JP6202010B2 - Manufacturing method of high-strength duplex stainless steel seamless steel pipe - Google Patents

Manufacturing method of high-strength duplex stainless steel seamless steel pipe Download PDF

Info

Publication number
JP6202010B2
JP6202010B2 JP2015006805A JP2015006805A JP6202010B2 JP 6202010 B2 JP6202010 B2 JP 6202010B2 JP 2015006805 A JP2015006805 A JP 2015006805A JP 2015006805 A JP2015006805 A JP 2015006805A JP 6202010 B2 JP6202010 B2 JP 6202010B2
Authority
JP
Japan
Prior art keywords
temperature
less
phase
group
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015006805A
Other languages
Japanese (ja)
Other versions
JP2016132789A (en
Inventor
俊輔 佐々木
俊輔 佐々木
勝村 龍郎
龍郎 勝村
裕己 牛田
裕己 牛田
加藤 康
康 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015006805A priority Critical patent/JP6202010B2/en
Publication of JP2016132789A publication Critical patent/JP2016132789A/en
Application granted granted Critical
Publication of JP6202010B2 publication Critical patent/JP6202010B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、継目無鋼管の製造方法に係り、とくに低温靭性に優れた高強度2相ステンレス継目無鋼管の製造方法に関する。なお、高強度とは降伏強さが654MPa以上であり、低温靭性に優れるとは、−10℃におけるシャルピー試験の吸収エネルギーが50J以上のものをいう。   The present invention relates to a method for producing a seamless steel pipe, and more particularly to a method for producing a high-strength duplex stainless steel seamless steel pipe excellent in low temperature toughness. High strength means that the yield strength is 654 MPa or more and that the low temperature toughness is excellent means that the absorbed energy of the Charpy test at −10 ° C. is 50 J or more.

近年、世界的なエネルギー消費量の増大による、原油等のエネルギー価格の高騰や、石油資源の枯渇という観点から、従来、省みられなかったような深度が深い油田(深層油田)や、硫化水素等を含む、いわゆるサワー環境下にある厳しい腐食環境の油田やガス田や、さらには厳しい気象環境の極北における油田やガス田等において、エネルギー資源開発が盛んに行われている。このような環境下で使用される鋼材には、高強度で、かつ優れた耐食性(耐サワー性)や、さらには優れた低温靭性を兼ね備えた材質を有することが要求されている。また、鋼管肉厚も薄肉から厚肉まで様々なものが要求されている。   In recent years, from the viewpoint of soaring energy prices such as crude oil due to an increase in global energy consumption, and the depletion of petroleum resources, deep oil fields (deep oil fields) and hydrogen sulfide that have not been previously excluded Energy resources are being actively developed in oil fields and gas fields in severe corrosive environments under a so-called sour environment, and in oil fields and gas fields in the extreme north of severe weather environments. A steel material used in such an environment is required to have a material having high strength and excellent corrosion resistance (sour resistance) and excellent low temperature toughness. Also, various steel pipe thicknesses are required from thin to thick.

従来から、炭酸ガスCO、塩素イオンCl等を含む環境の油田、ガス田では、採掘に使用する鋼材として13%Crマルテンサイト系ステンレス鋼が多く使用されている。しかし、13%Crマルテンサイト系ステンレス鋼はサワー環境において十分な耐食性を持たないため、最近ではC量を低減し、Cr量とNi量を増加させた2相ステンレス鋼の使用も拡大している。 Conventionally, carbon dioxide CO 2, chloride ion Cl - oilfield environment and the like, in the gas field, 13% Cr martensitic stainless steel is often used as a steel for use in mining. However, since 13% Cr martensitic stainless steel does not have sufficient corrosion resistance in a sour environment, recently, the use of duplex stainless steel with reduced C content and increased Cr content and Ni content has been expanded. .

例えば、特許文献1には、耐食性に優れた油井用高強度ステンレス鋼管の製造方法が記載されている。特許文献1に記載された技術では、mass%で、C:0.005〜0.050%、Si:0.05〜0.50%、Mn:0.20〜1.80%、Cr:15.5〜18%、Ni:1.5〜5%、Mo:1〜3.5%、V:0.02〜0.20%、N:0.01〜0.15%、O:0.006%以下を含有し、Cr+0.65Ni+0.6Mo+0.55Cu−20C≧19.5およびCr+Mo+0.3Si−43.5C−0.4Mn−Ni−0.3Cu−9N≧11.5を満足する組成を有する鋼管素材を加熱し、熱間加工により造管して、造管後、空冷以上の冷却速度で室温まで冷却して所定寸法の継目無鋼管とし、ついで継目無鋼管を、850℃以上の温度に再加熱し空冷以上の冷却速度で100℃以下まで冷却し、ついで700℃以下の温度に加熱する焼入れ−焼戻処理を施すことにより、体積率で10〜60%のフェライト相を含み残部がマルテンサイト相である組織を有し、降伏強さが654MPa以上の油井用高強度ステンレス鋼管を得ることができるとしている。これにより、高強度で、COやClを含む、230℃までの高温の厳しい腐食環境下においても充分な耐食性を有し、しかも−40℃での吸収エネルギーが50J以上の高靭性を有する鋼管であるとしている。 For example, Patent Document 1 describes a method for producing a high-strength stainless steel pipe for oil wells having excellent corrosion resistance. In the technique described in Patent Document 1, in mass%, C: 0.005 to 0.050%, Si: 0.05 to 0.50%, Mn: 0.20 to 1.80%, Cr: 15 5 to 18%, Ni: 1.5 to 5%, Mo: 1 to 3.5%, V: 0.02 to 0.20%, N: 0.01 to 0.15%, O: 0.0. 006% or less and having a composition satisfying Cr + 0.65Ni + 0.6Mo + 0.55Cu-20C ≧ 19.5 and Cr + Mo + 0.3Si-43.5C-0.4Mn-Ni-0.3Cu-9N ≧ 11.5 The steel pipe material is heated and formed by hot working. After the pipe formation, the steel pipe is cooled to room temperature at a cooling rate higher than air cooling to obtain a seamless steel pipe of a predetermined size, and then the seamless steel pipe is heated to a temperature of 850 ° C. or higher. Reheat and cool to 100 ° C or lower at a cooling rate higher than air cooling, then 700 ° C By applying a quenching-tempering treatment that heats to a lower temperature, the structure has a structure in which a ferrite phase of 10 to 60% by volume and the balance is a martensite phase, and the yield strength is 654 MPa or more. Strength stainless steel pipes can be obtained. As a result, it has high strength and has sufficient corrosion resistance even under severe corrosive environments up to 230 ° C., including CO 2 and Cl , and has high toughness with an absorbed energy at −40 ° C. of 50 J or more. It is said to be a steel pipe.

特許第5109222号公報Japanese Patent No. 5109222

高深度の油井に用いられる部材用鋼管として、最近では、2相ステンレス鋼管も多用されるようになっている。2相ステンレス鋼管の製造においては、多くの場合において熱間加工中もフェライト相とオーステナイト相の2相域状態であることが多く、加熱保持温度や加熱時間よって相分率が異なるが、特に高温域ではフェライトの相分率が高いことが多い。フェライト粒は高温保持時での粒成長が早く、初期の結晶粒径や熱間加工により分断した結晶粒が成長し粗粒化が起こりやすい。粗粒化を生じた組織は熱間加工時の変形能を悪化させる。また、特に厚肉材では肉厚中心部に歪を付与しにくいためフェライト粒の分断ができず、高温加熱や熱間圧延中の加工発熱により高温に保持された際に粗大化した粒が製品時に残存しやすい。連結した粗大なフェライト粒はき裂の伝播経路となるため、フェライト相の多い高温で圧延された鋼管における肉厚中央部(低歪部)では低温靭性が低下する。また、フェライト粒の粗大化は鋼管の強度にも影響し、特に鋼管の降伏強さが低下する。そのため、2相域で熱間圧延を行うステンレス鋼管の製造においては熱間圧延条件やその後の熱処理における温度管理を適切なものにしなければ所望の特性が得られない。   Recently, duplex stainless steel pipes are frequently used as member steel pipes used in deep oil wells. In the production of duplex stainless steel pipes, in many cases, it is often in the two-phase region state of the ferrite phase and austenite phase even during hot working, and the phase fraction varies depending on the heating holding temperature and the heating time, but particularly at high temperatures. In the region, the phase fraction of ferrite is often high. Ferrite grains grow rapidly when held at high temperatures, and crystal grains divided by the initial crystal grain size or hot working tend to grow and become coarse. The coarsened structure deteriorates the deformability during hot working. In particular, with thick materials, it is difficult to give strain to the center of the thickness, so the ferrite grains cannot be divided, and grains that are coarsened when held at high temperatures due to heat generated during high-temperature heating or hot rolling are products. Sometimes prone to persist. Since the connected coarse ferrite grains serve as a propagation path of cracks, the low temperature toughness is reduced at the central portion (low strain portion) of the steel pipe rolled at a high temperature with many ferrite phases. Further, the coarsening of ferrite grains also affects the strength of the steel pipe, and in particular, the yield strength of the steel pipe is reduced. Therefore, in the manufacture of a stainless steel pipe that is hot-rolled in a two-phase region, desired characteristics cannot be obtained unless the hot rolling conditions and the temperature control in the subsequent heat treatment are made appropriate.

特許文献1に記載された技術は、素材の高温加熱時や熱間加工時の温度管理についての言及は無い。とくに、特許文献1に記載された技術では、高温加熱時や熱間圧延中の温度管理による鋼管の特性向上、とくに低温靭性の向上についての言及はない。   The technique described in Patent Document 1 does not refer to temperature management at the time of high-temperature heating or hot working of a material. In particular, in the technique described in Patent Document 1, there is no mention of improving the properties of the steel pipe by temperature control during high-temperature heating or during hot rolling, in particular, improving low-temperature toughness.

かかる従来技術の状況に鑑み、本発明は、低温靭性が優れた高強度2相ステンレス継目無鋼管を製造する方法を提供することを目的とする。   In view of the state of the prior art, an object of the present invention is to provide a method for producing a high-strength duplex stainless steel seamless steel pipe excellent in low-temperature toughness.

本発明者らは、上記した目的を達成するために、まず、2相ステンレス鋼材の靭性に及ぼす各種要因について鋭意研究した。その結果、靭性改善に最も有効な方法は、フェライト相組織の微細化であるということに思い至った。   In order to achieve the above-described object, the present inventors have intensively studied various factors affecting the toughness of the duplex stainless steel material. As a result, the inventors have come up with the idea that the most effective method for improving toughness is to refine the ferrite phase structure.

そこで、高周波加熱装置を使用し、熱間でδフェライト相を含む2相域となる2相ステンレス鋼を加熱した際に生じるフェライト相の粒成長について調査した。図2は、2相ステンレス鋼を昇温過程で(δ−100℃)に600s間保持してからδフェライト相単相になる温度(δ)を超える温度に急激(10℃/s)に昇温し15s間保持した後、急冷して組織を凍結し、δフェライト粒径を測定した結果である。図2に示す通り、2相ステンレス鋼はδを超える温度に加熱されると、わずか15sであってもδフェライト粒が急激に粒成長する。図3は、同様に2相ステンレス鋼をδ以下の温度に加熱し、該加熱温度で3600s間保持した後、急冷することで組織を凍結し、δフェライト粒径を測定した結果である。図3に示す通り、(δ−100℃)以上の温度で3600s以上保持された2相ステンレス鋼は急激にδフェライトの粒成長が生じているのに対して、加熱保持温度が(δ−100℃)未満では非常に微細な粒が維持されていた。また、保持時間を3600sより短くした場合には、粒成長に必要な元素拡散が追いつかず、(δ−100℃)より高い温度であっても比較的微細な組織を保っていた。 Then, the grain growth of the ferrite phase which arises when a two-phase stainless steel which becomes a two-phase region including a δ ferrite phase is heated by using a high-frequency heating device was investigated. FIG. 2 shows that the temperature of the duplex stainless steel is maintained at (δ A −100 ° C.) for 600 s during the temperature rising process, and then rapidly (10 ° C./s) to a temperature exceeding the temperature (δ A ) at which it becomes a single phase of δ ferrite phase. This is a result of measuring the δ ferrite particle size by rapidly cooling and freezing the structure after holding at 15 ° C. for 15 seconds. As shown in FIG. 2, two-phase stainless steel is heated to a temperature above the [delta] A, just 15s and was also [delta] ferrite grains rapidly grain growth. FIG. 3 shows the results of measuring the δ ferrite particle size by similarly heating the duplex stainless steel to a temperature of δ A or less, holding the heated temperature for 3600 s, and then rapidly cooling the structure to quench the structure. As shown in FIG. 3, in the duplex stainless steel held at a temperature of (δ A −100 ° C.) or higher for 3600 s or more, δ ferrite grains grow rapidly, whereas the heating holding temperature is (δ A Below -100 ° C, very fine grains were maintained. In addition, when the holding time was shorter than 3600 s, element diffusion necessary for grain growth could not catch up, and a relatively fine structure was maintained even at a temperature higher than (δ A -100 ° C.).

すなわち、熱間でδフェライト相を含む2相域となる2相ステンレス鋼においては、通常、高温域では、δフェライト相の分率が上昇し、特に高温で且つ長時間保持するδとフェライト結晶粒が急激に粒成長する。一方で、より短時間で低温に加熱された場合はδフェライト結晶粒の粒成長が抑えられる。特に、(δ−100℃)以上の高温域では、3600sを超えて保持されるとδフェライト結晶粒が粗大化し、また、δフェライト相単相となる高温域では更に短い時間でδフェライト相の粒成長が生じるため、鋼素材(以下、被加工材ともいう)の温度、加熱保持時間を適切に制御すれば、その後の熱間圧延を施した鋼管のδフェライト粒を細粒に保つことができ、容易に組織の微細化が達成できることに思い至った。 That is, in a two-phase stainless steel, which is a two-phase region including a δ ferrite phase in the hot state, the fraction of the δ ferrite phase generally increases in a high temperature region, and especially the δ and ferrite crystals that are kept at a high temperature for a long time. Grain grows rapidly. On the other hand, when heated to a low temperature in a shorter time, the growth of δ ferrite crystal grains can be suppressed. In particular, in a high temperature range of (δ A −100 ° C.) or higher, the δ ferrite crystal grains become coarse when held for more than 3600 s, and in a high temperature range where the single phase of δ ferrite phase is obtained, the δ ferrite phase is further shortened. Therefore, if the temperature of the steel material (hereinafter also referred to as the workpiece) and the heating and holding time are appropriately controlled, the δ ferrite grains of the steel tube after the subsequent hot rolling can be kept fine. I was able to achieve a finer structure.

そこで、更なる研究を行ない、2相ステンレス継目無鋼管の組織微細化のためには、図1に示す継目無鋼管製造プロセスにおいて加熱装置1で鋼素材を加熱し、熱間加工する際に、加熱、熱間加工中の前記鋼素材の最高温度が昇温過程でδフェライト相単相になる温度(δ)を超えないようにするとともに、前記鋼素材(被加工材)の温度が(δ−100℃)以上となる時間を3600s以下とし、且つ、熱間加工装置2による最終熱間加工を1200℃以下の温度で終了することでフェライト粒を細粒に制御でき、その後、適切な焼入れ焼戻し熱処理を加えることでステンレス継目無鋼管の肉厚中心位置においても低温靭性が顕著に向上するという知見を得た。 Therefore, in order to refine the structure of the two-phase stainless steel seamless steel pipe by further research, when heating the steel material with the heating device 1 in the seamless steel pipe manufacturing process shown in FIG. The maximum temperature of the steel material during heating and hot working does not exceed the temperature (δ A ) at which the δ ferrite phase becomes a single phase during the temperature rising process, and the temperature of the steel material (workpiece) is ( δ A −100 ° C.) or more is set to 3600 s or less, and the final hot working by the hot working apparatus 2 is finished at a temperature of 1200 ° C. or less, so that the ferrite grains can be controlled to a fine grain, and then appropriately It was found that the low temperature toughness is remarkably improved even at the center of the wall thickness of the stainless steel seamless pipe by applying a quenching and tempering heat treatment.

本発明は、かかる知見に基づき、更なる検討を加えて完成されたものである。すなわち、本発明の要旨はつぎの通りである。
(1)フェライト相と残部をオーステナイト相もしくはマルテンサイト相もしくはその両方を含む組織を有する2相ステンレス継目無鋼管の製造方法であって、鋼素材を加熱した後、熱間加工を施して所定形状の継目無鋼管とするにあたり、前記加熱および前記熱間加工中の前記鋼素材の最高到達温度を1000℃以上δ(昇温過程でδフェライト相単相になる温度)以下とし、かつ前記鋼素材の温度が(δ−100℃)以上になる時間を3600s以下とし、さらに前記熱間加工の最終加工を前記鋼素材の外表面温度で1200℃以下の温度域で施すことを特徴とする低温靭性に優れた高強度2相ステンレス継目無鋼管の製造方法。
(2)前記鋼素材が、質量%で、
C :0.050%以下、 Si:1.00%以下、
Mn:0.20〜1.80%、 Cr:15.5〜18.0%、
Ni:1.5〜5.0%、 Mo:1.0〜3.5%、
V :0.02〜0.20%、 N :0.01〜0.15%、
O :0.006%以下
を含み、残部Feおよび不可避的不純物からなる組成であることを特徴とする(1)に記載の高強度2相ステンレス継目無鋼管の製造方法。
(3)前記鋼素材が、前記組成に加えてさらに、質量%で、次A群〜D群
A群:Al:0.002〜0.050%
B群:Cu:3.5%以下、W:3.5%以下、REM:0.3%以下
C群:Nb:0.2%以下、Ti:0.3%以下、Zr:0.2%以下のうちから選ばれた1種または2種以上
D群:Ca:0.01%以下、B:0.01%以下のうちから選ばれた1種または2種
のうちから選ばれた1群または2群以上を含有することを特徴とする(2)に記載の高強度2相ステンレス継目無鋼管の製造方法。
The present invention has been completed on the basis of such findings and further studies. That is, the gist of the present invention is as follows.
(1) A method for producing a duplex stainless steel pipe having a structure including a ferrite phase and the balance including an austenite phase, a martensite phase, or both, and after heating the steel material, it is hot-worked to have a predetermined shape When the steel pipe is made into a seamless steel pipe, the maximum reached temperature of the steel material during the heating and hot working is set to 1000 ° C. or more and δ A (temperature at which a δ ferrite phase becomes a single phase in the temperature rising process) or less, and the steel The time for the temperature of the material to become (δ A −100 ° C.) or more is set to 3600 s or less, and the final processing of the hot working is performed in a temperature range of 1200 ° C. or less at the outer surface temperature of the steel material. A method for producing a high-strength duplex stainless steel seamless pipe excellent in low-temperature toughness.
(2) The steel material is mass%,
C: 0.050% or less, Si: 1.00% or less,
Mn: 0.20 to 1.80%, Cr: 15.5 to 18.0%,
Ni: 1.5-5.0%, Mo: 1.0-3.5%,
V: 0.02 to 0.20%, N: 0.01 to 0.15%,
The method for producing a high-strength dual-phase stainless steel seamless steel pipe according to (1), characterized in that the composition contains O 6: 0.006% or less, the balance being Fe and inevitable impurities.
(3) In addition to the said composition, the said steel raw material is further the mass%, and the following A group-D group A group: Al: 0.002-0.050%
Group B: Cu: 3.5% or less, W: 3.5% or less, REM: 0.3% or less C group: Nb: 0.2% or less, Ti: 0.3% or less, Zr: 0.2 % Selected from 1% or 2 or more selected from the group D: Ca: 0.01% or less, B: 0.01% or less selected from 1 or 2 The method for producing a high-strength dual-phase stainless steel seamless steel pipe according to (2), comprising a group or two or more groups.

本発明によれば、低温靭性に優れた高強度2相ステンレス継目無鋼管を、容易に製造でき、産業上格段の効果を奏する。また、本発明によれば、初期組織の粗大化を防ぐことで、比較的少ない加工量でも2相ステンレス継目無鋼管のフェライト粒径を微細に保つことができ、肉厚中心部の加工量を大きくすることができない厚肉鋼管においても、肉厚中心部の低温靭性の向上が図れるという効果がある。   ADVANTAGE OF THE INVENTION According to this invention, the high intensity | strength duplex stainless steel seamless steel pipe excellent in low temperature toughness can be manufactured easily, and there exists a remarkable effect on industry. Further, according to the present invention, by preventing the coarsening of the initial structure, the ferrite grain size of the duplex stainless steel seamless steel pipe can be kept fine even with a relatively small amount of processing, and the amount of processing at the thickness center portion can be reduced. Even in a thick-walled steel pipe that cannot be made large, there is an effect that the low-temperature toughness at the center of the wall thickness can be improved.

継目無鋼管を製造するプロセスを示す図である。It is a figure which shows the process which manufactures a seamless steel pipe. 2相ステンレス鋼をδを超える温度に加熱し、15s間保持した際、加熱温度がδフェライト粒の成長に及ぼす影響を示す図である。It is a figure which shows the influence which heating temperature has on the growth of (delta) ferrite grain, when duplex stainless steel is heated to the temperature exceeding (delta) A and hold | maintained for 15 s. 2相ステンレス鋼をδ以下の温度に加熱し、3600s間保持した際、加熱温度がδフェライト粒の成長に及ぼす影響を示す図である。It is a figure which shows the influence which heating temperature has on the growth of (delta) ferrite grain, when duplex stainless steel is heated to the temperature below (delta) A and hold | maintained for 3600 s.

本発明に係る継目無鋼管は、図1に示す加熱装置1と熱間加工装置2とをこの順に配設した装置列を用いて、前記加熱装置1で鋼素材を加熱し、その後熱間加工工程を経て製造される。   The seamless steel pipe according to the present invention uses a device row in which the heating device 1 and the hot working device 2 shown in FIG. It is manufactured through a process.

本発明で使用する加熱装置1は、鋳片、鋼片等の鋼素材を所定温度に加熱できる加熱炉であればよく、とくに限定する必要はない。例えば、回転炉床式加熱炉、ウォーキングビーム式加熱炉等の常用の加熱炉がいずれも適用できる。また、誘導加熱方式の加熱炉としてもよい。   The heating device 1 used in the present invention is not particularly limited as long as it is a heating furnace capable of heating a steel material such as a slab and a steel slab to a predetermined temperature. For example, any conventional heating furnace such as a rotary hearth type heating furnace or a walking beam type heating furnace can be applied. Alternatively, an induction heating type heating furnace may be used.

本発明で使用する熱間加工装置2は、通常、鋼素材を所定寸法の継目無鋼管とする場合に適用する熱間加工装置がいずれも適用できる。例えば、穿孔圧延装置、および縮径圧延や矯正圧延等の通常公知の圧延装置が例示できる。好ましい装置列の一例を図1に示す。   As the hot working apparatus 2 used in the present invention, any of the hot working apparatuses that are usually applied when a steel material is a seamless steel pipe having a predetermined size can be applied. Examples thereof include a piercing and rolling device and a generally known rolling device such as a reduced diameter rolling and straightening rolling. An example of a preferred device row is shown in FIG.

熱間加工装置2の一つである穿孔圧延装置21は、加熱された鋼素材に穿孔圧延を施し中空素材とすることができる穿孔圧延装置であればよく、例えば、バレル形ロール、コーン型ロール等を用いるマンネスマン傾斜式穿孔機、熱間押出式穿孔機等の、通常公知の穿孔圧延装置がいずれも適用できる。また、熱間加工装置2の一つである圧延装置22は、中空素材に加工を施し所定形状の継目無鋼管とすることができる装置であればよく、目的に応じて、例えば、エロンゲータ221、穿孔された中空素管を薄く長く延ばすプラグミル222、素管内外表面を滑らかにするリーラ(図示せず)、所定寸法に整えるサイジングミル223の順で配置された圧延装置、あるいは中空素管を所定寸法の鋼管とするマンドレルミル(図示せず)、若干の圧下を行ない外径、肉厚を調整するレデューサ(図示せず)を配置した圧延装置等の、通常公知の熱間加工装置がいずれも適用できる。   The piercing and rolling device 21 that is one of the hot working devices 2 may be any piercing and rolling device that can pierce and roll a heated steel material to form a hollow material. For example, a barrel-type roll and a cone-type roll Any generally known piercing and rolling apparatus such as a Mannesmann tilting piercing machine, a hot extrusion piercing machine, or the like using any of the above can be applied. In addition, the rolling device 22 that is one of the hot working devices 2 may be any device that can process a hollow material into a seamless steel pipe having a predetermined shape. For example, an elongator 221, A rolling mill arranged in the order of a plug mill 222 for extending the hollow hollow tube thinly and long, a reeler (not shown) for smoothing the inner and outer surfaces of the hollow tube, a sizing mill 223 for adjusting a predetermined dimension, or a hollow tube is predetermined. Normally known hot working devices such as a mandrel mill (not shown) with a steel pipe of a size, a rolling device provided with a reducer (not shown) that adjusts the outer diameter and thickness by performing a slight reduction Applicable.

本発明に係る製造方法では、加熱装置1による加熱および熱間加工装置2による熱間加工工程において、鋼素材(以下、熱間加工工程では被加工材ともいう)の温度がδ(昇温過程でδフェライト相単相となる温度)を超えないようにする。鋼素材(被加工材)の温度がδフェライト相単相域になると、隣り合うフェライト結晶粒の間に存在した異なる結晶構造を持つ第二相が無くなり、隣り合うフェライト粒同士が原子の再配列のみで容易に粒成長を開始する。そのため、鋼素材(被加工材)の最高到達温度をδ以下とした。なお、エネルギーコスト低減の観点から好ましくは(δ−50℃)以下である。 In the manufacturing method according to the present invention, in the heating by the heating device 1 and the hot working process by the hot working device 2, the temperature of the steel material (hereinafter also referred to as a workpiece in the hot working step) is δ A (temperature rise). (The temperature at which the δ ferrite phase becomes a single phase in the process) is not exceeded. When the temperature of the steel material (work material) reaches the single phase of δ ferrite phase, there is no second phase with a different crystal structure existing between adjacent ferrite crystal grains, and the adjacent ferrite grains rearrange atoms. Just start grain growth easily. Therefore, the maximum temperature reached by the steel material (work material) is set to δ A or less. In addition, from the viewpoint of energy cost reduction, it is preferably (δ A -50 ° C) or less.

一方、鋼素材(被加工材)の最高到達温度が1000℃を下回ってその後の熱間加工に供されると、δフェライトより強度の高い第二相の分率が大きくなりすぎて、圧延負荷が増大するばかりでなく、軟質なδフェライト相に歪が集中し、熱間加工中に延性破壊を生じ製品疵の原因となる。そのため、鋼素材(被加工材)の最高到達温度の下限を1000℃に限定した。なお、好ましくは1100℃以上である。   On the other hand, if the maximum reached temperature of the steel material (work material) falls below 1000 ° C and is subjected to subsequent hot working, the fraction of the second phase, which is stronger than δ ferrite, becomes too large, and the rolling load Not only increases, but also strain concentrates in the soft δ-ferrite phase, causing ductile fracture during hot working and causing product defects. Therefore, the lower limit of the maximum attainable temperature of the steel material (work material) is limited to 1000 ° C. In addition, Preferably it is 1100 degreeC or more.

また、鋼素材(被加工材)の温度が(δ−100℃)以上になる時間が3600sを超えて長くなると、δフェライト粒の成長抑制に有効なδフェライトの粒界に存在するオーステナイトなどの第二相が減少し、δフェライト粒の成長が容易に生じる。すなわち、δフェライト粒界、またはδフェライト粒界の3重点に存在し、δフェライトの粒成長を抑制するのに重要な役割を有する第二相の量、つまり分率は該第二相を形成する元素の拡散に律速されるため、温度上昇中の鋼素材(被加工材)の前記第二相の分率は平衡状態でのその分率より大きくなっている。しかし、鋼素材(被加工材)の温度が(δ−100℃)以上になる時間が長くなると、第二相を形成する元素の拡散が追いつき、第二相の分率が減少することに加え、特にδフェライトの粒成長抑制に有効なδフェライト粒界に存在する第二相が減少し、残存した第二相もδフェライト粒界の3重点に球状の形態で偏在するようになるため、隣り合うδフェライト粒の界面同士が接触し、粒成長が容易になる。そのため、鋼素材(被加工材)の温度が(δ−100℃)以上になる時間を3600s以下に限定した。なお、好ましくは900s以下である。 In addition, when the time when the temperature of the steel material (work material) is (δ A -100 ° C.) or more is longer than 3600 s, austenite existing at the grain boundary of δ ferrite, which is effective in suppressing the growth of δ ferrite grains, etc. The second phase is reduced and δ ferrite grains grow easily. That is, the amount of the second phase that exists at the triple point of the δ ferrite grain boundary or the δ ferrite grain boundary and plays an important role in suppressing the grain growth of the δ ferrite, that is, the fraction forms the second phase. Therefore, the fraction of the second phase of the steel material (workpiece) during temperature rise is larger than that in the equilibrium state. However, if the time for the temperature of the steel material (work material) to become (δ A -100 ° C.) or longer is increased, the diffusion of the elements forming the second phase catches up and the fraction of the second phase decreases. In addition, the second phase existing at the δ ferrite grain boundary, which is particularly effective for suppressing the grain growth of δ ferrite, is reduced, and the remaining second phase is unevenly distributed in a spherical form at the triple point of the δ ferrite grain boundary. The interfaces of adjacent δ ferrite grains are in contact with each other, and grain growth is facilitated. Therefore, the time when the temperature of the steel material (work material) is (δ A −100 ° C.) or more is limited to 3600 s or less. In addition, Preferably it is 900 s or less.

加熱された鋼素材は、ついで、熱間加工装置で、所定の形状に加工される。この際、最終の熱間加工を被加工材の表面の平均温度が1200℃以下まで低下した後に終了する。   The heated steel material is then processed into a predetermined shape by a hot processing apparatus. At this time, the final hot working is finished after the average temperature of the surface of the workpiece is lowered to 1200 ° C. or lower.

熱間加工終了温度が1200℃超えでは、その後の冷却中に熱間加工により付与した歪の緩和や細粒化したδフェライト相の粒成長が起きて熱間加工後の鋼管の低温靭性が低下する。このため、最終熱間加工温度を1200℃以下と限定する。なお、最終熱間加工温度が低温になりすぎると変形抵抗の増大による装置負荷の増大や疵の発生につながるため、好ましくは、最終熱間加工温度は900〜1200℃である。   When the hot working finish temperature exceeds 1200 ° C, the low temperature toughness of the steel pipe after hot working decreases due to the relaxation of strain imparted by hot working during the subsequent cooling and the grain growth of fine δ ferrite phase. To do. For this reason, the final hot working temperature is limited to 1200 ° C. or less. In addition, since it will lead to the increase in apparatus load by generation | occurrence | production of deformation resistance, and generation | occurrence | production of a flaw if final hot processing temperature becomes low temperature, Preferably, final hot processing temperature is 900-1200 degreeC.

なお、δ(昇温過程でδフェライト単相となる温度)は熱平衡計算により算出しても良いし、加熱中の熱膨張曲線を測定し、δフェライト単相となった際に生じる熱膨張曲線の変曲点を測定しても良い。 Note that δ A (the temperature at which the δ ferrite single phase forms during the temperature rise process) may be calculated by thermal equilibrium calculation, or the thermal expansion that occurs when the δ ferrite single phase is obtained by measuring the thermal expansion curve during heating. The inflection point of the curve may be measured.

次に、本発明に係る高強度2相ステンレス継目無鋼管の組成限定理由について説明する。   Next, the reason for limiting the composition of the high-strength duplex stainless steel seamless steel pipe according to the present invention will be described.

本発明の適用により効果が発揮される鋼素材は、比較的低温でδフェライト相単相となり、かつ、常温における製品時にδフェライト相が残存する組成を有する鋼素材であり、
「質量%で、
C :0.050%以下、 Si:1.00%以下、
Mn:0.20〜1.80%、 Cr:15.5〜18.0%、
Ni:1.5〜5.0%、 Mo:1.0〜3.5%、
V :0.02〜0.20%、 N :0.01〜0.15%、
O :0.006%以下
を含み、
あるいはさらに次A群〜D群
A群:Al:0.002〜0.050%
B群:Cu:3.5%以下、W:3.5%以下、REM:0.3%以下のうちから選ばれた1種または2種以上
C群:Nb:0.2%以下、Ti:0.3%以下、Zr:0.2%以下のうちから選ばれた1種または2種以上
D群:Ca:0.01%以下、B:0.01%以下のうちから選ばれた1種または2種
のうちから選ばれた1群または2群以上を含有し、残部Feおよび不可避的不純物からなる組成を有する鋼素材」である。
The steel material that is effective by the application of the present invention is a steel material that has a composition in which a δ ferrite phase becomes a single phase at a relatively low temperature and the δ ferrite phase remains in a product at room temperature,
“In mass%,
C: 0.050% or less, Si: 1.00% or less,
Mn: 0.20 to 1.80%, Cr: 15.5 to 18.0%,
Ni: 1.5-5.0%, Mo: 1.0-3.5%,
V: 0.02 to 0.20%, N: 0.01 to 0.15%,
O: Including 0.006% or less,
Or further A group-D group A group: Al: 0.002-0.050%
Group B: Cu: 3.5% or less, W: 3.5% or less, REM: one or more selected from 0.3% or less Group C: Nb: 0.2% or less, Ti : 0.3% or less, Zr: One or more selected from 0.2% or less Group D: Ca: 0.01% or less, B: Selected from 0.01% or less It is a “steel material having a composition comprising one group or two or more groups selected from one or two types, the balance being Fe and inevitable impurities”.

以下、組成限定理由について説明する。なお、とくに断わらない限り、質量%は単に%で記す。   Hereinafter, the reasons for limiting the composition will be described. Unless otherwise specified, mass% is simply expressed as%.

C:0.050%以下
Cは、マルテンサイト相の生成量に影響を与える重要な元素であり、0.005%以上含有することが望ましい。一方、0.050%を超えて含有すると、Ni含有による焼戻時の鋭敏化が増大する。耐食性の観点からはCは少ないほうが望ましい。このようなことから、Cは0.050%以下に限定した。なお、好ましくは0.030〜0.050%である。
C: 0.050% or less C is an important element that affects the amount of martensite phase produced, and is preferably contained in an amount of 0.005% or more. On the other hand, if the content exceeds 0.050%, sensitization during tempering due to Ni inclusion increases. From the viewpoint of corrosion resistance, it is desirable that C is small. For these reasons, C is limited to 0.050% or less. In addition, Preferably it is 0.030 to 0.050%.

Si:1.00%以下
Siは、脱酸剤として作用する元素であり、0.05%以上含有することが望ましい。1.00%を超える含有は、耐食性を低下させ、さらに熱間加工性をも低下させる。このため、Siは1.00%以下に限定した。なお、好ましくは0.10〜0.30%である。
Si: 1.00% or less Si is an element that acts as a deoxidizing agent, and it is desirable to contain 0.05% or more. If the content exceeds 1.00%, the corrosion resistance is lowered, and the hot workability is also lowered. For this reason, Si was limited to 1.00% or less. In addition, Preferably it is 0.10 to 0.30%.

Mn:0.20〜1.80%
Mnは、オーステナイト相分率を増大する作用を有する元素であり、このような効果を得るためには0.20%以上の含有を必要とする。一方、1.80%を超えて含有すると、靭性に悪影響を及ぼす。このため、Mnは0.20〜1.80%に限定した。なお、好ましくは0.20〜1.00%である。
Mn: 0.20 to 1.80%
Mn is an element having an action of increasing the austenite phase fraction, and in order to obtain such an effect, the content of 0.20% or more is required. On the other hand, if the content exceeds 1.80%, the toughness is adversely affected. For this reason, Mn was limited to 0.20 to 1.80%. In addition, Preferably it is 0.20-1.00%.

Cr:15.5〜18.0%
Crは、保護皮膜を形成し耐食性を向上させる主要元素であり、同時にフェライト相の相分率を増大する作用を持つ元素である。このような効果を得るためには、15.5%以上の含有を必要とする。一方、18.0%を超えて多量に含有すると、強度が低下する。このため、Crは15.5〜18.0%に限定した。なお、好ましくは16.0〜18.0%である。
Cr: 15.5 to 18.0%
Cr is a main element that forms a protective film and improves corrosion resistance, and at the same time, an element that has an effect of increasing the phase fraction of the ferrite phase. In order to obtain such an effect, the content of 15.5% or more is required. On the other hand, if the content exceeds 18.0%, the strength decreases. For this reason, Cr was limited to 15.5 to 18.0%. In addition, Preferably it is 16.0-18.0%.

Ni:1.5〜5.0%
Niは、保護膜を補修し、耐食性を高める作用を有する元素であり、同時にオーステナイト相の相分率を増大する作用を持つ元素である。さらに靭性を向上させる元素でもある。このような効果は1.5%以上の含有で認められる。一方、5.0%を超えて含有すると、材料コストが高騰する上に、強度が低下する。このため、Niは1.5〜5.0%に限定した。なお、好ましくは2.5〜4.5%である。
Ni: 1.5-5.0%
Ni is an element having an action of repairing the protective film and improving the corrosion resistance, and at the same time, an element having an action of increasing the phase fraction of the austenite phase. It is also an element that improves toughness. Such an effect is recognized when the content is 1.5% or more. On the other hand, if the content exceeds 5.0%, the material cost increases and the strength decreases. For this reason, Ni was limited to 1.5 to 5.0%. In addition, Preferably it is 2.5 to 4.5%.

Mo:1.0〜3.5%
Moは、Clによる孔食に対する抵抗性を増加させる元素である。このような効果を得るためには、1.0%以上含有することが望ましい。一方、3.5%を超える多量の含有は、強度が低下するとともに、材料コストが高騰する。このため、Moは1.0〜3.5%に限定した。なお、好ましくは2.0〜3.5%である。
Mo: 1.0-3.5%
Mo is an element that increases resistance to pitting corrosion caused by Cl . In order to acquire such an effect, it is desirable to contain 1.0% or more. On the other hand, if the content exceeds 3.5%, the strength decreases and the material cost increases. For this reason, Mo was limited to 1.0 to 3.5%. In addition, Preferably it is 2.0 to 3.5%.

V:0.02〜0.20%
Vは、強度を増加させるとともに、耐食性を改善する元素である。このような効果を得るためには、0.02%以上の含有を必要とする。一方、0.20%を超えて含有すると、靭性が低下する。このため、Vは0.02〜0.20%に限定した。なお、好ましくは0.02〜0.08%である。
V: 0.02 to 0.20%
V is an element that increases the strength and improves the corrosion resistance. In order to obtain such an effect, a content of 0.02% or more is required. On the other hand, when it contains exceeding 0.20%, toughness will fall. For this reason, V was limited to 0.02 to 0.20%. In addition, Preferably it is 0.02-0.08%.

N:0.01〜0.15%
Nは、耐孔食性を著しく向上される元素であり、このような効果を得るためには0.01%以上の含有を必要とする。一方、0.15%を超えて含有すると、種々の窒化物を形成し靭性を低下させる。なお、好ましくは0.02〜0.08%である。
N: 0.01 to 0.15%
N is an element that remarkably improves the pitting corrosion resistance. To obtain such an effect, N is required to be contained in an amount of 0.01% or more. On the other hand, if the content exceeds 0.15%, various nitrides are formed and the toughness is lowered. In addition, Preferably it is 0.02-0.08%.

O:0.006%以下
Oは、鋼中では酸化物として存在し、各種特性に悪影響を及ぼす。このため、できるだけ低減することが望ましい。とくに、Oが0.006%を超えて多量に含有すると、熱間加工性、靭性、耐食性の低下が著しくなる。このため、Oは0.006%以下に限定した。
O: 0.006% or less O exists as an oxide in steel and adversely affects various properties. For this reason, it is desirable to reduce as much as possible. In particular, when O is contained in a large amount exceeding 0.006%, the hot workability, toughness and corrosion resistance are remarkably lowered. For this reason, O was limited to 0.006% or less.

上記した成分が基本の成分であるが、基本成分に加えてさらに、選択元素として、次A群〜D群
A群:Al:0.002〜0.050%
B群:Cu:3.5%以下、W:3.5%以下、REM:0.3%以下のうちから選ばれた1種または2種以上
C群:Nb:0.2%以下、Ti:0.3%以下、Zr:0.2%以下のうちから選ばれた1種または2種以上
D群:Ca:0.01%以下、B:0.01%以下のうちから選ばれた1種または2種
のうちから選ばれた1群または2群以上を含有することができる。
The above-mentioned components are basic components, but in addition to the basic components, the following groups A to D: Group A: Al: 0.002 to 0.050%
Group B: Cu: 3.5% or less, W: 3.5% or less, REM: one or more selected from 0.3% or less Group C: Nb: 0.2% or less, Ti : 0.3% or less, Zr: One or more selected from 0.2% or less Group D: Ca: 0.01% or less, B: Selected from 0.01% or less One group or two or more groups selected from one or two types can be contained.

A群:Al:0.002〜0.050%
A群:Alは、脱酸剤として作用する元素であり、このような効果を得るためには、0.002%以上含有することが好ましいが、0.050%を超えて含有すると、靭性に悪影響を及ぼす。このため、含有する場合には、0.002〜0.050%に限定することが好ましい。なお、Al無添加の場合には、不可避的不純物として0.002%未満程度が許容される。
Group A: Al: 0.002 to 0.050%
Group A: Al is an element that acts as a deoxidizer, and in order to obtain such an effect, it is preferably contained in an amount of 0.002% or more, but if contained in excess of 0.050%, the toughness is increased. Adversely affect. For this reason, when it contains, it is preferable to limit to 0.002 to 0.050%. When Al is not added, an inevitable impurity of about 0.002% is allowed.

B群:Cu:3.5%以下、W:3.5%以下、REM:0.3%以下
B群:Cu、W、REMは、保護皮膜を強固にし、鋼中への水素の侵入を抑制し、耐硫化物応力腐食割れ性を高める。このような効果はCu:0.5%以上、W:0.5%以上、REM:0.001%以上の含有で顕著となる。しかし、Cu:3.5%、W:3.5%、REM:0.3%をそれぞれ超えて含有すると靭性が低下する。このため、含有する場合には、Cu、Wはそれぞれ3.5%以下、REMは0.3%以下に限定することが好ましい。なお、より好ましくはCu:0.8〜1.2%、W:0.8〜1.2%、REM:0.001〜0.010である。
Group B: Cu: 3.5% or less, W: 3.5% or less, REM: 0.3% or less Group B: Cu, W, and REM strengthen the protective film and prevent hydrogen from entering the steel. Suppress and improve resistance to sulfide stress corrosion cracking. Such an effect becomes remarkable when Cu: 0.5% or more, W: 0.5% or more, and REM: 0.001% or more. However, when it contains exceeding Cu: 3.5%, W: 3.5%, and REM: 0.3%, toughness will fall. For this reason, when it contains, it is preferable to limit Cu and W to 3.5% or less and REM to 0.3% or less, respectively. More preferably, Cu is 0.8 to 1.2%, W is 0.8 to 1.2%, and REM is 0.001 to 0.010.

C群:Nb:0.2%以下、Ti:0.3%以下、Zr:0.2%以下のうちから選ばれた1種または2種以上
C群:Nb、Ti、Zrはいずれも、強度や熱間加工性を向上させる元素であり、必要に応じて選択して含有できる。このような効果は、Nb:0.03%以上、Ti:0.03%以上、Zr:0.03%以上の含有で認められる。一方、Nb:0.2%、Ti:0.3%、Zr:0.2%をそれぞれ超える含有は、靭性を低下させる。このため、含有する場合は、Nb:0.2%以下、Ti:0.3%以下、Zr:0.2%以下に、それぞれ限定することが好ましい。
Group C: Nb: 0.2% or less, Ti: 0.3% or less, Zr: one or more selected from 0.2% or less Group C: Nb, Ti and Zr are all It is an element that improves strength and hot workability, and can be selected and contained as necessary. Such an effect is recognized by containing Nb: 0.03% or more, Ti: 0.03% or more, and Zr: 0.03% or more. On the other hand, inclusions exceeding Nb: 0.2%, Ti: 0.3%, and Zr: 0.2% respectively reduce toughness. For this reason, when it contains, it is preferable to limit to Nb: 0.2% or less, Ti: 0.3% or less, and Zr: 0.2% or less, respectively.

D群:Ca:0.01%以下、B:0.01%以下のうちから選ばれた1種または2種
D群:Ca、Bは、多相域圧延時の熱間加工性を向上させ、製品疵を抑制する作用をもち、必要に応じて1種または2種を含有できる。このような効果は、Ca:0.0005%以上、B:0.0005%以上の含有で顕著となるが、Ca:0.01%、B:0.01%を超えて含有すると、耐食性が低下する。このため、含有する場合には、Ca:0.01%以下、B:0.01%以下に限定することが好ましい。
Group D: Ca: 0.01% or less, B: One or two selected from 0.01% or less Group D: Ca and B improve hot workability during multi-phase rolling. , Has the effect of suppressing product wrinkles, and can contain one or two as required. Such an effect becomes remarkable when Ca is contained at 0.0005% or more and B: 0.0005% or more. However, when Ca is contained in an amount exceeding 0.01% and B: 0.01%, the corrosion resistance is improved. descend. For this reason, when it contains, it is preferable to limit to Ca: 0.01% or less and B: 0.01% or less.

上記した成分以外の残部は、Feおよび不可避的不純物である。なお、不可避的不純物としてはP:0.03%以下、S:0.005%以下が許容できる。   The balance other than the above components is Fe and inevitable impurities. Inevitable impurities include P: 0.03% or less and S: 0.005% or less.

上記した組成を有する鋼素材の製造方法はとくに限定する必要はない。転炉、電気炉等、常用の溶製炉を使用して、上記した組成の溶鋼を溶製し、連続鋳造法等の常用の鋳造方法で、鋳片(丸鋳片)としたものを鋼素材とすることが好ましい。なお、鋳片を熱間圧延して所定寸法の鋼片として鋼素材としてもよい。また、造塊−分塊圧延法で鋼片とし、鋼素材としてもなんら問題はない。   The method for producing a steel material having the above composition need not be particularly limited. Using a conventional smelting furnace such as a converter or electric furnace, the molten steel having the composition described above is melted, and a slab (round slab) is obtained by a conventional casting method such as a continuous casting method. It is preferable to use a raw material. In addition, it is good also as a steel raw material as a steel slab of a predetermined dimension by hot-rolling a slab. Moreover, it is set as a steel slab by the ingot-making-slab rolling method, and there is no problem as a steel raw material.

なお、上記した説明は、加熱装置による加熱温度、保持時間、および熱間加工装置による熱間加工時の鋼素材(被加工材)の最高到達温度、高温域での保持時間、および最終熱間加工を施す温度について説明したが、最終熱間加工後に鋼管を熱処理等で1000℃以上の温度に昇温する場合においても粒成長を抑制する観点から前記本発明に係る手段(1)に記載の限定条件を適用し、最高到達温度と保持時間を限定することが望ましい。例えば、本発明の製造方法で製造された継目無鋼管に焼入れ、焼戻し熱処理を施す場合においても、1000℃以上の温度へ昇温する際、加熱温度と保持時間が前記(1)を満たす条件で加熱・保持することで粒成長が抑制でき所望の機械的特性を得られることを確認している。   In addition, the above-mentioned explanation is about the heating temperature by the heating device, the holding time, the maximum temperature of the steel material (work material) during the hot working by the hot working device, the holding time in the high temperature range, and the final hot time. Although the temperature at which the processing is performed has been described, it is described in the means (1) according to the present invention from the viewpoint of suppressing grain growth even when the steel pipe is heated to a temperature of 1000 ° C. or higher by heat treatment or the like after the final hot processing. It is desirable to apply limiting conditions to limit the maximum temperature and holding time. For example, in the case where the seamless steel pipe manufactured by the manufacturing method of the present invention is subjected to quenching and tempering heat treatment, when the temperature is raised to a temperature of 1000 ° C. or higher, the heating temperature and the holding time satisfy the above condition (1). It has been confirmed that by heating and holding, grain growth can be suppressed and desired mechanical properties can be obtained.

また、温度の測定は、直接接触式、または放射温度計に代表される非接触式の温度計を用いて行えば良い。また、測定したタイミングでの温度から伝熱解析等で導かれる最高到達温度と温度履歴によって温度管理を行っても構わない。また、温度制御の方法も加熱炉温度管理や圧延速度制御、冷媒を用いた方法のいずれを利用しても良い。   The temperature may be measured using a direct contact type or a non-contact type thermometer represented by a radiation thermometer. Further, temperature management may be performed based on the maximum attained temperature and temperature history derived from the measured temperature by heat transfer analysis or the like. As the temperature control method, any one of heating furnace temperature management, rolling speed control, and a method using a refrigerant may be used.

上記した製造方法で得られる2相ステンレス継目無鋼管は、上記した組成と、δフェライト相を有し、マルテンサイト相と、あるいはさらに残留オーステナイト相からなる組織とを有する2相ステンレス継目無鋼管となる。なお、残留オーステナイト相は、面積率で25%以下である。このような組織を有する2相ステンレス継目無鋼管は、降伏強さ:654MPa以上の高強度と、肉厚中心位置でのシャルピー衝撃試験の試験温度:−10℃での吸収エネルギー(vE−10)が50J以上となる優れた低温靭性を有する高強度2相ステンレス継目無鋼管となる。 A duplex stainless steel pipe obtained by the above-described production method is a duplex stainless steel pipe having the above composition and a δ ferrite phase, and having a martensite phase or a structure composed of a retained austenite phase. Become. The residual austenite phase is 25% or less in terms of area ratio. A duplex stainless steel pipe having such a structure has a yield strength of 654 MPa or higher and a Charpy impact test temperature at the center of the wall thickness: absorbed energy at −10 ° C. (vE −10 ) Is a high-strength duplex stainless steel seamless steel pipe having excellent low-temperature toughness of 50 J or more.

つぎに、実施例に基づき、さらに本発明について説明する。   Next, the present invention will be further described based on examples.

表1に示す組成の溶鋼を、電炉で溶製し、孔型圧延を行い、径58mmの丸鋼片(鋼素材)とした。次に、図1に示す装置列を利用して、これら丸鋼片を加熱装置1に装入し、加熱した後、熱間加工装置2(穿孔圧延装置、定型圧延装置)で累積減面率60%の熱間加工(仕上げ肉厚7.5mm)を施し、放冷して継目無鋼管を得た。得られた継目無鋼管に焼入れ焼戻し熱処理を施したのち、試験片を採取し、組織観察、引張試験、衝撃試験を実施した。なお、加熱、熱間加工中の鋼素材(被加工材)の温度測定および得られた継目無鋼管の試験方法はつぎの通りとした。
(1)温度測定
継目無鋼管製造時の温度は加熱炉での温度、圧延終了直後の鋼管内面温度、および最終熱間加工温度の3点を測定した。なお、加熱および熱間加工中の温度履歴については接触式熱電対による測定温度を基に伝熱解析により導いた。また、δフェライト単相になる温度(δ)については予め加熱過程の熱膨張曲線を測定し、δフェライトへの変態が完了し、膨張曲線の曲率が変化した点を使用した。
各丸鋼片(鋼素材)のδ、および、各鋼管製造時の鋼素材の最高到達温度、(δ−100℃)以上の温度域における保持時間、最終加工温度を表2に示す。
Molten steel having the composition shown in Table 1 was melted in an electric furnace and subjected to hole rolling to obtain round steel pieces (steel material) having a diameter of 58 mm. Next, using the apparatus row shown in FIG. 1, these round steel pieces are charged into the heating apparatus 1 and heated, and then the cumulative area reduction rate is obtained by a hot working apparatus 2 (a piercing rolling apparatus, a regular rolling apparatus). 60% hot working (finished wall thickness: 7.5 mm) was applied and allowed to cool to obtain a seamless steel pipe. The obtained seamless steel pipe was subjected to quenching and tempering heat treatment, and then a test piece was collected and subjected to structure observation, tensile test, and impact test. The temperature measurement of the steel material (work material) during heating and hot working and the test method of the obtained seamless steel pipe were as follows.
(1) Temperature measurement The temperature at the time of seamless steel pipe manufacture measured three points, the temperature in a heating furnace, the steel pipe inner surface temperature immediately after completion | finish of rolling, and the final hot working temperature. The temperature history during heating and hot working was derived by heat transfer analysis based on the temperature measured by a contact thermocouple. For the temperature (δ A ) at which the δ ferrite single phase is obtained, the thermal expansion curve in the heating process was measured in advance, and the point where the transformation to the δ ferrite was completed and the curvature of the expansion curve changed was used.
Table 2 shows δ A of each round steel piece (steel material), the maximum temperature reached by the steel material at the time of manufacturing each steel pipe, the holding time in the temperature range of (δ A -100 ° C) or higher, and the final processing temperature.

(2)組織観察
得られた継目無鋼管から、組織観察用試験片を採取し、管軸方向に直交する断面と平行な断面の肉厚中心部を研磨した後、ビレラ腐食後の組織を観察し、フェライトーマルテンサイト組織であることを確認した。
また、鋼管内外表面における割れ発生の有無、および割れが発生している場合にはその程度を評価した。割れ深さが1.0mm以上のものの発生箇所が5箇所以上である場合を「有・多」とし、それ未満である場合を「有・少」と評価した。
(2) Microstructure observation From the obtained seamless steel pipe, a specimen for microstructural observation was collected, and after polishing the thickness center of the cross section parallel to the cross section perpendicular to the pipe axis direction, the structure after virera corrosion was observed. And confirmed to be a ferrite martensite structure.
Moreover, the presence or absence of the crack generation | occurrence | production in the steel pipe inner and outer surface, and the extent to which the crack has occurred were evaluated. The case where the crack occurrence depth was 1.0 mm or more was 5 or more was evaluated as “present / many”, and the case where it was less than that was evaluated as “present / small”.

(3)引張試験
得られた継目無鋼管の肉厚中心から、管軸方向が引張方向となるように、丸棒引張試験片(平行部6mmφ×GL20mm)を採取し、JIS Z 2241の規定に準拠して引張試験を実施し、降伏強さYS(降伏強さは0.2%伸びでの強度)を求めた。
(4)衝撃試験
得られた継目無鋼管の肉厚中心から、管軸方向と直交する方向(C方向)と平行である方向(L方向)が試験片長手方向となるように、Vノッチ試験片(ハーフサイズ)を採取し、JIS Z 2242の規定に準拠してシャルピー衝撃試験を実施し、試験温度:−10℃における吸収エネルギー(vE−10)を測定した。なお、試験片は各3本とし、それらの平均値を当該鋼板の吸収エネルギーとした。
(3) Tensile test A round bar tensile test piece (parallel part 6mmφ × GL20mm) was taken from the thickness center of the obtained seamless steel pipe so that the pipe axis direction was the tensile direction, and stipulated in JIS Z 2241 In accordance with the tensile test, yield strength YS (yield strength is strength at 0.2% elongation) was determined.
(4) Impact test V notch test so that the direction (L direction) parallel to the direction (C direction) perpendicular to the tube axis direction is the specimen longitudinal direction from the thickness center of the obtained seamless steel pipe A piece (half size) was collected and subjected to a Charpy impact test in accordance with the provisions of JIS Z 2242, and the absorbed energy (vE −10 ) at a test temperature of −10 ° C. was measured. The number of test pieces was three each, and the average value thereof was the absorbed energy of the steel sheet.

得られた結果を表3に示す。   The obtained results are shown in Table 3.

Figure 0006202010
Figure 0006202010

Figure 0006202010
Figure 0006202010

Figure 0006202010
Figure 0006202010

本発明で提案した加熱、熱間加工条件を適用し、好ましい製造条件で製造された継目無鋼管(ここでは、本発明例という)はいずれも、肉厚中心位置においても組織の微細化ができ、降伏強さ:654MPa以上の高強度であるにもかかわらず、試験温度:−10℃における吸収エネルギーが50J以上の優れた低温靭性を有している。一方、本発明の加熱、熱間加工条件を利用しないため、好ましい製造条件の範囲を外れる継目無鋼管は、組織が微細化できず、所望の高靭性と高強度を確保できていない。   Any of the seamless steel pipes (herein referred to as examples of the present invention) manufactured under the preferable manufacturing conditions by applying the heating and hot working conditions proposed in the present invention can be refined in the structure even at the center of the wall thickness. Despite the high strength of yield strength: 654 MPa or more, the absorption energy at the test temperature: −10 ° C. has excellent low temperature toughness of 50 J or more. On the other hand, since the heating and hot working conditions of the present invention are not used, a seamless steel pipe that is out of the range of preferable manufacturing conditions cannot have a fine structure, and cannot secure desired high toughness and high strength.

1 加熱装置
2 熱間加工装置
21 穿孔圧延装置
22 圧延装置
221 エロンゲータ
222 プラグミル
223 サイジングミル
DESCRIPTION OF SYMBOLS 1 Heating apparatus 2 Hot working apparatus 21 Punching and rolling apparatus 22 Rolling apparatus 221 Elongator 222 Plug mill 223 Sizing mill

Claims (2)

フェライト相と残部をオーステナイト相もしくはマルテンサイト相もしくはその両方を含む組織を有する2相ステンレス継目無鋼管の製造方法であって、
質量%で、
C :0.050%以下、 Si:1.00%以下、
Mn:0.20〜1.80%、 Cr:15.5〜18.0%、
Ni:1.5〜5.0%、 Mo:1.0〜3.5%、
V :0.02〜0.20%、 N :0.01〜0.15%、
O :0.006%以下
を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材を加熱した後、熱間加工を施して所定形状の継目無鋼管とするにあたり、前記加熱および前記熱間加工中の前記鋼素材の温度を直接接触式または非接触式の温度計で測定し、測定したタイミングでの温度から伝熱解析で導かれる最高到達温度を1000℃以上δ(昇温過程でδフェライト相単相になる温度)以下とし、かつ前記伝熱解析で導かれる温度履歴から前記鋼素材の温度が(δ−100℃)以上になる時間を3600s以下とし、さらに前記熱間加工の最終加工を前記鋼素材の外表面温度で1200℃以下の温度域で施すことを特徴とする低温靭性に優れた高強度2相ステンレス継目無鋼管の製造方法。
A method for producing a duplex stainless steel pipe having a structure including a ferrite phase and the balance of an austenite phase, a martensite phase, or both,
% By mass
C: 0.050% or less, Si: 1.00% or less,
Mn: 0.20 to 1.80%, Cr: 15.5 to 18.0%,
Ni: 1.5-5.0%, Mo: 1.0-3.5%,
V: 0.02 to 0.20%, N: 0.01 to 0.15%,
O: 0.006% or less
And heating the steel material having a composition composed of the remaining Fe and inevitable impurities, and then performing hot working to obtain a seamless steel pipe of a predetermined shape, the heating and the hot working of the steel material during the hot working The temperature is measured with a direct contact or non-contact thermometer, and the maximum temperature derived by heat transfer analysis from the temperature at the measured timing is 1000 ° C or higher δ A (δ ferrite phase becomes a single phase during the temperature rising process) Temperature) and the time during which the temperature of the steel material is (δ A -100 ° C.) or more from the temperature history derived by the heat transfer analysis is 3600 s or less, and the final processing of the hot working is further performed by the steel material A method for producing a high-strength duplex stainless steel seamless pipe excellent in low-temperature toughness, characterized by being applied at a temperature range of 1200 ° C. or less at an outer surface temperature of the steel.
前記鋼素材が、前記組成に加えてさらに、質量%で、次A群〜D群
A群:Al:0.002〜0.050%
B群:Cu:3.5%以下、W:3.5%以下、REM:0.3%以下
C群:Nb:0.2%以下、Ti:0.3%以下、Zr:0.2%以下のうちから選ばれた1種または2種以上
D群:Ca:0.01%以下、B:0.01%以下のうちから選ばれた1種または2種のうちから選ばれた1群または2群以上を含有することを特徴とする請求項に記載の高強度2相ステンレス継目無鋼管の製造方法。
In addition to the said composition, the said steel raw material is the mass%, and the following A group-D group A group: Al: 0.002-0.050%
Group B: Cu: 3.5% or less, W: 3.5% or less, REM: 0.3% or less C group: Nb: 0.2% or less, Ti: 0.3% or less, Zr: 0.2 % Selected from 1% or 2 or more selected from the group D: Ca: 0.01% or less, B: 0.01% or less selected from 1 or 2 The method for producing a high-strength dual-phase stainless steel seamless steel pipe according to claim 1 , comprising a group or two or more groups.
JP2015006805A 2015-01-16 2015-01-16 Manufacturing method of high-strength duplex stainless steel seamless steel pipe Active JP6202010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015006805A JP6202010B2 (en) 2015-01-16 2015-01-16 Manufacturing method of high-strength duplex stainless steel seamless steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015006805A JP6202010B2 (en) 2015-01-16 2015-01-16 Manufacturing method of high-strength duplex stainless steel seamless steel pipe

Publications (2)

Publication Number Publication Date
JP2016132789A JP2016132789A (en) 2016-07-25
JP6202010B2 true JP6202010B2 (en) 2017-09-27

Family

ID=56437455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015006805A Active JP6202010B2 (en) 2015-01-16 2015-01-16 Manufacturing method of high-strength duplex stainless steel seamless steel pipe

Country Status (1)

Country Link
JP (1) JP6202010B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6520892B2 (en) * 2016-11-07 2019-05-29 Jfeスチール株式会社 Seamless steel pipe manufacturing method and seamless steel pipe manufacturing equipment
US11306369B2 (en) 2017-02-24 2022-04-19 Jfe Steel Corporation High-strength stainless steel seamless pipe for oil country tubular goods, and method for producing same
CN114934163B (en) * 2022-04-02 2023-09-29 常州市联谊特种不锈钢管有限公司 Manufacturing method of ultralow-carbon austenitic stainless steel thin-wall seamless pipe suitable for manufacturing cutting ferrule

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5488643B2 (en) * 2012-05-31 2014-05-14 Jfeスチール株式会社 High strength stainless steel seamless pipe for oil country tubular goods and method for producing the same

Also Published As

Publication number Publication date
JP2016132789A (en) 2016-07-25

Similar Documents

Publication Publication Date Title
JP6197850B2 (en) Method for producing duplex stainless steel seamless pipe
JP6341125B2 (en) Method for producing duplex stainless steel pipe
US11821051B2 (en) Apparatus line for manufacturing seamless steel pipe and tube and method of manufacturing duplex seamless stainless steel pipe
JP6171851B2 (en) Apparatus row for seamless steel pipe production and method for producing high-strength stainless steel seamless steel pipe for oil wells using the same
JP6037031B1 (en) High strength seamless thick steel pipe and method for manufacturing the same
WO2011093117A1 (en) Production method for seamless steel pipe used in line pipe, and seamless steel pipe used in line pipe
WO2017200033A1 (en) Seamless steel pipe and method for producing same
JP6596954B2 (en) Seamless steel pipe and manufacturing method thereof
EP2824198A1 (en) Method for producing high-strength steel material having excellent sulfide stress cracking resistance
JP2016164288A (en) Method for producing high strength stainless seamless steel pipe for oil well
CA3108758C (en) Duplex stainless steel seamless pipe and method for manufacturing same
US20190040480A1 (en) Seamless steel pipe and method for producing same
JP6341128B2 (en) Manufacturing method of thin-walled high strength stainless steel seamless pipe for oil well
JP6394809B2 (en) Steel pipe for line pipe and manufacturing method thereof
JP6202010B2 (en) Manufacturing method of high-strength duplex stainless steel seamless steel pipe
JP6315076B2 (en) Manufacturing method of high strength stainless steel seamless steel pipe for oil well
JP6341181B2 (en) Method for producing duplex stainless steel seamless pipe
JP6520892B2 (en) Seamless steel pipe manufacturing method and seamless steel pipe manufacturing equipment
JP6171834B2 (en) Equipment column for manufacturing thick steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170814

R150 Certificate of patent or registration of utility model

Ref document number: 6202010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250