JP6197850B2 - Method for producing duplex stainless steel seamless pipe - Google Patents

Method for producing duplex stainless steel seamless pipe Download PDF

Info

Publication number
JP6197850B2
JP6197850B2 JP2015213749A JP2015213749A JP6197850B2 JP 6197850 B2 JP6197850 B2 JP 6197850B2 JP 2015213749 A JP2015213749 A JP 2015213749A JP 2015213749 A JP2015213749 A JP 2015213749A JP 6197850 B2 JP6197850 B2 JP 6197850B2
Authority
JP
Japan
Prior art keywords
duplex stainless
stainless steel
temperature
cooling
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015213749A
Other languages
Japanese (ja)
Other versions
JP2016117944A (en
Inventor
俊輔 佐々木
俊輔 佐々木
勝村 龍郎
龍郎 勝村
仲道 治郎
治郎 仲道
加藤 康
康 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2016117944A publication Critical patent/JP2016117944A/en
Application granted granted Critical
Publication of JP6197850B2 publication Critical patent/JP6197850B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、炭酸ガスCO、塩素イオンCl等を含む環境下での耐食性に優れたオーステナイト・フェライト系二相ステンレス継目無鋼管に係り、特に熱間圧延時の変形能、および、低温靭性と降伏強度の向上に関する。 The present invention relates to an austenitic / ferritic duplex stainless steel seamless steel pipe excellent in corrosion resistance under an environment containing carbon dioxide CO 2 , chlorine ions Cl −, and the like, particularly deformability during hot rolling, and low temperature toughness And improve yield strength.

近年、世界的なエネルギー消費量の増大による、原油等のエネルギー価格の高騰や、石油資源の枯渇という観点から、従来、省みられなかったような深度が深い油田(深層油田)や、硫化水素等を含む、いわゆるサワー環境下にある厳しい腐食環境の油田やガス田や、さらには厳しい気象環境の極北における油田やガス田等において、エネルギー資源開発が盛んに行われている。このような環境下で使用される油井用鋼管には、高強度で、かつ優れた耐食性(耐サワー性)や、さらには優れた低温靭性を兼ね備えた材質を有することが要求されている。   In recent years, from the viewpoint of soaring energy prices such as crude oil due to an increase in global energy consumption, and the depletion of petroleum resources, deep oil fields (deep oil fields) and hydrogen sulfide that have not been previously excluded Energy resources are being actively developed in oil fields and gas fields in severe corrosive environments under a so-called sour environment, and in oil fields and gas fields in the extreme north of severe weather environments. The oil well steel pipe used in such an environment is required to have a material having high strength and excellent corrosion resistance (sour resistance) and excellent low temperature toughness.

このような材質を有する鋼材としては、従来から、22%Cr鋼や25%Cr鋼のようなオーステナイト・フェライト系二相ステンレス鋼(以下、二相ステンレス鋼ともいう)が知られ、特に硫化水素を多量に含み且つ高温である厳しい腐食環境下で使用される油井用継目無鋼管等に採用されている。また、二相ステンレス鋼は、21〜28%程度の高Cr系の極低炭素で、Mo、Ni、N等を含む各種の鋼材が開発され、JIS規格にも、JIS G 4303〜4305に、SUS329J1、SUS329J3L、SUS329J4L等として規定されている。   Conventionally known austenitic and ferritic duplex stainless steels (hereinafter also referred to as duplex stainless steels) such as 22% Cr steel and 25% Cr steel are known as steel materials having such materials, particularly hydrogen sulfide. It is used for oil well seamless steel pipes and the like used in severe corrosive environments containing a large amount of and high temperatures. In addition, the duplex stainless steel is a high Cr-based ultra-low carbon of about 21 to 28%, and various steel materials including Mo, Ni, N and the like have been developed. The JIS standard also includes JIS G 4303 to 4305, It is defined as SUS329J1, SUS329J3L, SUS329J4L, or the like.

しかし、二相ステンレス鋼は、Cr、Mo等の合金元素を多量に含有しているため、通常の熱間加工温度域〜冷却中に硬くて脆い金属間化合物(脆化相)を生成するため、熱間加工性が劣るとともに、使用温度において脆化相が析出していると機械的特性、耐食性が大きく低下する。そのため、通常では、脆化相の析出温度以上に加熱し、脆化相析出前に熱間加工を終了し、且つ冷却中に析出した金属間化合物中に濃化した合金元素を母材に溶かし込むために脆化相の析出温度以上に加熱を行い急冷する溶体化処理を行っている。また、これら合金元素を多量に含有した鋼は脆化相の析出のない熱間温度域であっても、多相域であることが多く、例えば前述したSUS329J4Lなどでは熱間加工温度域においてフェライト−オーステナイト相の二相域であるため、相対的に変形抵抗の低いフェライト相に歪が集中して破壊が生じやすい。そのため、特に厚肉継目無鋼管を製造する場合において熱間加工時の疵抑制のために高温で加工を終了するもしくは、歪量を低減する必要があり、大きな歪を肉厚中心部に蓄積することが困難となる。熱間加工時に歪の付与が不足すると、歪による結晶粒の微細化が困難となり製品時の機械的性質、特に低温靭性と降伏強度が低下する。   However, since duplex stainless steel contains a large amount of alloy elements such as Cr and Mo, it generates hard and brittle intermetallic compounds (embrittlement phase) during cooling from the normal hot working temperature range. The hot workability is inferior, and if the embrittlement phase is precipitated at the use temperature, the mechanical properties and corrosion resistance are greatly reduced. Therefore, normally, heating is performed at a temperature equal to or higher than the precipitation temperature of the embrittlement phase, the hot working is finished before the embrittlement phase precipitation, and the alloying element concentrated in the intermetallic compound precipitated during cooling is dissolved in the base material. Therefore, a solution treatment is performed in which heating is performed at a temperature higher than the precipitation temperature of the embrittlement phase and quenching is performed. In addition, steels containing a large amount of these alloy elements are often in a multi-phase region even in a hot temperature region where no embrittlement phase precipitates. For example, in the above-described SUS329J4L, a ferrite is formed in the hot working temperature region. -Since it is a two-phase region of an austenite phase, strain concentrates on a ferrite phase having a relatively low deformation resistance, and breakage easily occurs. Therefore, especially when manufacturing thick-walled seamless steel pipes, it is necessary to finish the processing at a high temperature or to reduce the amount of strain in order to suppress defects during hot working, and a large strain is accumulated in the center of the thickness. It becomes difficult. If the application of strain is insufficient during hot working, it is difficult to refine crystal grains due to strain, and mechanical properties, particularly low-temperature toughness and yield strength, at the time of the product are lowered.

このような問題に対し、例えば特許文献1には高強度ステンレス鋼管の製造方法が提案されている。特許文献1に記載された技術は、質量%で、C:0.03%以下、Si:1%以下、Mn:0.1〜4%、Cr:20〜35%、Ni:3〜10%、Mo:0〜6%、W:0〜6%、Cu:0〜3%、N:0.15〜0.60%を含有し、残部がFeおよび不純物からなる化学組成を有する二相ステンレス鋼材を、熱間加工によりあるいはさらに固溶化熱処理により冷間加工用素管を作製した後、冷間圧延によって二相ステンレス鋼管を製造するにあたり、最終の冷間圧延工程における断面減少率での加工度Rdが10〜80%の範囲内且つ下記(1)式を満足する条件で冷間圧延することを特徴とする、高強度二相ステンレス鋼管の製造方法である。
Rd=exp[{ln(MYS)−ln(14.5×Cr+48.3×Mo+20.7×W+6.9×N)}/0.195] ・・・・・(1)
Rd:断面減少率(%)、MYS:目標降伏強度(MPa)、Cr、Mo、WおよびN:元素の含有量(質量%)。
For example, Patent Document 1 proposes a method for manufacturing a high-strength stainless steel pipe. The technique described in Patent Document 1 is mass%, C: 0.03% or less, Si: 1% or less, Mn: 0.1 to 4%, Cr: 20 to 35%, Ni: 3 to 10% , Mo: 0 to 6%, W: 0 to 6%, Cu: 0 to 3%, N: 0.15 to 0.60%, with the balance being a chemical composition consisting of Fe and impurities After producing a cold-working blank tube by hot working or by further solution heat treatment of steel, cold-rolling produces a duplex stainless steel pipe, which is processed at the cross-sectional reduction rate in the final cold rolling process. A method for producing a high-strength duplex stainless steel pipe, characterized in that cold rolling is performed under a condition where the degree Rd is in the range of 10 to 80% and the following expression (1) is satisfied.
Rd = exp [{ln (MYS) -ln (14.5 × Cr + 48.3 × Mo + 20.7 × W + 6.9 × N)} / 0.195] (1)
Rd: cross-sectional reduction rate (%), MYS: target yield strength (MPa), Cr, Mo, W, and N: element content (% by mass).

特許文献1に記載された技術では適正な組成元素の含有量と冷間加工度を厳格に管理することで高強度な二相ステンレス継目無鋼管が得られるとしている。   According to the technique described in Patent Document 1, a high-strength duplex stainless steel seamless steel pipe can be obtained by strictly managing the content of the proper composition element and the cold working degree.

また、例えば特許文献2には、高強度二相ステンレス鋼材の製造方法が提案されている。特許文献2に記載された技術は、Cuを含有するオーステナイト・フェライト系二相ステンレス鋼の溶体化処理材に、断面減少率35%以上の冷間加工を施した後、一旦、50℃/s以上の加熱速度で800〜1150℃の温度域まで加熱してから急冷し、ついで300〜700℃での温間加工を施したのちに再び冷間加工を施し、あるいはさらに450〜700℃で時効処理する高強度2相ステンレス鋼材の製造方法である。特許文献2に記載された技術では、加工と熱処理を組み合わせることにより、組織の微細化を図り、冷間加工を施しても、その加工量を著しく小さくできるため、耐食性の劣化を防止できるとしている。   For example, Patent Document 2 proposes a method for producing a high-strength duplex stainless steel material. The technique described in Patent Document 2 is that a solution treatment material of austenite-ferritic duplex stainless steel containing Cu is subjected to cold working with a cross-section reduction rate of 35% or more, and then once at 50 ° C./s. After heating to the temperature range of 800 to 1150 ° C. at the above heating rate, quenching is performed, and then warm processing is performed at 300 to 700 ° C. and then cold processing is performed again, or further aging at 450 to 700 ° C. It is a manufacturing method of the high intensity | strength duplex stainless steel material processed. In the technique described in Patent Document 2, by combining processing and heat treatment, the structure can be refined and the amount of processing can be significantly reduced even when cold processing is performed, so that deterioration of corrosion resistance can be prevented. .

また、特許文献3には、質量%で、Cr:9%以上を含む組成を有する鋼管素材を加熱し、傾斜圧延方式による圧延で穿孔し、延伸して所定寸法の継目無管とするにあたり、前記加熱を(Ac変態点+10℃)以上、液相発生温度未満とすることで圧延疵の発生を抑制する高Cr鋼継目無管の製造方法が開示されている。特許文献3に記載された技術では、鋼管素材の加熱温度をγ粒界以外のγ粒内にもδ−フェライトが析出する温度以上、かつ粒界が液化する温度(液相発生温度)未満の温度とすることで粒界破壊の発生が抑制され、圧延疵が顕著に減少するとしている。 Further, in Patent Document 3, a steel pipe material having a composition containing at least 9% by mass and Cr: 9% or more is heated, pierced by rolling by a tilt rolling method, and drawn into a seamless pipe having a predetermined dimension. A manufacturing method of a high Cr steel seamless pipe is disclosed in which the heating is set to (Ac 4 transformation point + 10 ° C.) or higher and lower than the liquidus generation temperature to suppress the occurrence of rolling defects. In the technique described in Patent Document 3, the heating temperature of the steel pipe material is equal to or higher than the temperature at which δ-ferrite precipitates in γ grains other than the γ grain boundary, and less than the temperature at which the grain boundary liquefies (liquid phase generation temperature). By setting the temperature, the occurrence of grain boundary fracture is suppressed, and the rolling wrinkles are remarkably reduced.

また、特許文献4には、加熱した素材を穿孔し、次いでエロンゲータ、プラグミル、マンドレルミル等の圧延機により圧延を行うシームレス鋼管の圧延方法において、圧延工程で圧延中の素管温度が、加工発熱により脆化域に到達することがないように、穿孔後の圧延に入る前の素管内を事前に冷却する高い加工発熱を伴う合金鋼等のシームレス鋼管素材の圧延方法が開示されている。特許文献4に記載された技術では、素管全体が均一に冷却され、加工発熱の大きい合金鋼等の材質を持つ素材を充分な加工温度を確保しつつ、脆化域圧延をさけることができるので、圧延加工性および品質面を両立させてシームレス鋼管を圧延できるとしている。   Patent Document 4 discloses a seamless steel pipe rolling method in which a heated material is perforated and then rolled by a rolling mill such as an elongator, a plug mill, and a mandrel mill. A rolling method of a seamless steel pipe material such as alloy steel with high work heat generation that cools the inside of the raw pipe before the rolling after piercing in advance so as not to reach the embrittlement region due to the above is disclosed. In the technique described in Patent Document 4, the entire raw tube is uniformly cooled, and it is possible to avoid brittle zone rolling while securing a sufficient processing temperature for a material having a material such as alloy steel having a large processing heat generation. Therefore, it is said that a seamless steel pipe can be rolled while achieving both rolling processability and quality.

特許第4462454号公報Japanese Patent No. 4462454 特開平07−207337号公報Japanese Patent Application Laid-Open No. 07-207337 特開2005−14031号公報JP-A-2005-14031 特開平01−278902号公報Japanese Unexamined Patent Publication No. 01-278902

しかしながら、特許文献1に記載された技術では、最終冷間加工により断面減少率での加工度を大きくとる必要があり、変形抵抗の高い二相ステンレス鋼を加工するための強力な冷間加工装置への高額な設備投資が必要となる。また、特許文献2に記載された技術において、冷間加工による加工度を増加させることにより、特に高温湿潤環境における耐食性の低下が指摘されており、耐食性向上のためには組織微細化や析出物の最適化で強度を向上し、冷間加工における加工度低減が有効であるとされている。一方で、そのための手法として特許文献2に記載された技術は、溶体化処理と冷間加工後の熱処理を含め複数回の熱処理を行なう必要があり、工程が複雑となり、生産性が低下するとともに、エネルギー使用量が増加し製造コストが高騰するという問題があった。また、300〜700℃での温間加工では熱間加工疵が発生するという問題もある。   However, in the technique described in Patent Document 1, it is necessary to increase the degree of processing at the cross-section reduction rate by final cold working, and a powerful cold working apparatus for working duplex stainless steel having high deformation resistance. Expensive capital investment is required. In addition, in the technique described in Patent Document 2, it has been pointed out that the corrosion resistance is lowered particularly in a high-temperature wet environment by increasing the degree of processing by cold working. It is said that it is effective to improve the strength by optimizing and to reduce the workability in cold working. On the other hand, the technique described in Patent Document 2 as a technique for that purpose requires multiple heat treatments including solution treatment and heat treatment after cold working, which complicates the process and reduces productivity. However, there is a problem that the amount of energy used increases and the manufacturing cost increases. In addition, there is a problem that hot working flaws occur in warm working at 300 to 700 ° C.

また、特許文献3に記載された技術は、Crを質量%で9%以上好ましくは22%以下含有するマルテンサイト系Cr鋼、あるいはフェライト系Cr鋼の継目無鋼管に発生する圧延疵を対象とした技術であり、圧延後の鋼管の機械的特性が全く考慮されておらず、特に、本発明で対象とする二相ステンレス継目無鋼管に適用しても、二相組織の有する耐食性、耐孔食性を得つつ、熱間加工性及び機械的特性を向上することができずに問題となる。   Further, the technique described in Patent Document 3 is intended for rolling mills generated in seamless steel pipes of martensitic Cr steel or ferritic Cr steel containing 9% by mass or more, preferably 22% or less of Cr. The mechanical properties of the steel pipe after rolling are not taken into consideration at all, and even when applied to the duplex stainless steel seamless steel pipe targeted by the present invention, the corrosion resistance and hole resistance possessed by the duplex structure It becomes a problem that hot workability and mechanical properties cannot be improved while obtaining food properties.

また、特許文献4に記載された技術は、加工発熱が大きいNi系合金鋼(Cr≧20%、Ni≧20%)の圧延において、プレスピアシングミルによる穿孔圧延後の素管の内面を強制冷却することにより内外面同等の冷却能力を確保して素管全体を所定の温度まで均一に冷却し、エロンゲータ、プラグミル、マンドレルミル等の圧延機による圧延時に、加工熱により素管温度が上昇しても脆化温度域以下に温度を抑制して内面疵の発生を防止する技術であり、圧延時の素管の組織や圧延後の鋼管の機械的特性については全く考慮されていない。   Moreover, the technique described in Patent Document 4 is forcibly cooling the inner surface of the raw tube after piercing and rolling by a press piercing mill in rolling of Ni-based alloy steel (Cr ≧ 20%, Ni ≧ 20%) having a large work heat generation. As a result, the cooling capacity equivalent to the inner and outer surfaces is ensured, and the entire pipe is uniformly cooled to a predetermined temperature.When rolling with a rolling mill such as an elongator, plug mill or mandrel mill, the pipe temperature rises due to processing heat. However, it is a technique for preventing the occurrence of internal flaws by suppressing the temperature below the embrittlement temperature range, and the structure of the raw pipe during rolling and the mechanical characteristics of the steel pipe after rolling are not considered at all.

本発明は、かかる従来技術の問題を有利に解決し、複雑な熱処理や冷間加工無しに組織細粒化により強度向上した高強度二相ステンレス継目無鋼管を、割れ等の発生もなく安定して製造できる安価な製造方法を提供することを目的とする。なお、ここでいう「高強度」とは、降伏強さYS:588MPa以上の場合をいうものとする。また、ここでいう「二相」とは、オーステナイト相とフェライト相、あるいはフェライト相とマルテンサイト相、あるいは、フェライト相、オーステナイト相およびマルテンサイト相である場合を含む組織をいうものとする。   The present invention advantageously solves the problems of the prior art and stabilizes a high-strength duplex stainless steel seamless steel pipe that has been improved in strength by refining the structure without complicated heat treatment and cold working without the occurrence of cracks and the like. An object of the present invention is to provide an inexpensive manufacturing method that can be manufactured. Here, “high strength” refers to the case where the yield strength is YS: 588 MPa or more. The “two-phase” here refers to a structure including an austenite phase and a ferrite phase, a ferrite phase and a martensite phase, or a ferrite phase, an austenite phase, and a martensite phase.

本発明者らは、上記した目的を達成するため、二相ステンレス継目無鋼管の強度に影響する各種要因について鋭意検討した。その結果、二相ステンレス継目無鋼管の強度増加および低温靭性向上に最も有効な方法は、組織の微細化を図ることであるということに思い至った。   In order to achieve the above-described object, the present inventors diligently studied various factors that affect the strength of the duplex stainless steel seamless steel pipe. As a result, it came to mind that the most effective method for increasing the strength and improving the low temperature toughness of the duplex stainless steel pipe is to refine the structure.

そこで、更なる研究を行ない、二相ステンレス継目無鋼管の組織微細化のためには、一旦、フェライト析出量が多い温度域に加熱したのち急冷して、過冷却のフェライト相を生成したのち、過冷却のフェライト相に加工を加えて、歪誘起オーステナイト相を主とする組織を生成させることが有効であることを見出した。   Therefore, further research was conducted, and in order to refine the structure of the duplex stainless steel seamless steel pipe, once it was heated to a temperature range with a large amount of ferrite precipitation, it was rapidly cooled to produce a supercooled ferrite phase. It has been found that it is effective to form a structure mainly composed of a strain-induced austenite phase by processing the supercooled ferrite phase.

本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)熱間加工温度域でフェライト相とオーステナイト相を含む組織を有する二相ステンレス継目無鋼管の製造方法であって、質量%で、C:0.05%以下、Si:2.0%以下、Mn:2.0%以下、P:0.05%以下、S:0.03%以下、Cr:16.0〜35.0%、Ni:3.0〜12.0%、Mo:1.1〜5.0%、N:0.50%以下、を含み、残部Feおよび不可避的不純物からなる組成の鋼素材を加熱装置で加熱後、穿孔圧延を施して中空素材とし、該中空素材に加工を施して所定寸法の二相ステンレス継目無鋼管とするにあたり、前記加熱を、δフェライト単相域の温度に加熱する処理とし、前記穿孔圧延後の前記中空素材に肉厚中心温度で1.0℃/s以上の平均冷却速度で、冷却開始温度からの温度差が少なくとも50℃以上で、かつ600℃以上となる冷却停止温度まで冷却する冷却処理を施し、しかるのち、前記加工を施し、フェライト相と、オーステナイト相および/またはマルテンサイト相と、を含む組織を有する継目無鋼管とすることを特徴とする高強度二相ステンレス継目無鋼管の製造方法。
(2)前記組成に加えて、Nb:0.01〜3.0%、Ti:0.01〜0.1%、V:0.01〜3.0%のうちから選ばれた1種または2種以上を含有することを特徴とする(1)に記載の高強度継目無鋼管の製造方法。
(3)前記組成に加えてさらに、W:0.01〜3.5%、Cu:0.01〜3.5%、Zr:0.01〜0.5%、REM:0.005〜0.05%のうちから選ばれた1種または2種以上を含有することを特徴とする(1)または(2)に記載の高強度継目無鋼管の製造方法。
(4)前記組成に加えてさらに、Al:0.50%以下を含有することを特徴とする(1)ないし(3)のいずれかに記載の高強度継目無鋼管の製造方法。
(5)前記組成に加えてさらに、Ca:0.0005〜0.01%を含有することを特徴とする(1)ないし(4)のいずれかに記載の高強度継目無鋼管の製造方法。
(6)前記加工が複数段からなる加工であり、前記冷却処理を、前記複数段の加工のうち、少なくとも1段の加工の前に、施すことを特徴とする(1)ないし(5)のいずれかに記載の高強度二相ステンレス継目無鋼管の製造方法。
(7)前記加工の後の冷却を、管肉厚中心温度で20℃/s以下の平均冷却速度となるように調整することを特徴とする(1)ないし(6)のいずれかに記載の高強度二相ステンレス継目無鋼管の製造方法。
(8)前記加工の後の冷却を施した後に、更に焼入れ焼戻し処理あるいは溶体化処理を施すことを特徴とする(7)に記載の高強度二相ステンレス継目無鋼管の製造方法。
The present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.
(1) A method for producing a duplex stainless steel seamless pipe having a structure including a ferrite phase and an austenite phase in a hot working temperature range, and in mass%, C: 0.05% or less, Si: 2.0% Hereinafter, Mn: 2.0% or less, P: 0.05% or less, S: 0.03% or less, Cr: 16.0 to 35.0%, Ni: 3.0 to 12.0%, Mo: A steel material having a composition including 1.1 to 5.0% and N: 0.50% or less, the balance being Fe and inevitable impurities, is heated with a heating device, and then subjected to piercing and rolling to form a hollow material. When the material is processed into a duplex stainless steel pipe having a predetermined size, the heating is a process of heating to a temperature in the δ ferrite single phase region, and the hollow material after the piercing and rolling is subjected to a thickness center temperature. Temperature difference from the cooling start temperature is small at an average cooling rate of 1.0 ° C / s or more. Both are subjected to a cooling treatment for cooling to a cooling stop temperature of 50 ° C. or higher and 600 ° C. or higher, and then subjected to the processing, and have a structure including a ferrite phase, an austenite phase and / or a martensite phase. A method for producing a high-strength duplex stainless steel seamless steel pipe, characterized in that it is a seamless steel pipe.
(2) In addition to the above composition, Nb: 0.01-3.0%, Ti: 0.01-0.1%, V: 0.01-3.0% or one selected from The method for producing a high-strength seamless steel pipe according to (1), comprising two or more kinds.
(3) In addition to the above composition, W: 0.01 to 3.5%, Cu: 0.01 to 3.5%, Zr: 0.01 to 0.5%, REM: 0.005 to 0 The method for producing a high-strength seamless steel pipe according to (1) or (2), comprising one or more selected from 0.05%.
(4) The method for producing a high-strength seamless steel pipe according to any one of (1) to (3), further comprising Al: 0.50% or less in addition to the composition.
(5) The method for producing a high-strength seamless steel pipe according to any one of (1) to (4), further including Ca: 0.0005 to 0.01% in addition to the composition.
(6) The process according to (1) to (5), wherein the process is a process including a plurality of stages, and the cooling treatment is performed before at least one stage of the plurality of stages. The manufacturing method of the high intensity | strength duplex stainless steel seamless steel pipe in any one.
(7) The cooling after the processing is adjusted so as to have an average cooling rate of 20 ° C./s or less at the tube thickness center temperature, (1) to (6) Manufacturing method of high strength duplex stainless steel seamless steel pipe.
(8) The method for producing a high-strength duplex stainless steel seamless steel pipe according to (7), further comprising quenching and tempering treatment or solution treatment after cooling after the processing.

本発明によれば、複雑な熱処理や冷間加工を施す必要もなく、且つ穿孔圧延や加工時の割れ等の発生もなく、高強度と優れた低温靭性を有する二相ステンレス継目無鋼管を安定して容易に製造でき、産業上格段の効果を奏する。   According to the present invention, it is not necessary to perform complicated heat treatment and cold working, and there is no occurrence of piercing and rolling, cracking during processing, etc., and stable duplex stainless steel pipes having high strength and excellent low temperature toughness Therefore, it can be manufactured easily and has a remarkable industrial effect.

本発明で使用される、好ましい装置列の一例を模式的に示す説明図である。It is explanatory drawing which shows typically an example of the preferable apparatus row | line | column used by this invention.

本発明は、二相ステンレス鋼組成を有する鋼素材に、加熱処理と穿孔圧延を施した後、冷却処理と加工を施し所定寸法の継目無鋼管とする、二相ステンレス継目無鋼管の製造方法である。   The present invention is a method for producing a duplex stainless steel seamless pipe, in which a steel material having a duplex stainless steel composition is subjected to heat treatment and piercing and rolling, and then subjected to cooling treatment and processing to obtain a seamless steel pipe having a predetermined size. is there.

使用する鋼素材としては、JIS G 4303〜4305にSUS329J1、SUS329J3L、SUS329J4Lとして規定されている二相ステンレス鋼組成の鋼素材がいずれも適用できるが、鋼素材の組成を、質量%で、C:0.05%以下、Si:2.0%以下、Mn:2.0%以下、P:0.05%以下、S:0.03%以下、Cr:16.0〜35.0%、Ni:3.0〜12.0%、Mo:1.1〜5.0%、N:0.50%以下を含み、残部Feおよび不可避的不純物からなる二相ステンレス鋼組成とする。
鋼素材の組成の限定理由について説明する。以下、質量%は単に%で記す。
As the steel material to be used, any of the steel materials having a duplex stainless steel composition defined as SUS329J1, SUS329J3L, and SUS329J4L in JIS G 4303 to 4305 can be applied. 0.05% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.05% or less, S: 0.03% or less, Cr: 16.0 to 35.0%, Ni : 3.0 to 12.0%, Mo: 1.1 to 5.0%, N: 0.50% or less, and a duplex stainless steel composition comprising the balance Fe and unavoidable impurities.
The reason for limiting the composition of the steel material will be described. Hereinafter, mass% is simply expressed as%.

C:0.05%以下
Cは、強度を増加させる元素であるが、耐食性を低下させるため、できるだけ低減することが望ましいが、過度の低減は製造コストの高騰を招く。このため、本発明では、0.05%以下に限定した。なお、好ましくは0.03%以下である。
C: 0.05% or less C is an element that increases strength, but it is desirable to reduce it as much as possible in order to reduce corrosion resistance. However, excessive reduction leads to an increase in manufacturing cost. For this reason, in this invention, it limited to 0.05% or less. In addition, Preferably it is 0.03% or less.

Si:2.0%以下
Siは、脱酸剤として作用するとともに、強度を向上させる元素であり、このような効果を得るためには0.01%以上含有することが望ましいが、2.0%を超える多量の含有は、延性の低下や、金属間化合物の析出を助長し、耐食性を低下させる。このため、Siは2.0%以下に限定した。なお、好ましくは0.5〜1.5%である。
Si: 2.0% or less Si is an element that acts as a deoxidizer and improves the strength. In order to obtain such an effect, it is desirable to contain 0.01% or more. If contained in a large amount exceeding%, the ductility is lowered and precipitation of intermetallic compounds is promoted, and the corrosion resistance is lowered. For this reason, Si was limited to 2.0% or less. In addition, Preferably it is 0.5 to 1.5%.

Mn:2.0%以下
Mnは、オーステナイト安定化元素であり、オーステナイト相とフェライト相の分率を適正に調整し、二相ステンレス継目無鋼管の耐食性と加工性の向上に寄与する。このような効果を得るためには、0.01%以上の含有が望ましいが、2.0%を超える含有は、耐食性、熱間加工性を低下させる。このため、Mnは2.0%以下に限定した。なお、好ましくは0.5〜1.5%である。
Mn: 2.0% or less Mn is an austenite stabilizing element, and appropriately adjusts the fraction of the austenite phase and the ferrite phase and contributes to the improvement of the corrosion resistance and workability of the duplex stainless steel seamless pipe. In order to obtain such an effect, the content is preferably 0.01% or more, but the content exceeding 2.0% lowers the corrosion resistance and hot workability. For this reason, Mn was limited to 2.0% or less. In addition, Preferably it is 0.5 to 1.5%.

P:0.05%以下
Pは、不純物として混入する元素であり、結晶粒界等に偏析しやすく、耐食性や熱間加工性の低下を招くため、できるだけ低減することが望ましいが、0.05%までは許容できる。しかし、過度の低減は、材料コストの高騰を招くため、0.002%以上とすることが好ましい。このようなことから、Pは0.05%以下に限定した。なお、好ましくは0.02%以下である。
P: 0.05% or less P is an element mixed as an impurity, and is easily segregated at grain boundaries and the like, and causes a decrease in corrosion resistance and hot workability. % Is acceptable. However, excessive reduction leads to an increase in material cost, so 0.002% or more is preferable. Therefore, P is limited to 0.05% or less. In addition, Preferably it is 0.02% or less.

S:0.03%以下
Sは、Pと同様に、不純物として混入する元素であり、鋼中では硫化物系介在物として存在し、延性、耐食性、熱間加工性を低下させるため、できるだけ低減することが好ましいが、0.03%までは許容できる。しかし、過度の低減は、材料コストの高騰を招くため、0.002%以上とすることが好ましい。このようなことから、Sは0.03%以下に限定した。なお、好ましくは0.005%以下である。
S: 0.03% or less S, like P, is an element mixed as an impurity, and exists as sulfide inclusions in steel, reducing ductility, corrosion resistance, and hot workability. However, it is acceptable up to 0.03%. However, excessive reduction leads to an increase in material cost, so 0.002% or more is preferable. For this reason, S is limited to 0.03% or less. In addition, Preferably it is 0.005% or less.

Cr:16.0〜35.0%
Crは、耐食性を向上させる元素であり、このような効果を得るためには16.0%以上の含有を必要とする。一方、35.0%を超えて多量に含有すると、σ相、χ相等の金属間化合物の生成を助長し、耐食性の低下を招く。このため、Crは16.0〜35.0%の範囲に限定した。なお、好ましくは16.0〜28.0%である。
Cr: 16.0 to 35.0%
Cr is an element that improves the corrosion resistance. In order to obtain such an effect, the content of 16.0% or more is required. On the other hand, if the content exceeds 35.0%, the formation of intermetallic compounds such as σ phase and χ phase is promoted, and the corrosion resistance is reduced. For this reason, Cr was limited to the range of 16.0 to 35.0%. In addition, Preferably it is 16.0-28.0%.

Ni:3.0〜12.0%
Niは、オーステナイト安定化元素であり、オーステナイト相とフェライト相の分率を適正に調整し、二相ステンレス継目無鋼管の耐食性と加工性の向上に寄与する。このような効果を得るためには、3.0%以上の含有を必要とする。一方、12.0%を超える含有は、過度のオーステナイト相の増加を招き、所望の二相組織を維持することが困難となる。このため、Niは3.0〜12.0%の範囲に限定した。なお、好ましくは3.0〜9.0%である。
Ni: 3.0 to 12.0%
Ni is an austenite stabilizing element, which appropriately adjusts the fraction of the austenite phase and the ferrite phase, and contributes to the improvement of the corrosion resistance and workability of the duplex stainless steel pipe. In order to obtain such an effect, the content of 3.0% or more is required. On the other hand, when the content exceeds 12.0%, an excessive increase in austenite phase is caused, and it becomes difficult to maintain a desired two-phase structure. For this reason, Ni was limited to the range of 3.0 to 12.0%. In addition, Preferably it is 3.0 to 9.0%.

Mo:1.1〜5.0%
Moは、二相ステンレス鋼のフェライト相分率を制御する元素であり、また、添加により耐食性を向上させる。このような効果を得るためには、1.1%以上含有することが望ましい。一方、5.0%を超えて含有すると、金属間化合物の析出を助長し、耐食性、熱間加工性を低下させる。このため、Moは1.1〜5.0%に限定した。なお、好ましくは2.0〜4.0%である。
Mo: 1.1-5.0%
Mo is an element that controls the ferrite phase fraction of the duplex stainless steel, and improves the corrosion resistance when added. In order to acquire such an effect, it is desirable to contain 1.1% or more. On the other hand, when it contains exceeding 5.0%, precipitation of an intermetallic compound is promoted and corrosion resistance and hot workability are reduced. For this reason, Mo was limited to 1.1 to 5.0%. In addition, Preferably it is 2.0 to 4.0%.

N:0.50%以下
Nは、強力なオーステナイト安定化元素であり、耐食性向上にも寄与する。このような効果を得るためには、0.01%以上含有することが望ましい。一方、0.50%を超えて含有すると、過度のオーステナイト相の増加を招き、所望の二相組織を維持することが困難となる。このため、Nは0.50%以下に限定した。
N: 0.50% or less N is a strong austenite stabilizing element and contributes to the improvement of corrosion resistance. In order to acquire such an effect, it is desirable to contain 0.01% or more. On the other hand, if the content exceeds 0.50%, an excessive increase in austenite phase is caused, and it becomes difficult to maintain a desired two-phase structure. For this reason, N was limited to 0.50% or less.

上記した組成に加えてさらに、Nb:0.01〜3.0%、Ti:0.01〜0.1%、V:0.01〜3.0%のうちから選ばれた1種または2種以上、および/または、W:0.01〜3.5%、Cu:0.01〜3.5%、Zr:0.01〜0.5%、REM:0.005〜0.05%のうちから選ばれた1種または2種以上、を含有してもよい。   In addition to the above composition, Nb: 0.01 to 3.0%, Ti: 0.01 to 0.1%, V: 0.01 to 3.0%, or one or two selected More than seeds and / or W: 0.01-3.5%, Cu: 0.01-3.5%, Zr: 0.01-0.5%, REM: 0.005-0.05% 1 type (s) or 2 or more types selected from among them may be contained.

Nb、Ti、Vは、いずれも強度増加に有効に寄与する元素であり、必要に応じて1種または2種以上、選択して含有することができる。このような効果を得るためには、Nb:0.01%以上、Ti:0.01%以上、V:0.01%以上含有することが望ましい。一方、Nb:3.0%、Ti:0.1%、V:3.0%を超えて含有しても、靭性、熱間加工性が低下する。このため、含有する場合には、Nb:0.01〜3.0%、Ti:0.01〜0.1%、V:0.01〜3.0%に限定することが好ましい。   Nb, Ti, and V are all elements that effectively contribute to an increase in strength, and can be selected and contained by one or more as necessary. In order to obtain such an effect, it is desirable to contain Nb: 0.01% or more, Ti: 0.01% or more, and V: 0.01% or more. On the other hand, even if it contains exceeding Nb: 3.0%, Ti: 0.1%, V: 3.0%, toughness and hot workability will fall. For this reason, when it contains, it is preferable to limit to Nb: 0.01-3.0%, Ti: 0.01-0.1%, V: 0.01-3.0%.

W、Cu、Zr、REMはいずれも、耐食性向上に有効に寄与する元素であり、必要に応じて1種または2種以上、選択して含有することができる。このような効果を得るためには、W:0.01%以上、Cu:0.01%以上、Zr:0.01%以上、REM:0.005%以上、含有することが望ましい。一方、W:3.5%、Cu:3.5%、Zr:0.5%、REM:0.05%、を超えて含有すると、靭性が低下する。このため、含有する場合には、W:0.01〜3.5%、Cu:0.01〜3.5%、Zr:0.01〜0.5%、REM:0.005〜0.05%に、それぞれ限定することが好ましい。   Each of W, Cu, Zr, and REM is an element that contributes effectively to the improvement of corrosion resistance, and can be selected and contained as needed, if necessary. In order to acquire such an effect, it is desirable to contain W: 0.01% or more, Cu: 0.01% or more, Zr: 0.01% or more, REM: 0.005% or more. On the other hand, when it contains exceeding W: 3.5%, Cu: 3.5%, Zr: 0.5%, REM: 0.05%, toughness will fall. For this reason, when it contains, W: 0.01-3.5%, Cu: 0.01-3.5%, Zr: 0.01-0.5%, REM: 0.005-0. It is preferable to limit each to 05%.

さらに、Al:0.50%以下および/またはCa:0.0005〜0.01%を含有することができる。   Furthermore, Al: 0.50% or less and / or Ca: 0.0005-0.01% can be contained.

Alは、脱酸剤として作用する元素であり、このような効果を得るためには、0.001%以上含有することが望ましいが、0.50%を超えて多量に含有すると、清浄度の低下を招く。このため、含有する場合には、Alは0.01〜0.50%に限定することが好ましい。   Al is an element that acts as a deoxidizer. In order to obtain such an effect, it is desirable to contain 0.001% or more, but if it contains more than 0.50%, cleanliness Incurs a decline. For this reason, when it contains, it is preferable to limit Al to 0.01 to 0.50%.

CaはSをCaSとして固定し、硫化物系介在物を無害化する作用を有する元素である。このような効果は0.0005%以上の含有で顕著となるが、0.01%を超えて含有すると清浄度の低下を招く。このため、含有する場合には、Caは0.0005〜0.01%に限定することが好ましい。なお、より好ましくは0.0005〜0.005%以下である。   Ca is an element having an action of fixing S as CaS and detoxifying sulfide inclusions. Such an effect becomes remarkable when the content is 0.0005% or more. However, when the content exceeds 0.01%, the cleanliness is deteriorated. For this reason, when it contains, it is preferable to limit Ca to 0.0005 to 0.01%. In addition, More preferably, it is 0.0005 to 0.005% or less.

上記した成分以外の残部は、Feおよび不可避的不純物からなる。なお、不可避的不純物としては、O(酸素):0.0050%以下が許容できる。   The balance other than the components described above consists of Fe and inevitable impurities. As an unavoidable impurity, O (oxygen): 0.0050% or less is acceptable.

本発明で使用する鋼素材の製造方法は、常用の方法がいずれも適用でき、とくに限定する必要はない。例えば、所定の二相ステンレス鋼組成の溶鋼を、転炉、電気炉、溶解炉等で溶製し、あるいはさらにAOD装置、VOD装置等で二次精錬したのち、連続鋳造法でスラブ、ビレット等の鋳片、あるいは造塊−分塊圧延法で、スラブ、ビレット等の鋼片とすることが好ましい。なお、鋼素材は、予め高温での均質化焼鈍を施してもよい。
まず、鋼素材に加熱装置により加熱処理を施す。
Any conventional method can be applied to the method for producing the steel material used in the present invention, and there is no particular need to limit it. For example, molten steel with a predetermined duplex stainless steel composition is melted in a converter, electric furnace, melting furnace or the like, or further refined by an AOD apparatus, VOD apparatus, etc., and then slab, billet, etc. by a continuous casting method It is preferable to make steel slabs such as slabs and billets by the slabs of slabs or the ingot-bundling rolling method. The steel material may be subjected to homogenization annealing at a high temperature in advance.
First, the steel material is subjected to heat treatment by a heating device.

加熱処理は、鋼素材を加熱装置に装入し、δフェライト単相域の温度(加熱温度)に加熱する処理とする。なお、ここでいう「δフェライト単相域の温度」とは、δフェライト単相となる下限の温度(以下、δ点ともいう)以上、融点未満の温度をいう。δ点は、例えばThermocalc等を利用した平衡状態計算から求めてもよく、また熱膨張曲線の解析から求めてもよい。 The heat treatment is a treatment in which a steel material is charged into a heating device and heated to a temperature (heating temperature) in the δ ferrite single phase region. The “temperature in the single phase region of δ ferrite” here refers to a temperature that is equal to or higher than the lower limit temperature (hereinafter also referred to as δ A point) at which the single phase of δ ferrite is formed and lower than the melting point. The δ A point may be obtained from, for example, equilibrium state calculation using Thermocalc or the like, or may be obtained from analysis of a thermal expansion curve.

本発明で使用する加熱装置は、鋳片、鋼片等の鋼素材を所定温度に加熱できる加熱炉であればよく、とくに限定する必要はない。例えば、回転炉床式加熱炉、ウォーキングビーム式加熱炉等の常用の加熱炉がいずれも適用できる。また、誘導加熱方式の加熱炉としてもよい。   The heating device used in the present invention is not particularly limited as long as it is a heating furnace capable of heating a steel material such as a cast slab and a steel slab to a predetermined temperature. For example, any conventional heating furnace such as a rotary hearth type heating furnace or a walking beam type heating furnace can be applied. Alternatively, an induction heating type heating furnace may be used.

加熱温度:δフェライト単相域の温度(δ点以上融点未満)
加熱温度を、δ点以上とすることにより、その後の急冷により、非平衡状態のフェライト相を得ることができ、加工を施して組織の顕著な微細化を達成できる。また、変形抵抗が低くなることで熱間加工の負荷の低減、疵の抑制に有利となる。一方、加熱温度が融点以上では、加工による歪の蓄積が困難となる。このため、鋼素材の加熱温度はδ点以上融点未満の範囲の温度に限定した。なお、好ましくは1100〜1300℃である。
加熱処理を施された鋼素材は、穿孔圧延で中空素材とされた後、冷却処理と加工を施される。
Heating temperature: δ ferrite single phase region temperature (δ A point or more and less than the melting point)
By setting the heating temperature to the δ A point or higher, the ferrite phase in a non-equilibrium state can be obtained by subsequent rapid cooling, and the microstructure can be remarkably refined by processing. Further, the lower deformation resistance is advantageous in reducing the hot working load and suppressing wrinkles. On the other hand, when the heating temperature is equal to or higher than the melting point, accumulation of strain due to processing becomes difficult. Therefore, the heating temperature of the steel material is limited to a temperature in the range of less than the melting point or higher [delta] A point. In addition, Preferably it is 1100-1300 degreeC.
The heat-treated steel material is made into a hollow material by piercing and rolling, and then subjected to cooling treatment and processing.

冷却処理は、冷却装置を利用して、中空素材の肉厚中心温度で1.0℃/s以上の平均冷却速度で、冷却開始温度からの温度差が少なくとも50℃以上で、かつ600℃以上となる冷却停止温度まで冷却する処理とする。なお、肉厚中心温度は、測定される表面温度に基づき、伝熱計算で算出するものとする。   The cooling process is performed using a cooling device at an average cooling rate of 1.0 ° C./s or more at the thickness center temperature of the hollow material, a temperature difference from the cooling start temperature is at least 50 ° C., and 600 ° C. or more It is set as the process cooled to the cooling stop temperature which becomes. The wall thickness center temperature is calculated by heat transfer calculation based on the measured surface temperature.

本発明で使用する冷却装置は、高温の中空素材(被冷却材)を所望の冷却速度以上で冷却することが可能な装置であれば、その形式はとくに限定する必要はない。比較的容易に所望の冷却速度を確保できる冷却装置としては、被冷却材である加工途中の素材(中空素材を含む)の外面あるいは外内面に、冷却水または圧縮空気あるいはミストを噴射、あるいは供給して冷却する方式の装置とすることが好ましい。   The type of the cooling device used in the present invention is not particularly limited as long as it is a device that can cool a high-temperature hollow material (material to be cooled) at a desired cooling rate or higher. As a cooling device that can secure a desired cooling rate relatively easily, cooling water, compressed air, or mist is injected or supplied to the outer surface or outer surface of a material being processed (including a hollow material) that is a material to be cooled. Thus, it is preferable to use a cooling system.

平均冷却速度:1.0℃/s以上
本発明では、冷却処理は、過冷却状態のフェライト相(非平衡状態の相分布)を得るために、被冷却材の肉厚中心で、少なくとも1.0℃/s以上の平均冷却速度で冷却する処理とする。上記した平均冷却速度より遅い冷却しかできない場合には、フェライト相粒界や粒内からオーステナイト相が析出し、非平衡状態の相分布を得ることができず、その後に加工を施しても、組織の微細化ができなくなる。なお、冷却速度の上限は、とくに限定する必要はないが、熱応力による割れや曲り防止という観点から、50℃/sとすることが好ましい。なお、好ましくは3〜30℃/sである。
Average cooling rate: 1.0 ° C./s or more In the present invention, the cooling treatment is performed at least at the center of the thickness of the material to be cooled in order to obtain a supercooled ferrite phase (non-equilibrium phase distribution). The cooling is performed at an average cooling rate of 0 ° C./s or more. If cooling can only be slower than the average cooling rate described above, the austenite phase precipitates from the ferrite phase grain boundaries and within the grains, it is not possible to obtain a non-equilibrium phase distribution, Cannot be refined. The upper limit of the cooling rate is not particularly limited, but is preferably 50 ° C./s from the viewpoint of preventing cracking and bending due to thermal stress. In addition, Preferably it is 3-30 degrees C / s.

冷却温度範囲:50℃以上
冷却の温度範囲、すなわち、冷却開始温度と冷却停止温度の温度差は、少なくとも肉厚中心温度で50℃以上とする。冷却の温度範囲が50℃未満では、過冷却フェライト相の分率が小さく、顕著な非平衡状態の相分率を確保できなくなり、その後の加工により所望の組織微細化を達成できない。このため、冷却の温度範囲は50℃以上に限定した。冷却の温度範囲は大きいほど、非平衡状態の相分率を確保できやすくなる。なお、好ましくは100℃以上である。なお、冷却開始温度とは、冷却開始前の被冷却材の肉厚中心温度である。
Cooling temperature range: 50 ° C. or higher The cooling temperature range, that is, the temperature difference between the cooling start temperature and the cooling stop temperature is at least 50 ° C. at the wall thickness center temperature. When the cooling temperature range is less than 50 ° C., the fraction of the supercooled ferrite phase is small, and a remarkable non-equilibrium phase fraction cannot be ensured, and the desired structure refinement cannot be achieved by subsequent processing. For this reason, the temperature range of cooling was limited to 50 degreeC or more. The larger the cooling temperature range, the easier it is to secure a non-equilibrium phase fraction. In addition, Preferably it is 100 degreeC or more. The cooling start temperature is the thickness center temperature of the material to be cooled before the start of cooling.

冷却停止温度:600℃以上
冷却停止温度が600℃未満では、元素の拡散が遅くなり、その後の加工による相変態(α→γ変態)が遅れ、所望の微細組織を確保するには長時間を要し、生産性が低下するうえ、加工負荷の増大や熱間加工性が低下する。このため、冷却停止温度は肉厚中心温度で600℃以上に限定した。なお、好ましくは700℃以上である。
Cooling stop temperature: 600 ° C or more When the cooling stop temperature is less than 600 ° C, the diffusion of elements is slow, and the phase transformation (α → γ transformation) by the subsequent processing is delayed, and it takes a long time to secure the desired microstructure. In addition, productivity is reduced, and processing load is increased and hot workability is reduced. For this reason, the cooling stop temperature is limited to 600 ° C. or more at the thickness center temperature. In addition, Preferably it is 700 degreeC or more.

所定の冷却停止温度まで冷却された中空素材は、ついで加工(熱間加工)を施され、所定寸法の継目無鋼管とされる。なお、冷却終了から熱間加工を施すまでの時間は600s以内とすることが好ましい。冷却終了後、加工開始までの時間が600sを超えて長くなると、相変態が進行し、非平衡状態を確保できなくなる。   The hollow material cooled to a predetermined cooling stop temperature is then processed (hot processing) to obtain a seamless steel pipe having a predetermined size. The time from the end of cooling to hot working is preferably within 600 s. If the time from the end of cooling to the start of processing exceeds 600 s, the phase transformation proceeds and a non-equilibrium state cannot be secured.

鋼素材に施される穿孔圧延と加工(熱間加工)は、所定寸法の継目無鋼管とすることができればよく、常用の加工条件がいずれも適用でき、とくに限定する必要はない。本発明では、比較的低い加工量(圧下率)でも、所望の組織微細化が可能であるが、組織微細化の観点からは、少なくとも断面減少率を累積で20%以上とすることが好ましい。   The piercing-rolling and processing (hot processing) applied to the steel material only need to be a seamless steel pipe having a predetermined size, and any conventional processing conditions can be applied, and there is no particular limitation. In the present invention, a desired structure refinement is possible even with a relatively low processing amount (rolling rate). However, from the viewpoint of structure refinement, it is preferable that the cross-sectional reduction rate is at least 20% or more cumulatively.

なお、加工後の冷却速度は、とくに限定する必要はないが、管肉厚中心位置での平均冷却速度で20℃/sを超える冷却となる場合には、加工装置の出側に設置された保温装置に装入し、平均冷却速度を20℃/s以下に調整することが好ましい。加工後の冷却が20℃/sを超えて速くなりすぎると、第二相の析出が不十分となり、所望の微細組織が得られず、強度および低温靭性が低下する。このため、加工後の冷却速度は、加工装置の出側に保温装置を設置し、管肉厚中心位置で平均冷却速度20℃/s以下に限定することが好ましい。   The cooling rate after processing is not particularly limited. However, when the average cooling rate at the tube thickness center position exceeds 20 ° C./s, the cooling rate is set on the outlet side of the processing apparatus. It is preferable to charge the heat retaining device and adjust the average cooling rate to 20 ° C./s or less. When cooling after processing exceeds 20 ° C./s and becomes too fast, precipitation of the second phase becomes insufficient, a desired microstructure cannot be obtained, and strength and low-temperature toughness decrease. For this reason, it is preferable that the cooling rate after processing is limited to an average cooling rate of 20 ° C./s or less at the tube thickness center position by installing a heat retaining device on the outlet side of the processing device.

本発明で使用する装置列は、加熱した鋼素材を穿孔圧延し、穿孔圧延後の中空素材を適正冷却速度で適正温度範囲内の温度に冷却したのちに、加工を施し、所定寸法の継目無鋼管とすることができる装置列である。本発明で使用する好ましい装置列の一例を図1に示す。図1(a)では、穿孔圧延装置2と熱間加工装置4との間に冷却装置3を配設した装置列であり、熱間加工装置4の出側に保温装置5を配設している。   The apparatus row used in the present invention is a piercing-rolling of a heated steel material, and after cooling the hollow material after piercing-rolling to a temperature within an appropriate temperature range at an appropriate cooling rate, it is processed and seamlessly having a predetermined dimension. It is a device row that can be a steel pipe. An example of a preferable apparatus row used in the present invention is shown in FIG. In FIG. 1 (a), it is an apparatus row | line | column which has arrange | positioned the cooling device 3 between the piercing-rolling apparatus 2 and the hot processing apparatus 4, and the thermal insulation apparatus 5 is arrange | positioned on the exit side of the hot processing apparatus 4. Yes.

なお、熱間加工装置4が複数基(41,42‥‥)配設される場合には、図1(b)に示すように、複数基の熱間加工装置のうちの適正な位置で熱間加工装置42の入り側に配設してもよい。なお、冷却装置3を、熱間加工装置41と熱間加工装置42の間に配設した装置列を使用した場合と、穿孔圧延装置2と熱間加工装置4との間に配設した装置列を使用した場合と、同じ効果が期待できる。というのは、本発明では、熱間加工装置の加工形態の影響は少ないことを確認している。   In the case where a plurality of hot working apparatuses 4 (41, 42,...) Are arranged, as shown in FIG. You may arrange | position in the entrance side of the inter-processing apparatus 42. FIG. In addition, the apparatus which arrange | positioned between the piercing-rolling apparatus 2 and the hot processing apparatus 4 when the apparatus 3 arrange | positioned between the hot working apparatus 41 and the hot working apparatus 42 is used for the cooling device 3 You can expect the same effect as using columns. This is because, in the present invention, it is confirmed that the influence of the processing mode of the hot processing apparatus is small.

上記した二相ステンレス鋼組成を有する鋼素材に、上記した加熱と穿孔圧延後の冷却処理とを施し、更に加工を施して得られる鋼材は、フェライト相と、残部がオーステナイト相および/またはマルテンサイト相からなる微細化された組織を有する。ここでいう「微細化された組織」とは、穿孔圧延後急冷を施さない場合に比べて、単位長さでの粒境界数で1.1倍以上に微細化された場合をいうものとする。   The steel material obtained by subjecting the steel material having the above-described duplex stainless steel composition to the above-described heating and cooling treatment after piercing and rolling, and further processing the steel material, the ferrite phase, the balance is the austenite phase and / or martensite It has a refined structure consisting of phases. The term “miniaturized structure” as used herein refers to a case where the number of grain boundaries in a unit length is 1.1 times or more compared to the case where rapid cooling is not performed after piercing and rolling. .

なお、本発明では、強度調整と靭性を向上させるため、加工後の冷却を施した後に、焼入れ焼戻し(QT)処理または溶体化処理を施すことが好ましい。焼入れ温度または溶体化温度は、脆化相であるσ相、χ相等の金属間化合物が溶解する温度域、すなわち900℃以上好ましくは1150℃以下とする。なお、このような熱処理を行っても、本発明方法で得られた微細組織に大きな変化は認められないことを確認している。   In the present invention, in order to improve strength adjustment and toughness, it is preferable to perform quenching and tempering (QT) treatment or solution treatment after cooling after processing. The quenching temperature or solution temperature is a temperature range in which intermetallic compounds such as σ phase and χ phase, which are embrittlement phases, are dissolved, that is, 900 ° C. or higher, preferably 1150 ° C. or lower. It has been confirmed that even when such a heat treatment is performed, no significant change is observed in the microstructure obtained by the method of the present invention.

つぎに、実施例に基づき、さらに本発明について説明する。   Next, the present invention will be further described based on examples.

表1に示す鋼組成の溶鋼を、真空溶解炉で溶製し、熱間圧延と機械加工により径:70mmの丸鋼片とした。つぎに、図1(a)に示す継目無鋼管製造用装置列を利用して、これら鋼素材を、加熱装置1に装入し、表2に示す加熱温度に加熱し、一定時間(60min)保持した後、バレル型マンネスマン式穿孔圧延装置2を用いて穿孔圧延を施して中空素材(肉厚20mm)とし、スプレーによる冷却水を冷媒とする冷却装置3で、表2に示す平均冷却速度で表2に示す冷却停止温度まで冷却し、直ちに熱間加工装置4に示すエロンゲータで表2に示す累積圧下率で圧延し、所定の継目無鋼管(外径74mm×肉厚13〜16mm)とした。なお、圧延後の冷却は放冷(0.1〜0.5℃/s)とし、特に保温装置5は使用しなかった。得られた継目無鋼管には適正な焼入れ焼戻し処理(QT処理)、もしくは1050〜1150℃に加熱し、その後急冷する固溶体化熱処理を施した。   Molten steel having the steel composition shown in Table 1 was melted in a vacuum melting furnace and formed into round steel pieces having a diameter of 70 mm by hot rolling and machining. Next, using the seamless steel pipe manufacturing apparatus row shown in FIG. 1 (a), these steel materials are charged into the heating apparatus 1 and heated to the heating temperatures shown in Table 2 for a certain time (60 min). After being held, the barrel type Mannesmann type piercing and rolling device 2 is used to perform piercing and rolling to form a hollow material (thickness 20 mm), and the cooling device 3 using coolant by spraying as a coolant at the average cooling rate shown in Table 2. It cooled to the cooling stop temperature shown in Table 2, and immediately rolled with the elongator shown in the hot processing apparatus 4 by the cumulative reduction shown in Table 2, and it was set as the predetermined seamless steel pipe (outer diameter 74 mm x thickness 13-16 mm). . The cooling after rolling was allowed to cool (0.1 to 0.5 ° C./s), and the heat retaining device 5 was not particularly used. The obtained seamless steel pipe was subjected to an appropriate quenching and tempering treatment (QT treatment) or a solid solution heat treatment that was heated to 1050 to 1150 ° C. and then rapidly cooled.

なお、一部の継目無鋼管では、図1(a)の冷却装置3を利用せず、加工前冷却は放冷(0.8℃/s)とし、比較例(基準)とした。   In some of the seamless steel pipes, the cooling device 3 in FIG. 1A was not used, and cooling before processing was allowed to cool (0.8 ° C./s), which was a comparative example (reference).

得られた継目無鋼管について、まず、目視で、鋼管端部における割れ発生の有無、および割れが発生している場合にはその程度を評価した。割れ深さが1.0mm以上のものの発生箇所が5箇所以上である場合を「有・多」とし、それ未満である場合を「有・少」と評価した。   About the obtained seamless steel pipe, first, the presence or absence of the crack generation | occurrence | production in the steel pipe edge part, and the grade, when the crack has generate | occur | produced, were evaluated. The case where the crack occurrence depth was 1.0 mm or more was 5 or more was evaluated as “present / many”, and the case where it was less than that was evaluated as “present / small”.

得られた鋼板から、試験片を採取し、組織観察、引張試験を実施した。試験方法はつぎの通りとした。
(1)組織観察
得られた継目無鋼管から、組織観察用試験片を採取し、管軸方向に直交する断面(C断面)を研磨、腐食(腐食液:ビレラ液)して、光学顕微鏡(倍率:200倍)または走査型電子顕微鏡(倍率:1000倍)で組織を観察し、撮像して、画像解析を用い、組織の種類およびその分率を測定した。なお、微細化の指標として、組織写真から、単位長さの直線と交差する相・粒境界の数を測定した。なお、単位長さ当たりの相・粒境界数は、得られた値を、同一鋼種で、同一加熱温度で、同一冷却停止温度条件での加工前冷却速度が放冷(0.8℃/s)である鋼管の値をそれぞれ基準(1.00)として、基準値に対する比率として示した。
(2)引張試験
得られた継目無鋼管から、管軸方向が引張方向となるように、丸棒引張試験片(平行部6mmφ×GL20mm)を採取し、JIS Z 2241の規定に準拠して引張試験を実施し、降伏強さYSを求めた。なお、降伏強さは0.2%伸びでの強度とした。なお、得られた降伏強さと、同一鋼種で加工前冷却速度が放冷(0.8℃/s)である鋼板の降伏強さを(基準降伏強さ)とし、基準降伏強さとの差を、基準降伏強さで除した値(%)、ΔYS(%)(=(降伏強さ−基準降伏強さ)×100/(基準降伏強さ)を算出した。なお、降伏強さYSが588MPa未満のものは×、以上のものは○と表示した。
(3)シャルピー試験
得られた継目無鋼管から管軸方向に直交する断面(C断面)に平行になるようにVノッチフルサイズシャルピー試験片を切り出し、−10℃に冷却した後シャルピー試験を行い、吸収エネルギー(vE−10)を求めた。同一鋼種で加工前冷却速度が放冷(0.8℃/s)である鋼板の吸収エネルギーを基準吸収エネルギー値とし、得られた吸収エネルギー値と基準吸収エネルギー値との差を、基準吸収エネルギー値で除した値(%)、ΔE(%)(=(吸収エネルギー値−基準吸収エネルギー値)×100/(基準吸収エネルギー値)を算出した。
From the obtained steel plate, a test piece was collected and subjected to a structure observation and a tensile test. The test method was as follows.
(1) Microstructure observation From the obtained seamless steel pipe, a specimen for microstructural observation was collected, and the cross section (C cross section) perpendicular to the tube axis direction was polished and corroded (corrosive liquid: Villera liquid). The tissue was observed with a scanning electron microscope (magnification: 200 times) or a scanning electron microscope (magnification: 1000 times), imaged, and the type of tissue and the fraction thereof were measured using image analysis. As an index of refinement, the number of phase / grain boundaries intersecting the unit length straight line was measured from the structure photograph. Note that the number of phases / grain boundaries per unit length is the same steel type, the same heating temperature, and the cooling rate before processing under the same cooling stop temperature condition is allowed to cool (0.8 ° C./s The value of the steel pipe that is) is shown as a ratio with respect to the reference value as the reference (1.00).
(2) Tensile test From the obtained seamless steel pipe, a round bar tensile test piece (parallel part 6 mmφ x GL20 mm) was sampled so that the pipe axis direction would be the tensile direction, and pulled in accordance with the provisions of JIS Z 2241. A test was conducted to determine the yield strength YS. The yield strength was 0.2% elongation. The yield strength of the steel sheet with the same steel type and the cooling rate before processing is allowed to cool (0.8 ° C / s) is defined as the (basic yield strength), and the difference between the yield strength and the standard yield strength. The value divided by the reference yield strength (%), ΔYS (%) (= (yield strength−reference yield strength) × 100 / (reference yield strength) was calculated. The yield strength YS was 588 MPa. Those less than were marked with x, and those above were marked with.
(3) Charpy test A V-notch full-size Charpy test piece was cut out from the obtained seamless steel pipe so as to be parallel to the cross section (C cross section) perpendicular to the pipe axis direction, cooled to -10 ° C, and then subjected to the Charpy test. The absorbed energy (vE- 10 ) was determined. The absorption energy of a steel plate of the same steel type with a cooling rate before processing is allowed to cool (0.8 ° C / s) is taken as the reference absorption energy value, and the difference between the obtained absorption energy value and the reference absorption energy value is used as the reference absorption energy. A value (%) divided by the value, ΔE (%) (= (absorbed energy value−reference absorbed energy value) × 100 / (reference absorbed energy value)) was calculated.

得られた結果を表3に示す。   The obtained results are shown in Table 3.

Figure 0006197850
Figure 0006197850

Figure 0006197850
Figure 0006197850

Figure 0006197850
Figure 0006197850

本発明例はいずれも、相・粒境界数比が1.00を超えており、組織の微細化ができ、588MPa以上の降伏強度(降伏強さの評価○)を確保し、−10℃における吸収エネルギーを従来の比較例より熱間加工中の割れの発生を伴うことなく40%以上向上した低温靭性を確保できる二相ステンレス継目無鋼管を製造できている。一方、本発明の範囲を外れる比較例は、組織の微細化ができていないか、所望の高強度と靭性を確保できていないか、あるいは割れの発生が認められた。   In all of the examples of the present invention, the phase / grain boundary number ratio exceeds 1.00, the structure can be refined, and a yield strength of 588 MPa or more (evaluation of yield strength) is ensured at −10 ° C. A duplex stainless steel seamless pipe capable of ensuring low temperature toughness with an absorption energy improved by 40% or more without the occurrence of cracks during hot working than the conventional comparative example can be manufactured. On the other hand, in the comparative examples outside the scope of the present invention, it was confirmed that the structure was not refined, the desired high strength and toughness were not ensured, or cracks were generated.

1 加熱装置
2 穿孔圧延装置
3 冷却装置
4 熱間加工装置
5 保温装置
DESCRIPTION OF SYMBOLS 1 Heating apparatus 2 Punching and rolling apparatus 3 Cooling apparatus 4 Hot working apparatus 5 Thermal insulation apparatus

Claims (8)

熱間加工温度域でフェライト相とオーステナイト相を含む組織を有する二相ステンレス継目無鋼管の製造方法であって、
質量%で、C:0.05%以下、Si:2.0%以下、Mn:2.0%以下、P:0.05%以下、S:0.03%以下、Cr:16.0〜35.0%、Ni:3.0〜12.0%、Mo:1.1〜5.0%、N:0.50%以下、を含み、残部Feおよび不可避的不純物からなる組成の鋼素材を加熱装置で加熱後、穿孔圧延を施して中空素材とし、該中空素材に加工を施して所定寸法の二相ステンレス継目無鋼管とするにあたり、
前記加熱を、δフェライト単相域の温度に加熱する処理とし、
前記穿孔圧延後の前記中空素材に肉厚中心温度で1.0℃/s以上の平均冷却速度で、冷却開始温度からの温度差が少なくとも50℃以上で、かつ600℃以上となる冷却停止温度まで冷却する冷却処理を施し、
前記中空素材を非平衡状態のフェライト相を有するものとしたのち、600s以内に前記加工を施し、フェライト相と、オーステナイト相および/またはマルテンサイト相と、を含む組織を有する継目無鋼管とすることを特徴とする高強度二相ステンレス継目無鋼管の製造方法。
A method for producing a duplex stainless steel pipe having a structure including a ferrite phase and an austenite phase in a hot working temperature range,
In mass%, C: 0.05% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.05% or less, S: 0.03% or less, Cr: 16.0 35.0%, Ni: 3.0-12.0%, Mo: 1.1-5.0%, N: 0.50% or less, and a steel material having a composition comprising the balance Fe and inevitable impurities After heating with a heating device, it is subjected to piercing and rolling to a hollow material, and the hollow material is processed into a duplex stainless steel pipe of a predetermined size.
The heating is a treatment for heating to a temperature in the δ ferrite single phase region,
Cooling stop temperature at which the temperature difference from the cooling start temperature is at least 50 ° C. and 600 ° C. or more at an average cooling rate of 1.0 ° C./s or more at the wall thickness center temperature in the hollow material after the piercing and rolling. Cooling process to cool to
After the hollow material has a non-equilibrium ferrite phase, the processing is performed within 600 s to obtain a seamless steel pipe having a structure including a ferrite phase, an austenite phase and / or a martensite phase. A method for producing a high-strength duplex stainless steel seamless steel pipe.
前記組成に加えて、Nb:0.01〜3.0%、Ti:0.01〜0.1%、V:0.01〜3.0%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1に記載の高強度二相ステンレス継目無鋼管の製造方法。 In addition to the above composition, one or more selected from Nb: 0.01 to 3.0%, Ti: 0.01 to 0.1%, V: 0.01 to 3.0% The manufacturing method of the high intensity | strength duplex stainless steel seamless steel pipe of Claim 1 characterized by the above-mentioned. 前記組成に加えてさらに、W:0.01〜3.5%、Cu:0.01〜3.5%、Zr:0.01〜0.5%、REM:0.005〜0.05%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1または請求項2に記載の高強度二相ステンレス継目無鋼管の製造方法。 In addition to the above composition, W: 0.01 to 3.5%, Cu: 0.01 to 3.5%, Zr: 0.01 to 0.5%, REM: 0.005 to 0.05% The manufacturing method of the high intensity | strength duplex stainless steel seamless steel pipe of Claim 1 or Claim 2 containing 1 type, or 2 or more types chosen from these. 前記組成に加えてさらに、Al:0.50%以下を含有することを特徴とする請求項1ないし3のいずれかに記載の高強度二相ステンレス継目無鋼管の製造方法。 The method for producing a high-strength duplex stainless steel seamless steel pipe according to any one of claims 1 to 3, further comprising Al: 0.50% or less in addition to the composition. 前記組成に加えてさらに、Ca:0.0005〜0.01%を含有することを特徴とする請求項1ないし4のいずれかに記載の高強度二相ステンレス継目無鋼管の製造方法。 The method for producing a high-strength duplex stainless steel seamless steel pipe according to any one of claims 1 to 4, further comprising Ca: 0.0005 to 0.01% in addition to the composition. 前記加工が複数段からなる加工であり、前記冷却処理を、前記複数段の加工のうち、少なくとも1段の加工の前に、施すことを特徴とする請求項1ないし5のいずれかに記載の高強度二相ステンレス継目無鋼管の製造方法。   The said process is a process which consists of multiple steps | paragraphs, The said cooling process is given before the process of at least 1 step | paragraph among the said multi-stage process. Manufacturing method of high strength duplex stainless steel seamless steel pipe. 前記加工の後の冷却を、管肉厚中心温度で20℃/s以下の平均冷却速度となるように調整することを特徴とする請求項1ないし6のいずれかに記載の高強度二相ステンレス継目無鋼管の製造方法。   The high-strength duplex stainless steel according to any one of claims 1 to 6, wherein the cooling after the processing is adjusted so as to obtain an average cooling rate of 20 ° C / s or less at a tube wall thickness center temperature. A method for producing seamless steel pipes. 前記加工の後の冷却を施した後に、更に焼入れ焼戻し処理あるいは溶体化処理を施すことを特徴とする請求項7に記載の高強度二相ステンレス継目無鋼管の製造方法。
The method for producing a high-strength duplex stainless steel seamless pipe according to claim 7, further comprising a quenching and tempering treatment or a solution treatment after the cooling after the processing.
JP2015213749A 2014-12-18 2015-10-30 Method for producing duplex stainless steel seamless pipe Active JP6197850B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014255870 2014-12-18
JP2014255870 2014-12-18

Publications (2)

Publication Number Publication Date
JP2016117944A JP2016117944A (en) 2016-06-30
JP6197850B2 true JP6197850B2 (en) 2017-09-20

Family

ID=56243852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015213749A Active JP6197850B2 (en) 2014-12-18 2015-10-30 Method for producing duplex stainless steel seamless pipe

Country Status (1)

Country Link
JP (1) JP6197850B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164288A (en) * 2015-03-06 2016-09-08 Jfeスチール株式会社 Method for producing high strength stainless seamless steel pipe for oil well
JP2016183404A (en) * 2015-03-25 2016-10-20 Jfeスチール株式会社 Method for producing dual phase stainless seamless steel tube
JP7450352B2 (en) 2019-08-14 2024-03-15 株式会社Lixil toilet cabinet

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2698235C1 (en) 2016-09-02 2019-08-23 ДжФЕ СТИЛ КОРПОРЕЙШН Two-phase stainless steel and its manufacturing method
WO2018131412A1 (en) * 2017-01-10 2018-07-19 Jfeスチール株式会社 Duplex stainless steel and method for producing same
BR112021003350B8 (en) * 2018-08-31 2023-12-19 Jfe Steel Corp Seamless duplex stainless steel tube and method for manufacturing the same
US20220018007A1 (en) * 2018-11-30 2022-01-20 Jfe Steel Corporation Duplex stainless steel seamless pipe and method for manufacturing same
CN111334700A (en) * 2018-12-18 2020-06-26 财团法人金属工业研究发展中心 High-nitrogen low-nickel austenitic stainless steel alloy and manufacturing method thereof
EP3960885B1 (en) * 2019-04-24 2024-04-10 Nippon Steel Corporation Duplex stainless seamless steel pipe and method for producing duplex stainless seamless steel pipe
US20230212723A1 (en) * 2020-05-07 2023-07-06 Nippon Steel Corporation Duplex stainless steel seamless pipe
CN112795847B (en) * 2021-01-14 2021-11-26 高虹 Stainless steel seamless tube for sodium-cooled fast reactor and preparation method thereof
CN113151648B (en) * 2021-04-02 2022-05-24 南京理工大学 Preparation method of ultrahigh-strength dual-phase isomeric stainless steel
CN113913708A (en) * 2021-09-08 2022-01-11 邯郸新兴特种管材有限公司 95-steel-grade super 13Cr seamless steel pipe and production method thereof
CN114289513A (en) * 2021-12-31 2022-04-08 江苏银环精密钢管有限公司 Manufacturing method of S32760 super duplex stainless steel seamless tube

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58224155A (en) * 1982-06-19 1983-12-26 Kawasaki Steel Corp Seamless two-phase stainless steel pipe and its manufacture
JPS5980716A (en) * 1982-10-29 1984-05-10 Sumitomo Metal Ind Ltd Manufacture of two-phase alloy pipe
JPS63255322A (en) * 1987-04-13 1988-10-21 Kawasaki Steel Corp Manufacture of seamless two-phase stainless steel tube
JPH069693B2 (en) * 1987-06-20 1994-02-09 住友金属工業株式会社 Method for producing duplex stainless steel pipe with excellent corrosion resistance
IT1263251B (en) * 1992-10-27 1996-08-05 Sviluppo Materiali Spa PROCEDURE FOR THE PRODUCTION OF SUPER-DUPLEX STAINLESS STEEL PRODUCTS.
JP2016164288A (en) * 2015-03-06 2016-09-08 Jfeスチール株式会社 Method for producing high strength stainless seamless steel pipe for oil well

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164288A (en) * 2015-03-06 2016-09-08 Jfeスチール株式会社 Method for producing high strength stainless seamless steel pipe for oil well
JP2016183404A (en) * 2015-03-25 2016-10-20 Jfeスチール株式会社 Method for producing dual phase stainless seamless steel tube
JP7450352B2 (en) 2019-08-14 2024-03-15 株式会社Lixil toilet cabinet

Also Published As

Publication number Publication date
JP2016117944A (en) 2016-06-30

Similar Documents

Publication Publication Date Title
JP6197850B2 (en) Method for producing duplex stainless steel seamless pipe
JP4632000B2 (en) Seamless steel pipe manufacturing method
JP6107437B2 (en) Manufacturing method of low-alloy high-strength seamless steel pipe for oil wells with excellent resistance to sulfide stress corrosion cracking
JP2016164288A (en) Method for producing high strength stainless seamless steel pipe for oil well
WO2010082395A1 (en) Process for production of duplex stainless steel pipe
JP6008062B1 (en) Method for producing duplex stainless steel seamless pipe
KR102090196B1 (en) Rolled bar for cold forging
JP6146542B2 (en) Steel pipe for thick oil well and manufacturing method thereof
JP6341125B2 (en) Method for producing duplex stainless steel pipe
JP6171851B2 (en) Apparatus row for seamless steel pipe production and method for producing high-strength stainless steel seamless steel pipe for oil wells using the same
JP6341128B2 (en) Manufacturing method of thin-walled high strength stainless steel seamless pipe for oil well
CN108431246B (en) Method for producing stainless steel pipe for oil well and stainless steel pipe for oil well
JP6137082B2 (en) High strength stainless steel seamless steel pipe excellent in low temperature toughness and method for producing the same
JP6315076B2 (en) Manufacturing method of high strength stainless steel seamless steel pipe for oil well
JP6202010B2 (en) Manufacturing method of high-strength duplex stainless steel seamless steel pipe
JP6206423B2 (en) High strength stainless steel plate excellent in low temperature toughness and method for producing the same
JP6341181B2 (en) Method for producing duplex stainless steel seamless pipe
WO2020090149A1 (en) Steel for bolts, and method for manufacturing same
JP4462454B1 (en) Manufacturing method of duplex stainless steel pipe
JP3765277B2 (en) Method for producing martensitic stainless steel piece and steel pipe
JP2016108628A (en) Production method of two-phase stainless steel material
JP6171834B2 (en) Equipment column for manufacturing thick steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170807

R150 Certificate of patent or registration of utility model

Ref document number: 6197850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250