to sulfide stress corrosion cracking and excellent strength using inexpensive ordinary steel materials. By the way, the present inventors have developed a method for manufacturing seamless steel pipes in which a steel billet is first hot-worked to be pierced and rolled, then finished to adjust the outside diameter through a second hot-worked process, and then cooled. We are currently conducting research and development on a method for immediately quenching (direct quenching). The manufacturing method of seamless steel pipes using such direct quenching will be explained in more detail with reference to FIG.
It is heated to a temperature of about 30°F or higher, and then hot worked in a series of piercing and rolling processes 3 using a piercer, elongator, plug mill, reeler mill, etc. to a cross-sectional dimension close to that of the final product, and then processed using a walking beam furnace, etc. Charged to reheating furnace 4 and heated to 900℃
The reheated steel material (raw pipe) is reheated to a certain degree.
In this method, the material is finished to a predetermined outer diameter by a finish rolling step 5 using a sizer mill or a stretch reducer, and then immediately hardened by a hardening device 6. In this method, the process from heating the steel billet 1 to quenching is performed in one continuous process.
If the quenching device 6, which is the final stage of the continuous process, stops for some reason, the steel material that has been processed and sent from the upstream side is discharged from the system at a stage close to the quenching device 6 and temporarily stored. It is necessary to keep it. In this case, generally, the steel material is discharged from the system and stored at the stage where the finish rolling process 5 of the sizer mill, etc. is completed, that is, at the stage where it has been processed to the dimensions and shape of the final product, and then, as the quenching equipment is restored, the steel material is stored. It is considered normal to then reheat and harden the stocked steel material. However, in this case, the product is not so-called direct quenching, which is quenching immediately after hot working, but normal quenching, so the quality of the product obtained is inferior to that of direct quenching.For example, when the same tempering conditions are used, Tensile strength is significantly inferior. Under these circumstances, the inventors of the present invention have proposed that when the quenching device 6 is stopped as described above, immediately before finishing rolling using a sizer mill or the like,
That is, we considered sending the steel discharged from the reheating furnace 4 as it is to the cooling bed 7 side and storing it there. With the restoration of the quenching equipment, an experiment was carried out in which the stocked steel was reheated in the reheating furnace 4, then slightly hot rolled in a finish rolling process 5 such as a sizer mill, and immediately quenched. As a result, they discovered that it is possible to obtain a steel pipe that not only has excellent strength but also excellent resistance to sulfide stress corrosion cracking. After further repeated experiments, we found that by adjusting the processing ratio during hot rolling (finish rolling) immediately before quenching, it was possible to obtain a steel material with excellent stress corrosion cracking resistance even with normal composition.
In other words, it was discovered that the above requirements could be satisfied,
This led to this invention. In other words, in the method for producing a sulfide stress corrosion cracking-resistant steel pipe of the present invention, for example, the steel pipe is discharged from the system and stored immediately before the finish rolling process such as a sizer mill in the series of seamless steel pipe manufacturing processes as described above, and the Ar 1 transformation point is reached. A steel pipe that has already been processed to a cross-sectional size and shape close to the cross-sectional size and shape of the final product, such as the cooled steel pipe described below, is heated, hot-rolled at a processing ratio within a specific range, and immediately quenched directly. It is something. More specifically, the method of this invention provides C 0.15
~0.40%, Si 0.1~1.0%, Mn 0.4~2.0%, Al
0.01 to 0.10%, the remainder substantially consisting of Fe and unavoidable impurities, and has been pre-processed to a cross-sectional size and shape close to that of the product, and is Ar 1
A steel pipe that has been cooled to a temperature below its transformation point,
By heating to a temperature above the Ac 3 transformation point and below the austenite grain coarsening start temperature, the cross-sectional shrinkage ratio R is
It is characterized by hot rolling with a sizer or stretch reducer to a thickness of 0.015 or higher, immediately quenching, and then tempering at a temperature below the Ac 1 transformation point. However, here, the cross-sectional shrinkage ratio R is the area shrinkage rate of the cross section perpendicular to the main rolling direction before and after hot rolling, that is, more precisely, the area of the cross section before hot rolling is S 1 , If the subsequent area is S2 , it is expressed by R=1- S2 / S1 . The method of the present invention will be explained in more detail below. As mentioned above, the composition range of the steel material targeted by this invention is C 0.15-0.40%, Si 0.1-1.0%, Mn
0.4~2.0%, Al 0.01~0.10℃, balance essentially Fe
and unavoidable impurities, and the reason for limiting these components is as follows. If C is less than 0.15%, the strength will be insufficient, and it will be difficult to secure a martensite ratio of 90% or more, which is necessary to improve sulfide stress corrosion cracking resistance. Cracks and sintering distortions are more likely to occur. Si is added for the purpose of deoxidizing and increasing strength, but for this purpose 0.1% or more is required;
If Si exceeds 1.0%, toughness decreases rapidly. It is necessary to add Mn in an amount of 0.4% or more for the purpose of improving strength and toughness, but if it exceeds 2.0%, segregation and quench cracking are likely to occur. Al is added for the purpose of deoxidation and to combine with N in steel to refine the grains, but for this purpose, it needs to be at least 0.010%, while if it exceeds 0.10%, its effect will be saturated. . In addition, for the purpose of further improving sulfide stress corrosion cracking resistance, Cu 0.05~0.5%, Cr
0.05~2.5%, Mo 0.05~1.5%, Nb 0.01~0.1
%, V 0.01-0.2%, Ti 0.005-0.1%, B
0.0005~0.005%, Ca 0.002~0.005%, REM
1 or 2 selected from 0.005-0.05%
More than one species may be added depending on the purpose and the like. The manufacturing method of this invention uses steel having the above-mentioned composition range as a material, but the material used in the manufacturing method of this invention has been processed in advance to a shape and size close to the cross section of the product, and is Ar 1 This is a raw tube that is cooled to a temperature below its transformation point. For example, in a series of manufacturing processes for seamless steel pipes as shown in FIG . A raw pipe that has already been subjected to primary hot working such as rolling process 3, or a raw pipe that has been discharged from the system and cooled to below the Ar 1 transformation point just before the quenching device 6 in Fig. 1, that is, a raw pipe that has been subjected to piercing rolling. The primary hot processing such as step 3 and the secondary hot rolling such as finish rolling step 5 have already been performed, and the cross-sectional shape and dimensions of the product as originally planned (however, in the present invention, some additional hot rolling may be performed) This applies to raw pipes that have been processed to have a cross-sectional shape and dimensions (different from the cross-sectional shape and dimensions of the product in the manufacturing method of the present invention). Here, the reason for using a raw tube that has been cooled to below the Ar 1 transformation point is as follows.
The purpose is to make crystal grains finer by causing ferrite to austenite transformation during austenitizing heating performed before hot rolling. As will be described later, making crystal grains finer is effective in improving stress corrosion cracking resistance. In the method of the present invention, such a raw pipe is first heated to a temperature above the Ac 3 transformation point and below the austenite crystal grain coarsening starting temperature. This heating requires a temperature above the Ac 3 transformation point in order to uniformly transform the steel into austenite and to sufficiently dissolve the alloying elements in the steel.
In order to refine the austenite crystal grains after hot rolling, it is desirable to heat the austenite crystal grains to a temperature as low as possible in the austenite temperature range, and the temperature is at least below the austenite crystal grain coarsening temperature. The material heated in this way is immediately processed using a sizer or stretch reducer according to the shape and dimensions of the product to be obtained, to determine the cross-sectional shrinkage ratio, that is, the area S 1 before rolling and the area S 1 after rolling in a cross section perpendicular to the main rolling direction. The value of (1-S 2 /S 1 ) determined by the area S 2 of
Hot rolled to a value of 0.015 or higher. The present inventors found through experiments that this cross-sectional shrinkage ratio is appropriate, as shown in the examples described later, and by setting the cross-sectional shrinkage ratio to 0.015 or more, the steel material after quenching and tempering can be improved. has excellent sulfide stress corrosion cracking resistance and a low cross-sectional shrinkage ratio.
If it is less than 0.015, good sulfide corrosion cracking resistance cannot be obtained. The upper limit of the cross-sectional shrinkage ratio in hot rolling is not particularly limited, but as shown in the examples, the effect of sulfide stress corrosion cracking resistance depends on the cross-sectional shrinkage ratio.
It is saturated at about 0.025 to 0.030, and the effect does not increase even if the cross-sectional shrinkage ratio is increased beyond that, and in the first place, the material targeted by this invention is one that has been processed in advance to have a cross-sectional shape and dimensions similar to those of the product. Therefore, the cross-sectional shrinkage ratio is usually about 0.10 or less. Furthermore,
In this hot rolling, it is desirable to obtain a cross-sectional shrinkage ratio of 0.015 or more by applying compressive load as much as possible at once. It is desirable to roll the sheet to a cross-sectional shrinkage ratio of 0.015 or more. When rolling with 4 passes or more, the cross-sectional shrinkage ratio of the entire hot rolling process is
Even if it is 0.015 or more, the cross-sectional shrinkage ratio per pass becomes extremely small, and there is a possibility that sufficient sulfide stress corrosion cracking resistance cannot be obtained. The steel pipe hot rolled as described above is immediately water quenched. That is, it is hardened before being cooled to a critical temperature. It is preferable that this quenching method employs a method of cooling by flowing a water stream along the longitudinal direction on both the inner and outer surfaces, that is, an axial flow, but the method is not limited to this. This quenching is
Of course, this means rapid cooling to below the Ar 1 transformation point, as in normal metallurgical heat treatment. After quenching, it is tempered to below the Ac 1 transformation point. This tempering is usually preferably carried out at a temperature of 620°C or higher, and after tempering, it is rapidly cooled in a conventional manner. In this way, after hot rolling,
By quenching and tempering, a steel pipe, which is the final product of the method of this invention, is obtained. In addition, when using raw pipe discharged from the middle of the seamless steel pipe manufacturing line shown in FIG. 1 as a raw material in the manufacturing method of this invention, the walking beam furnace, etc. shown in FIG. It is desirable to use the reheating furnace 4 for heating before hot rolling in the manufacturing method of the present invention.
That is, for example, if the material is a raw tube that has been discharged and stored from the reheating furnace 4 to the cooling bed 7 side and cooled to below the Ar 1 transformation point as shown by the broken line in FIG. As shown by the solid line, the cooled raw tube is reinserted into the reheating furnace 4 and heated to a temperature above the Ac 3 transformation point and below the austenite grain coarsening starting temperature, and then finished using a sizer mill, stretch reducer, etc. In the rolling step 5, the material may be hot rolled to a cross-sectional shrinkage ratio of 0.015 or more, and then quenched and tempered. For example, as shown by the broken line in FIG.
Even when using steel pipes that have been discharged to and cooled as raw materials, the steel pipes are re-charged into the reheating furnace 4 as shown by the solid line in Fig. 3, and the cross-sectional shrinkage ratio is 0.015 or more in the finish rolling process 5 again. Hot rolled to give
It may be quenched and tempered in the same manner as above. The steel pipe obtained as described above has excellent resistance to sulfide stress corrosion cracking. The reason may be as follows. That is, the heating for hot rolling is carried out at a low temperature below the austenite grain coarsening starting temperature (however, Ac 3 points or higher), and
Because hot rolling is performed with a relatively large cross-sectional shrinkage ratio of 0.015 or more, the austenite crystal grains after hot rolling (before quenching) are significantly refined, and the crystal grains after quenching and tempering are also refined. The first reason for this is that the propagation of cracks is inhibited, and sulfide stress corrosion cracking is caused by hydrogen penetrating into steel materials in an acidic corrosion environment, which is trapped especially in sulfide-based nonmetallic inclusions. is thought to occur and lead to cracking, but the cross-sectional shrinkage ratio
By hot rolling at a large processing rate of 0.015 or more, the nonmetallic inclusions are expanded and further divided, and the sites where hydrogen is captured are dispersed, and as a result, the hydrogen is dispersed. The reason for Fig. 2 is thought to be that cracks are less likely to occur due to adsorption. In addition, from the viewpoint of grain size alone, in order to obtain excellent sulfide stress corrosion cracking resistance, it is desirable that the austenite grain size (JIS) after hot rolling is 5.0 or more. If the amount of additive elements that refine the crystal grains added to the chemical composition of the steel material is small, the cross-sectional shrinkage ratio during hot rolling will increase.On the other hand, if the amount of those alloying elements added is large, the cross-sectional shrinkage ratio during hot rolling will increase. It may be better to make it smaller. However, according to experiments conducted by the present inventors, when comparing the case where the grain size is obtained by increasing the cross-sectional shrinkage ratio and the case where it is obtained by increasing the amount of alloying elements added, the former is better. It has been confirmed that this material exhibits good resistance to sulfide stress corrosion cracking. The reason for this is thought to be that, as mentioned above, the improvement in sulfide stress corrosion cracking resistance is not simply due to the grain size, but is largely influenced by the fragmentation of inclusions due to hot rolling. Examples of this invention are described below. Example Three types of steel materials A to C shown in Table 1 were pre-hot worked to a diameter of 50 to 130 mm and a wall thickness of 6 to 15 mm.
This material is processed into a raw material tube, and after being thoroughly heated to 890-925℃ using a walking beam furnace, it is processed into various cross-sectional shrinkage ratios in 1-3 passes using a slotted hot rolling mill. It was hot rolled. Next, the steel materials were immediately water quenched using an axial flow hardening device on both the inside and outside surfaces, and then tempered to approximately 620℃ to 680℃ to increase the yield strength (σy) of each steel material to 80Kgf/mm 2
Aligned.

【表】 上述の実施例により得られた各鋼材に対し、
NACE法に準拠して硫化物応力腐食割れ試験を行
つた。すなわち、鋼材の中心部から採取した直径
2.54mmの丸棒平滑試験片を、945gの水に対し塩
化ナトリウム50gおよび氷酢酸5gを加えた硫化
水素飽和水溶液中に浸漬し、降伏強さσyに対し
50〜100%の引張応力を負荷して常温常圧で30日
間経過した後、割れの有無を観察した。割れを発
生しない最高応力を臨界応力(σth)として、硫
化物応力腐食割れ抵抗性をσth/σyで評価し
た。その値を各成分の鋼材の各断面収縮比Rに対
応して第4図に示す。この硫化物応力腐食割れ抵
抗性σth/σyの値が0.75以上であれば耐硫化物
応力腐食割れ抵抗性が良好であると判断できる
が、第4図から明らかなように、断面収縮比Rが
0.010から0.020の範囲でσth/σyの値が急上昇
し、断面収縮比Rが0.015以上であればいずれの
成分の鋼材においてもσth/σyが0.75以上を確
保することができた。 さらに別の実施例として、前記の第1表に示す
成分の鋼A,B,Cにつき、前記同様に予め素管
に加工しておきかつAr1変態点以下に冷却してお
いてものを素材とし、その素材鋼管を加熱後、サ
イザもしくはストレツチレデユーサにより熱間圧
延し、さらに焼入れや焼もどしを行なつたので、
その具体的条件を第2表に示す。また得られた鋼
管の降伏強さおよび硫化物応力腐食割れ抵抗性
(σth/σy)を前述と同様にして調べた結果を第
2表に併せて示す。また比較例として、熱間圧延
前の加熱温度が高過ぎる例(No.6)、最終の熱間
圧延における断面収縮比Rが0.015に満たない例
(No.7,,No.8,No.11)、ストレツチレデユーサも
しくはサイザによる熱間圧延前に一旦Ar1変態点
以下に冷却しなかつた例(No.9,No.10:但しNo.10
は最終熱間圧延における断面収縮比Rが0.015に
満たない例でもある)について、第2表に併せて
示す。 第2表から、この発明の方法による場合(No.1
〜No.5)はいずれも耐硫化物応力腐食割れ性が優
れていることが明らかである。
[Table] For each steel material obtained in the above example,
A sulfide stress corrosion cracking test was conducted in accordance with the NACE method. In other words, the diameter taken from the center of the steel material
A 2.54 mm round bar smooth specimen was immersed in a hydrogen sulfide saturated aqueous solution prepared by adding 50 g of sodium chloride and 5 g of glacial acetic acid to 945 g of water.
After 30 days at room temperature and normal pressure with a tensile stress of 50 to 100% applied, the presence or absence of cracks was observed. Sulfide stress corrosion cracking resistance was evaluated as σth/σy, with the highest stress at which cracking does not occur as the critical stress (σth). The values are shown in FIG. 4 in correspondence with each cross-sectional shrinkage ratio R of the steel material of each component. If the value of sulfide stress corrosion cracking resistance σth/σy is 0.75 or more, it can be judged that the sulfide stress corrosion cracking resistance is good, but as is clear from Fig. 4, the cross-sectional shrinkage ratio R is
The value of σth/σy increased rapidly in the range from 0.010 to 0.020, and if the cross-sectional shrinkage ratio R was 0.015 or more, it was possible to secure σth/σy of 0.75 or more for steel materials of any composition. As another example, steels A, B, and C having the composition shown in Table 1 above are processed into raw tubes in the same manner as above and cooled to below the Ar 1 transformation point. After heating the material steel pipe, it was hot rolled using a sizer or stretch reducer, and then quenched and tempered.
The specific conditions are shown in Table 2. Furthermore, the yield strength and sulfide stress corrosion cracking resistance (σ thy ) of the obtained steel pipes were investigated in the same manner as described above, and the results are also shown in Table 2. Comparative examples include an example where the heating temperature before hot rolling is too high (No. 6), and an example where the cross-sectional shrinkage ratio R in the final hot rolling is less than 0.015 (No. 7, No. 8, No. 8). 11) Example of not cooling to below the Ar 1 transformation point before hot rolling with a stretch reducer or sizer (No. 9, No. 10: However, No. 10
is also an example in which the cross-sectional shrinkage ratio R in the final hot rolling is less than 0.015) is also shown in Table 2. From Table 2, in the case of the method of this invention (No. 1
It is clear that all of No. 5) have excellent sulfide stress corrosion cracking resistance.

【表】【table】

【表】 前述の説明で明らかなようにこの発明の製造方
法によれば、硫化物応力腐食割れに対する抵抗性
に優れた鋼管を、安価な通常成分の鋼を素材とし
て、簡単かつ容易に製造することができ、したが
つて油井管や油送管等に適した耐硫化物応力腐食
割れ性鋼材を低コストで提供することができる。
[Table] As is clear from the above description, according to the manufacturing method of the present invention, a steel pipe with excellent resistance to sulfide stress corrosion cracking can be simply and easily manufactured using inexpensive steel with ordinary components. Therefore, a sulfide stress corrosion cracking resistant steel material suitable for oil country tubular goods, oil transmission pipes, etc. can be provided at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の背景としての継目無鋼管の
製造工程の一例を示すブロツク図、第2図および
第3図はそれぞれ継目無鋼管の製造工程にこの発
明の方法を適用した列を示すブロツク図、第4図
はこの発明の実施例における断面収縮比Rと硫化
物応力腐食割れ抵抗性(σth/σy)との関係を
示すグラフである。
FIG. 1 is a block diagram showing an example of the manufacturing process of seamless steel pipes as the background of this invention, and FIGS. 2 and 3 are block diagrams showing the series in which the method of this invention is applied to the manufacturing process of seamless steel pipes. FIG. 4 is a graph showing the relationship between cross-sectional shrinkage ratio R and sulfide stress corrosion cracking resistance (σth/σy) in an example of the present invention.

Claims (1)

【特許請求の範囲】 1 C0.15〜0.40%(重量%、以下同じ)、Si0.1
〜1.0%、Mn0.4〜2.0%、Al0.01〜0.10%、残部
実質的にFeおよび不可避的不純物からなり、か
つ予め製品の断面形状・寸法に近い断面形状・寸
法に加工されかつAr1変態点以下の温度まで冷却
されている鋼管を素材とし、その素材をAc3変態
点以上、オーステナイト結晶粒粗大化開始温度以
下の温度に加熱して、下記(1)式で定まる断面収縮
比Rが0.015以上となるようにサイザもしくはス
トレツチレデユーサにより熱間圧延した後、ただ
ちに焼入れし、その後Ac1変態点以下の温度で焼
もどしすることを特徴とする耐硫化物応力腐食割
れ性に優れた鋼管の製造方法。 R=1−S/S …(1) 但し、S1は熱間圧延前における主圧延方向に対
し直角をなす断面の面積、S2は熱間圧延後におけ
る主圧延方向に対し直角をなす断面の面積をあら
わす。 2 前記熱間圧延において断面収縮比Rが0.015
以上0.10以下となるように圧延する特許請求の範
囲第1項記載の製造方法。
[Claims] 1 C0.15 to 0.40% (weight%, same hereinafter), Si0.1
~1.0%, Mn0.4~2.0%, Al0.01~0.10%, the remainder essentially consisting of Fe and unavoidable impurities, and has been processed in advance to have a cross-sectional shape and dimensions close to the cross-sectional shape and dimensions of the product, and Ar 1 A steel pipe that has been cooled to a temperature below the transformation point is used as a material, and the material is heated to a temperature above the Ac 3 transformation point and below the austenite grain coarsening start temperature, and the cross-sectional shrinkage ratio R determined by the following equation (1) is calculated. Excellent sulfide stress corrosion cracking resistance characterized by hot rolling with a sizer or stretch reducer so that the Ac method for manufacturing steel pipes. R=1- S2 / S1 ...(1) However, S1 is the area of the cross section perpendicular to the main rolling direction before hot rolling, and S2 is the area perpendicular to the main rolling direction after hot rolling. Represents the area of the cross section. 2 The cross-sectional shrinkage ratio R in the hot rolling is 0.015.
2. The manufacturing method according to claim 1, wherein the manufacturing method is rolled to a temperature of 0.10 or less.
JP10898181A 1981-07-11 1981-07-11 Production of sulfide stress corrosion cracking resistant steel material Granted JPS589918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10898181A JPS589918A (en) 1981-07-11 1981-07-11 Production of sulfide stress corrosion cracking resistant steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10898181A JPS589918A (en) 1981-07-11 1981-07-11 Production of sulfide stress corrosion cracking resistant steel material

Publications (2)

Publication Number Publication Date
JPS589918A JPS589918A (en) 1983-01-20
JPS6160894B2 true JPS6160894B2 (en) 1986-12-23

Family

ID=14498548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10898181A Granted JPS589918A (en) 1981-07-11 1981-07-11 Production of sulfide stress corrosion cracking resistant steel material

Country Status (1)

Country Link
JP (1) JPS589918A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH044125Y2 (en) * 1987-12-25 1992-02-06

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067623A (en) * 1983-09-21 1985-04-18 Kawasaki Steel Corp Preparation of high strength low carbon seamless steel pipe by direct hardening method
JPS6254021A (en) * 1985-05-23 1987-03-09 Kawasaki Steel Corp Manufacture of high strength seamless steel pipe superior in sulfide stress corrosion cracking resistance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52152814A (en) * 1976-06-14 1977-12-19 Nippon Steel Corp Thermo-mechanical treatment of seamless steel pipe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52152814A (en) * 1976-06-14 1977-12-19 Nippon Steel Corp Thermo-mechanical treatment of seamless steel pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH044125Y2 (en) * 1987-12-25 1992-02-06

Also Published As

Publication number Publication date
JPS589918A (en) 1983-01-20

Similar Documents

Publication Publication Date Title
JP4632000B2 (en) Seamless steel pipe manufacturing method
US9708681B2 (en) High-strength seamless steel pipe for oil well use having excellent resistance to sulfide stress cracking
EP2824198B1 (en) Method for producing seamless steel pipe having high-strength and excellent sulfide stress cracking resistance
US6846371B2 (en) Method for making high-strength high-toughness martensitic stainless steel seamless pipe
EP3354756B1 (en) Online-controlled seamless steel tube cooling process and seamless steel tube manufacturing method with effective grain refinement
JP5146051B2 (en) Plate thickness excellent in toughness and deformability: Steel material for high-strength steel pipes of 25 mm or more and method for producing the same
EP2548987A1 (en) Seamless steel pipe for steam injection, and method of manufacturing same
US10233520B2 (en) Low-alloy steel pipe for an oil well
EP2843072B1 (en) Seamless steel pipe and method for manufacturing same
JPH0741856A (en) Production of high strength steel pipe excellent in sulfide stress corrosion cracking resistance
JP2015086412A (en) Device array for manufacturing seamless steel pipes, and method for manufacturing high-strength stainless seamless steel pipe for oil wells using the same
JP2017031493A (en) Manufacturing method of stainless steel pipe
JPH04231414A (en) Production of highly corrosion resistant oil well pipe
JPH0598350A (en) Production of line pipe material having high strength and low yield ratio for low temperature use
JP2018035381A (en) Production method of stainless steel tube
JP6202010B2 (en) Manufacturing method of high-strength duplex stainless steel seamless steel pipe
JPH0545651B2 (en)
JP2003105441A (en) METHOD FOR MANUFACTURING SEAMLESS TUBE OF 13 Cr MARTENSITIC STAINLESS STEEL HAVING HIGH STRENGTH AND HIGH TOUGHNESS
JPS6160894B2 (en)
JP2687841B2 (en) Low yield ratio high strength steel pipe manufacturing method
JP2001247931A (en) Non-heattreated high strength seamless steel pipe and its production method
JP3118623B2 (en) Method for producing non-heat treated electric resistance welded oil well pipe having tensile strength of 800 MPa or more
JP2002060909A (en) High strength martensitic stainless steel pipe for oil well excellent in balance of strength-toughness and its production method
JP2705284B2 (en) Manufacturing method of high strength seamless steel pipe
JPH0250915A (en) Production of low alloy high tension seamless steel pipe having fine grained structure