JP6520892B2 - Seamless steel pipe manufacturing method and seamless steel pipe manufacturing equipment - Google Patents

Seamless steel pipe manufacturing method and seamless steel pipe manufacturing equipment Download PDF

Info

Publication number
JP6520892B2
JP6520892B2 JP2016216902A JP2016216902A JP6520892B2 JP 6520892 B2 JP6520892 B2 JP 6520892B2 JP 2016216902 A JP2016216902 A JP 2016216902A JP 2016216902 A JP2016216902 A JP 2016216902A JP 6520892 B2 JP6520892 B2 JP 6520892B2
Authority
JP
Japan
Prior art keywords
temperature
steel pipe
less
heating furnace
seamless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016216902A
Other languages
Japanese (ja)
Other versions
JP2018075576A (en
Inventor
和樹 藤村
和樹 藤村
俊輔 佐々木
俊輔 佐々木
勝村 龍郎
龍郎 勝村
太田 裕樹
裕樹 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2016216902A priority Critical patent/JP6520892B2/en
Publication of JP2018075576A publication Critical patent/JP2018075576A/en
Application granted granted Critical
Publication of JP6520892B2 publication Critical patent/JP6520892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、鋼管長手方向で機械的特性のばらつきが少ない、継目無鋼管の製造方法および継目無鋼管製造設備に関する。   The present invention relates to a method of manufacturing a seamless steel pipe and a seamless steel pipe manufacturing facility, in which variation in mechanical characteristics is small in the longitudinal direction of the steel pipe.

継目無鋼管は油田、ガス田開発や熱交換機、化学プラント用配管、構造用部材として使用されている。近年、鋼管の軽量化を目的に鋼管材料の高強度化による薄肉品や、厳しい外力にさらされる環境での使用を拡大するための極厚品といった、薄肉から厚肉まで様々なものが要求されている。例えば、特許文献1には、質量%で、C:0.005〜0.050%、Si:0.05〜0.50%、Mn:0.20〜1.80%、Cr:15.5〜18%、Ni:1.5〜5%、Mo:1〜3.5%、V:0.02〜0.20%、N:0.01〜0.15%、O:0.006%以下を含有し、Cr+0.65Ni+0.6Mo+0.55Cu−20C≧19.5およびCr+Mo+0.3Si−43.5C−0.4Mn−Ni−0.3Cu−9N≧11.5(式中の元素記号は各元素の含有量(質量%)を意味する。)を満足する成分組成を有する鋼素材を加熱し、熱間加工により造管して、造管後、空冷以上の冷却速度で室温まで冷却して所定寸法の継目無鋼管とし、ついで継目無鋼管を、850℃以上の温度に再加熱し空冷以上の冷却速度で100℃以下まで冷却し、ついで700℃以下の温度に加熱する焼入れ−焼戻処理を施すことにより、体積率で10〜60%のフェライト相を含み残部がマルテンサイト相である組織を有し、降伏強さが654MPa以上の油井用高強度ステンレス鋼管を得ることができる技術が開示されている。これにより、特許文献1では、高強度であるとともに、COやClを含む、230℃までの高温の厳しい腐食環境下においても充分な耐食性を有する鋼管になるとしている。 Seamless steel pipes are used as oil fields, gas field development and heat exchangers, piping for chemical plants, and structural members. In recent years, a variety of products, from thin-walled products to thick-walled products, have been required, such as thin-walled products by increasing the strength of steel pipe materials for the purpose of weight reduction of steel pipes and extremely thick products for expanding use in environments exposed to severe external forces. ing. For example, in Patent Document 1, C: 0.005 to 0.050%, Si: 0.05 to 0.50%, Mn: 0.20 to 1.80%, Cr: 15.5 by mass%. -18%, Ni: 1.5 to 5%, Mo: 1 to 3.5%, V: 0.02 to 0.20%, N: 0.01 to 0.15%, O: 0.006% Containing the following, Cr + 0.65 Ni + 0.6 Mo + 0.55 Cu-20 C 1 19.5 and Cr + Mo + 0.3 Si-43.5 C-0.4 Mn-Ni-0.3 Cu-9 N 1 11.5 Steel material having a component composition satisfying the content (% by mass of element) is heated, pipe-formed by hot working, pipe-formed, and cooled to room temperature at a cooling rate of air cooling or more. Make a seamless steel pipe of a specified size, and then reheat the seamless steel pipe to a temperature of 850 ° C or more to cool it by air cooling or more. By cooling to 100 ° C. or less at a speed and then heating to 700 ° C. or less, a structure containing 10 to 60% of a ferrite phase by volume ratio and having a remainder of a martensite phase is provided. And a technology capable of obtaining a high strength stainless steel pipe for oil wells having a yield strength of 654 MPa or more is disclosed. As a result, in Patent Document 1, the steel pipe has high strength and has sufficient corrosion resistance even under severe corrosive environments at high temperatures up to 230 ° C., including CO 2 and Cl .

一方で、施工時の管端の継ぎ目の数をできるだけ減らすため、長尺品の要求が強くなっている。継目無鋼管を高能率かつ、所望の形状に造り込むための圧延技術ならびに形状制御技術として、特許文献2には、圧延温度に加熱された鋼塊を傾斜ロール穿孔機で中空素管に穿孔し、その後に素管に伸延し、次いで仕上がり管に圧延する様式の継目無鋼管を造るための方法において、延伸を穿孔の直後に連続して同じ傾斜ロール穿孔機で、穿孔作業に対して反対の通過方向で延伸することで設備の数と設備間の搬送に必要な付帯設備への投資を最小限にしつつ所望の形状に造り込める技術が開示されている。また、特許文献3には、穿孔圧延後に行われる延伸圧延の最中に素管の外面温度と内面温度を測定し、鋼種・サイズに応じた関係式を用いて加工温度上昇値の長手方向バラツキが生じないように圧延速度を制御する方法が開示されている。   On the other hand, in order to reduce the number of pipe end joints at the time of construction as much as possible, the demand for long products is increasing. As a rolling technology and shape control technology for forming a seamless steel pipe into a desired shape with high efficiency, Patent Document 2 discloses that a steel block heated to a rolling temperature is drilled in a hollow shell by an inclined roll drilling machine. Then, in a method for producing a seamless steel pipe of the type which is then extended into a blank and then rolled into a finished tube, the stretching is carried out immediately after the drilling, in the same inclined roll drilling machine, opposite to the drilling operation. A technique is disclosed that can be made into a desired shape while extending in the pass direction while minimizing the investment in the number of facilities and the ancillary facilities required for transportation between the facilities. Further, according to Patent Document 3, the outer surface temperature and the inner surface temperature of the blank are measured during stretching and rolling performed after piercing and rolling, and the longitudinal variation of the processing temperature increase value is obtained using a relational expression corresponding to the steel type and size. A method of controlling the rolling speed so as not to occur is disclosed.

特開2005−336595号公報JP 2005-336595 A 特開昭63−26209号公報JP-A-63-26209 特開平6−54402号公報Unexamined-Japanese-Patent No. 6-54402

継目無鋼管が長尺になると、先端と後端の材料温度が大きく変化し、その差が極端になると製造不可となってしまうため、素管の温度を管全長に亘って所定の温度域に制御し、温度の均一化を図ることが肝要である。   When the seamless steel pipe becomes long, the material temperature at the front end and the rear end greatly changes, and if the difference becomes extreme, it becomes impossible to manufacture, so the temperature of the raw pipe is in a predetermined temperature range over the entire length of the pipe It is important to control and achieve uniform temperature.

しかしながら、特許文献1に記載されるようなCrを増量した材料では、フェライト安定化元素であるCrを多量に含むため、高温で圧延した際、フェライト粒の粗大化が起こりやすくなり、靭性が低下しやすい。一方で、圧延温度を低温化すると加工性が低下し、割れが発生しやすくなる。このため、特許文献1に記載されるようなCrを増量した材料では、長尺化する場合に安定的に製造できる温度が限られているという問題がある。   However, in a material having a large amount of Cr as described in Patent Document 1, since a large amount of Cr, which is a ferrite stabilizing element, is contained, coarsening of ferrite grains is easily caused when rolling at a high temperature, and the toughness is lowered. It's easy to do. On the other hand, when the rolling temperature is lowered, the processability is reduced and cracking is likely to occur. For this reason, in the material which increased Cr as described in patent document 1, when lengthening, there exists a problem that the temperature which can be manufactured stably is restricted.

また、特許文献2に記載の方法では、1台の装置で往復して圧延を行うためサイクルタイムが伸び、大量生産に向かない。また、特許文献3に記載の方法では、素管長手方向に生じうる温度差をある程度軽減できるものの、前工程の穿孔圧延で既に生じている長手方向の温度差を打ち消すほどの効果は期待できない。従って、厳格な温度均一化が求められる材料に対しては十分といえない。   Further, in the method described in Patent Document 2, since rolling is performed by reciprocating with one device, the cycle time is extended and it is not suitable for mass production. Further, although the method described in Patent Document 3 can reduce the temperature difference that may occur in the longitudinal direction of the hollow shell to some extent, it is not possible to expect the effect of canceling the temperature difference in the longitudinal direction that has already occurred in the piercing rolling in the previous step. Therefore, it can not be said for materials that require strict temperature uniformity.

かかる従来技術の状況に鑑み、本発明では、薄肉、長尺の継目無鋼管に対し、鋼管肉厚方向、長手方向で機械的特性のばらつきが少ない継目無鋼管の製造方法および継目無鋼管製造設備を提供することを目的とする。なお、ここでいう薄肉とは20mm以下を示し、長尺とは8m以上の製品長をいうものとする。   In view of the state of the prior art, in the present invention, a method of manufacturing a seamless steel pipe with less variation in mechanical characteristics in the thickness direction and the longitudinal direction of the steel pipe with respect to a thin and long seamless steel pipe and a seamless steel pipe manufacturing facility Intended to provide. In addition, thin thickness here shall show 20 mm or less, and a long shall mean the product length of 8 m or more.

本発明者らは、上記した目的を達成するために、まず、穿孔圧延後の鋼管長手方向(先後端)の温度差について調査した。その結果、圧延直後の鋼管では、鋼管外面の先後端温度差に比べて、鋼管内面の先後端温度差の方が大きいことが判明し、特に鋼管先後端の内面温度を管理することが材質制御に重要であると着想した。   The present inventors first investigated the temperature difference in the longitudinal direction (front and rear end) of the steel pipe after piercing and rolling in order to achieve the above-described purpose. As a result, in the steel pipe immediately after rolling, it is found that the front end / end temperature difference of the inner surface of the steel pipe is larger than the front / rear end temperature difference of the outer surface of the steel pipe. I thought it was important.

すなわち、鋼管外面は圧延ロールと接触する際、鋼管に対してロール径が十分大きいためロール温度は上昇し難く、先後端で鋼管からの抜熱量に大きな差はない。一方、鋼管内面は体積が小さく熱容量が小さな工具を使用せざるを得ず、かつ接触的な冷却ができないため、圧延時に先端から後端にかけて徐々に温度上昇し、それに伴う鋼管内面からの抜熱量が減少する。そのため、鋼管先端に比べて後端の温度は大幅に高くなる。その結果、材質の均一性を図ることができず、鋼管長手方向において機械的特性に差が出てしまい、所望の鋼管を得ることができない。この傾向は、穿孔圧延に連続して行われる熱間加工においてさらに増幅するため、先後端で同じ成型ひずみを受ける場合においても、加工時の温度が大幅に異なり、それにより所望の材質が得られないばかりか、製造可能範囲を狭める結果を招いているという知見を得た。   That is, when the outer surface of the steel pipe contacts the rolling roll, the roll temperature is difficult to rise because the roll diameter is sufficiently large relative to the steel pipe, and there is no large difference in the heat removal from the steel pipe at the front and rear ends. On the other hand, since the inner surface of the steel pipe has to use a tool having a small volume and a small heat capacity, and can not be contact cooled, the temperature gradually rises from the front end to the rear end at the time of rolling. Decreases. Therefore, the temperature of the rear end is significantly higher than that of the front end of the steel pipe. As a result, the uniformity of the material can not be achieved, and the mechanical characteristics differ in the longitudinal direction of the steel pipe, and a desired steel pipe can not be obtained. This tendency is further amplified in hot working performed continuously in piercing and rolling, so that even when the same forming strain is applied at the front and back ends, the temperature at the time of processing is significantly different, thereby obtaining the desired material. Not only that, it is found that it has resulted in narrowing the manufacturable range.

そこで、さらなる研究を行い、長手方向の機械的特性のばらつきを簡便に抑制するには、穿孔圧延後の鋼管先後端を反転させた後に熱間加工することで、穿孔圧延や穿孔圧延後の複数回の熱間加工において生じた鋼管長手方向の内面温度の差を相殺し、長手方向で鋼管温度を均質化することが有効であると考えた。加えて、穿孔圧延後、熱間加工前の鋼管の先後端の内面温度を把握し、この内面温度が所定の温度域となるように加熱炉の温度を制御することで、長手方向の鋼管温度の均質化を図り、機械的特性のばらつきを少なくし、所望の特性を得ることができることを見出した。   Therefore, to conduct further researches and simply suppress the variation in mechanical characteristics in the longitudinal direction, the steel pipe tip end after the piercing and rolling is reversed, and then hot working is performed. It was considered effective to make the steel pipe temperature uniform in the longitudinal direction by offsetting the difference in the inner surface temperature in the steel pipe longitudinal direction that occurred in the hot working of the round. In addition, after piercing and rolling, the inner surface temperature of the front and rear end of the steel pipe before hot working is grasped, and the temperature of the heating furnace is controlled so that the inner surface temperature becomes a predetermined temperature range. It has been found that it is possible to achieve the homogenization of the above, reduce the variation of mechanical properties, and obtain the desired properties.

本発明は以上の知見に基づいて完成されたものであり、具体的には以下のとおりである。
[1]鋼素材を加熱した後、加熱された前記鋼素材に穿孔圧延を施して中空素材とし、前記中空素材に熱間加工を施して継目無鋼管とするにあたり、
穿孔圧延後、前記中空素材の先端と後端を反転させてから熱間加工を施すとともに、
穿孔圧延後、熱間加工前に前記中空素材の先端と後端の内面温度を測定し、測定したそれぞれの内面温度が1100℃以上δ℃以下の範囲となるように加熱炉の温度を制御する
ことを特徴とする継目無鋼管の製造方法。
ただし、δ:昇温過程でδフェライト相単相になる温度である。
[2]前記測定した内面温度が1100℃以上δ℃以下の範囲を外れた時点で、前記加熱炉の温度を制御することを特徴とする[1]に記載の継目無鋼管の製造方法。
[3]測定した内面温度が1180℃以上(δ−70)℃以下の範囲を外れると判定された時点で、加熱炉の温度を制御することを特徴とする[2]に記載の継目無鋼管の製造方法。
[4]前記測定した内面温度が1100℃よりも低い際は、その差分だけ前記加熱炉の温度を上げ、
前記測定した内面温度がδ℃よりも高い際は、その差分だけ前記加熱炉の温度を下げる
ように前記加熱炉の温度を制御することを特徴とする[1]または[2]に記載の継目無鋼管の製造方法。
[5]前記測定した内面温度が1180℃よりも低い際は、その差分だけ前記加熱炉の温度を上げ、
前記測定した内面温度が(δ−70)℃よりも高い際は、その差分だけ前記加熱炉の温度を下げる
ように前記加熱炉の温度を制御することを特徴とする請求項3に記載の継目無鋼管の製造方法。
[6]前記鋼素材が、質量%で、
C :0.050%以下、 Si:1.00%以下、
Mn:0.20〜1.80%、 Cr:15.5〜18.0%、
Ni:1.5〜5.0%、 Mo:1.0〜3.5%、
V :0.02〜0.20%、 N :0.01〜0.15%、
O :0.006%以下
を含有し、残部Feおよび不可避的不純物からなることを特徴とする[1]〜[5]のいずれかに記載の継目無鋼管の製造方法。
[7]前記鋼素材が、さらに、質量%で、次A群〜D群
A群:Al:0.002〜0.050%
B群:Cu:3.5%以下、W:3.5%以下、REM:0.3%以下のうちから選ばれた1種または2種以上
C群:Nb:0.2%以下、Ti:0.3%以下、Zr:0.2%以下のうちから選ばれた1種または2種以上
D群:Ca:0.01%以下、B:0.01%以下のうちから選ばれた1種または2種
のうちから選ばれた1群または2群以上を含有することを特徴とする[6]に記載の継目無鋼管の製造方法。
[8]鋼素材を加熱する加熱装置と、加熱された鋼素材に穿孔圧延を施して中空素材とする穿孔圧延装置と、前記穿孔圧延装置と連続して配置されて、前記中空素材に熱間加工を施して継目無鋼管とする熱間加工装置とを備える継目無鋼管製造設備であって、
前記熱間加工装置は、
加熱炉と、
前記熱間加工装置の入側に、前記中空素材の先端と後端を反転可能な反転機構と、
前記熱間加工装置の入側に、前記中空素材の先端および後端の内面温度を測定する温度測定手段と
前記温度測定手段により測定されるそれぞれの内面温度が1100℃以上δ℃以下となるように加熱炉の温度を制御する
ことを特徴とする継目無鋼管製造設備。
ただし、δ:昇温過程でδフェライト相単相になる温度である。
The present invention has been completed based on the above findings, and specifically is as follows.
[1] After heating the steel material, the heated steel material is subjected to piercing rolling to obtain a hollow material, and the hollow material is subjected to hot working to form a seamless steel pipe,
After piercing and rolling, the front end and the rear end of the hollow material are inverted and then subjected to hot working,
After piercing, the prior hot working to measure a hollow material of the tip and rear end of the inner surface temperature, controls the temperature of the heating furnace so that each inner surface temperature measured is in the range of 1100 ° C. or higher [delta] A ° C. or less A manufacturing method of a seamless steel pipe characterized by doing.
However, δ A is a temperature at which the δ ferrite phase becomes a single phase in the temperature raising process.
[2] The when measured inner surface temperature is outside the range of 1100 ° C. or higher [delta] A ° C. or less, method of producing a seamless steel pipe having the constitution [1] to control the temperature of the heating furnace.
[3] The seam temperature described in [2] is characterized in that the temperature of the heating furnace is controlled when it is determined that the measured inner surface temperature is out of the range of 1180 ° C. or more (δ A −70) ° C. Method of manufacturing steel pipe.
[4] When the measured inner surface temperature is lower than 1100 ° C., the temperature of the heating furnace is increased by the difference,
When the measured inner surface temperature is higher than δ A ° C., the temperature of the heating furnace is controlled so as to lower the temperature of the heating furnace by the difference thereof [1] or [2]. Method of manufacturing seamless steel pipe.
[5] When the measured inner surface temperature is lower than 1180 ° C., the temperature of the heating furnace is increased by the difference,
The temperature of the heating furnace is controlled to lower the temperature of the heating furnace by the difference when the measured inner surface temperature is higher than (δ A- 70) ° C. Method of manufacturing seamless steel pipe.
[6] The above-mentioned steel material is mass%,
C: 0.050% or less Si: 1.00% or less
Mn: 0.20 to 1.80% Cr: 15.5 to 18.0%
Ni: 1.5 to 5.0%, Mo: 1.0 to 3.5%,
V: 0.02 to 0.20%, N: 0.01 to 0.15%,
O: 0.006% or less is contained and it consists of remainder Fe and an unavoidable impurity, The manufacturing method of the seamless steel pipe in any one of [1]-[5] characterized by the above-mentioned.
[7] The above-mentioned steel material is, furthermore, in mass%, next group A to group D group A: Al: 0.002 to 0.050%
Group B: Cu: 3.5% or less, W: 3.5% or less, REM: 0.3% or less One or more selected from C group: Nb: 0.2% or less, Ti One or more selected from 0.3% or less, Zr: 0.2% or less D group: Ca: 0.01% or less, B: 0.01% or less The method for producing a seamless steel pipe according to [6], which comprises one or two or more groups selected from among one or two.
[8] A heating device for heating a steel material, a piercing-rolling device for forming a hollow material by subjecting the heated steel material to piercing-rolling, and the piercing-rolling device arranged continuously with the piercing-rolling device A seamless steel pipe manufacturing facility comprising a hot working apparatus for processing to form a seamless steel pipe, comprising:
The hot working apparatus
A heating furnace,
A reversing mechanism capable of reversing the front end and the rear end of the hollow material on the inlet side of the hot working apparatus;
The inner surface temperature measured by the temperature measuring means for measuring the inner surface temperature of the front end and the rear end of the hollow material and the temperature measuring means becomes 1100 ° C. or more and δ A ° C. or less on the inlet side of the hot working apparatus A seamless steel pipe manufacturing facility characterized by controlling a temperature of a heating furnace.
However, δ A is a temperature at which the δ ferrite phase becomes a single phase in the temperature raising process.

本発明によれば、鋼管長手方向に機械的特性のばらつきの少ない継目無鋼管を容易に製造でき、産業上格段の効果を奏する。また、本発明によれば、加工発熱の増加や長尺化により鋼管の長手方向の温度差が大きくなる場合においても、適切な温度域での鋼管全長の熱間加工が可能になり、鋼管長手方向に機械的特性のばらつきが少ない継目無鋼管を容易に提供できる。   According to the present invention, a seamless steel pipe having less variation in mechanical characteristics in the longitudinal direction of the steel pipe can be easily manufactured, and an industrially significant effect is achieved. Further, according to the present invention, even when the temperature difference in the longitudinal direction of the steel pipe becomes large due to an increase in work heat generation or lengthening, it becomes possible to hot work the entire length of the steel pipe in an appropriate temperature range. It is possible to easily provide a seamless steel pipe with less variation in mechanical properties in the direction.

図1は、継目無鋼管製造設備の一例を示す図である。FIG. 1 is a view showing an example of a seamless steel pipe manufacturing facility.

以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。   Hereinafter, embodiments of the present invention will be described. The present invention is not limited to the following embodiments.

本発明の継目無鋼管製造設備の一例を図1に示す。本発明の継目無鋼管製造設備は、加熱装置1と、穿孔圧延装置2と、熱間加工装置3とをこの順に配列してなる。本発明では、加熱装置1で鋼素材を加熱し、次いで穿孔圧延装置2で加熱された鋼素材に穿孔圧延を施して中空素材とする。次いで、熱間加工装置3で中空素材に熱間加工を施して所定形状の継目無鋼管を製造する。   An example of the seamless steel pipe manufacturing equipment of the present invention is shown in FIG. The seamless steel pipe manufacturing equipment of the present invention is formed by arranging the heating device 1, the piercing and rolling device 2 and the hot working device 3 in this order. In the present invention, the steel material is heated by the heating device 1, and then the steel material heated by the piercing and rolling device 2 is subjected to piercing and rolling to form a hollow material. Next, the hollow material is hot-worked by the hot-working apparatus 3 to manufacture a seamless steel pipe of a predetermined shape.

本発明で使用する加熱装置1は、鋳片、鋼片等の鋼素材を所定温度に加熱できる加熱炉であればよく、とくに限定する必要はない。例えば、回転炉床式加熱炉、ウォーキングビーム式加熱炉等の常用の加熱炉がいずれも適用できる。また、誘導加熱方式の加熱炉としてもよい。   The heating device 1 used in the present invention may be any heating furnace capable of heating steel materials such as slabs and billets to a predetermined temperature, and is not particularly limited. For example, common heating furnaces such as rotary hearth furnaces and walking beam furnaces can be applied. Moreover, it is good also as a heating furnace of an induction heating system.

また、本発明で使用する穿孔圧延装置2は、加熱された鋼素材に穿孔圧延を施し中空素材とすることができる穿孔圧延機であればよく、例えば、バレル形ロール、コーン型ロール等を用いるマンネスマン傾斜式穿孔機、熱間押出式穿孔機等の、通常公知の穿孔圧延機がいずれも適用できる。   Further, the piercing and rolling device 2 used in the present invention may be a piercing and rolling mill capable of forming a hollow material by piercing and rolling a heated steel material, for example, using a barrel type roll, a cone type roll, etc. Any of commonly known piercing and rolling mills such as Mannesmann inclined boring and hot extrusion piercing can be applied.

また、本発明で使用する熱間加工装置3は、中空素材に加工を施し所定形状の継目無鋼管とすることができる装置であればよく、目的に応じて、例えば、エロンゲータ31、穿孔された中空素管を薄く長く延ばすプラグミル32、素管内外表面を滑らかにするリーラ(図示せず)、所定寸法に整えるサイジングミル33の順で配置された圧延機、あるいは中空素管を所定寸法の鋼管とするマンドレルミル(図示せず)、若干の圧下を行ない外径、肉厚を調整するレデューサ(図示せず)を配置した圧延機等の、通常公知の熱間加工用の圧延機がいずれも適用できる。好ましくは、穿孔後の工程として、固定した内面工具に対して相対的に鋼管を移動させる機構をもつことからエロンゲータを配した熱間加工装置を用いると、先後端の温度差をキャンセルする効果が大きい。これら熱間加工後は、空冷以上の冷却速度で好ましくは室温まで冷却され、所定の寸法形状の継目無鋼管とされる。   The hot working apparatus 3 used in the present invention may be any apparatus capable of processing a hollow material to form a seamless steel pipe of a predetermined shape, and according to the purpose, for example, an Elongator 31 is perforated. A plug mill 32 for extending the hollow tube thin and long, a reel (not shown) for smoothing the outer surface of the tube, a rolling mill arranged in the order of a sizing mill 33 for adjusting to a predetermined size, or a steel pipe of a predetermined size A commonly known rolling mill for hot working such as a mandrel mill (not shown) to be used, a rolling mill having a reducer to adjust the outer diameter and thickness by a slight pressure, and the like are arranged. Applicable Preferably, since the steel pipe has a mechanism for moving the steel pipe relative to the fixed inner surface tool as a process after drilling, the effect of canceling the temperature difference between the front and rear ends is obtained by using a hot working apparatus provided with an elongator. large. After these hot workings, they are preferably cooled to room temperature at a cooling rate higher than that of air cooling to make a seamless steel pipe of a predetermined size and shape.

本発明では、穿孔圧延後、中空素材の先端と後端を反転させてから熱間加工を施す。中空素材の先後端を反転させた後に熱間加工することで、穿孔圧延や、穿孔圧延後に複数回熱間加工を施す場合において生じた鋼管長手方向の内面温度の差を相殺し、長手方向で鋼管温度を均質化することができる。   In the present invention, after piercing and rolling, the front end and the back end of the hollow material are inverted and then hot working is performed. By hot working after reversing the front and rear end of the hollow material, the difference in the inner surface temperature in the longitudinal direction of the steel pipe that occurs in the case of piercing rolling or when performing hot working multiple times after piercing and rolling is offset by The steel pipe temperature can be homogenized.

中空素材の先端と後端を反転させる反転機構は、中空素材の熱間加工開始方向を入れ替える機構であり、熱間加工装置3の入側に設置されればよい。また、図1に示すように、エロンゲータ31、プラグミル32、サイジングミル33といった複数の圧延機が連続して配置される場合、反転機構は各圧延機の入側に設置されればよい。反転機構としては、中空素材の長手方向中心を軸にして回転させてもよいし、搬送中に中空素材の先端と後端を反転させてもよい。   The reversing mechanism that reverses the front end and the rear end of the hollow material is a mechanism that switches the hot working start direction of the hollow material, and may be installed on the entrance side of the hot working device 3. Further, as shown in FIG. 1, when a plurality of rolling mills such as the Elongator 31, the plug mill 32, and the sizing mill 33 are continuously arranged, the reversing mechanism may be installed on the entrance side of each rolling mill. As the reversing mechanism, the hollow material may be rotated about the longitudinal center of the hollow material, or the leading end and the rear end of the hollow material may be reversed during conveyance.

本発明では、さらに、穿孔圧延後、熱間加工前に中空素材の先端と後端の内面温度を測定し、測定した内面温度が1100℃以上δ℃以下の範囲となるように加熱炉の温度を制御する。熱間加工前の中空素材の先後端の内面温度を把握し、この内面温度が所定の温度域となるように熱間加工装置の加熱炉の温度を制御することで、長手方向の鋼管温度の均質化を図り、長手方向の機械的特性のばらつきを少なくし、所望の特性を得ることができる。 In the present invention, the inner surface temperature of the front end and the rear end of the hollow material is further measured after piercing rolling and before hot working, and the inner surface temperature measured is in the range of 1100 ° C. or more and δ A ° C. or less. Control the temperature. By grasping the inner surface temperature of the front and rear ends of the hollow material before hot working and controlling the temperature of the heating furnace of the hot working apparatus so that the inner surface temperature becomes a predetermined temperature range, It is possible to achieve homogenization, reduce variations in mechanical properties in the longitudinal direction, and obtain desired properties.

なお、δは、昇温過程でδフェライト単相となる温度であり、熱平衡計算により算出しても良いし、加熱中の熱膨張曲線を測定し、δフェライト単相となった際に生じる熱膨張曲線の変曲点を測定しても良い。 Note that δ A is a temperature at which δ ferrite single phase is formed in the temperature rising process, and may be calculated by thermal equilibrium calculation, or it is generated when the thermal expansion curve during heating is measured and δ ferrite single phase is obtained. The inflection point of the thermal expansion curve may be measured.

中空素材の先端と後端の内面温度を測定する測定手段は、例えば温度計で測定すればよい。温度計としては、オンラインで測定する温度計であればよく、接触式、非接触式いずれの場合でもよい。中空素材の先端、後端の両方が熱間加工される時間を考慮して、中空素材の先端と後端の温度を測定するタイミングが同一条件のもとで先端および後端の内面温度を導くことが好ましい。また、中空素材の内面温度を測定するのは、穿孔圧延後であって、熱間加工が施される前であればよい。すなわち、温度計の設置位置としては、熱間加工装置3の入側であればよい。また、熱間加工装置3が、図1に示すように、エロンゲータ31、プラグミル32、サイジングミル33といった複数の圧延機が連続して配置される場合、温度計は各圧延機の入側毎に設置されればよい。ただし、設置位置に制約がある場合は、伝熱計算を用いて中空素材の先端および後端の内面温度を導いてもよい。本発明では、中空素材の先端および後端の内面温度を管理することが重要であるため、温度計は穿孔圧延後の熱間加工装置の入側に対し、最低1ヶ所は設置する必要がある。一方で、熱間加工での加工温度とひずみの関係を把握し、最終的な材質を予測する観点から複数箇所に温度計を設けると好ましい。   The measuring means for measuring the inner surface temperature of the front end and the rear end of the hollow material may be measured, for example, by a thermometer. The thermometer may be a thermometer that measures on-line, and may be either a contact type or non-contact type. In consideration of the time when both the front end and the rear end of the hollow material are hot-worked, the timing of measuring the temperature of the front end and the rear end of the hollow material leads the inner surface temperature of the front end and the rear end under the same conditions. Is preferred. In addition, the inner surface temperature of the hollow material may be measured after piercing-rolling and before being subjected to hot working. That is, the installation position of the thermometer may be on the entry side of the hot working apparatus 3. Further, as shown in FIG. 1, when the hot working apparatus 3 has a plurality of rolling mills such as the Elongator 31, plug mill 32 and sizing mill 33 continuously arranged, the thermometers are provided for each entry side of each rolling mill. It should be installed. However, if there is a restriction on the installation position, heat transfer calculation may be used to derive the inner surface temperatures of the front end and the rear end of the hollow material. In the present invention, since it is important to control the inner surface temperature of the front end and the rear end of the hollow material, at least one thermometer needs to be installed on the entrance side of the hot working apparatus after piercing and rolling. . On the other hand, it is preferable to provide thermometers at a plurality of locations from the viewpoint of grasping the relationship between the processing temperature and strain in hot working and predicting the final material.

また、中空素材の内面温度を測定する位置については、先端もしくは後端から長手方向に20〜200mmの範囲内の位置で測定することが好ましい。これは、中空素材の先端もしくは後端から長手方向に20mm以内の位置では、放熱量が大きく形状も不安定となりやすく、温度バラツキが生じ得るためである。   Moreover, about the position which measures the inner surface temperature of a hollow raw material, it is preferable to measure in the position within the range of 20-200 mm to a longitudinal direction from a front end or a back end. This is because at a position within 20 mm in the longitudinal direction from the front end or rear end of the hollow material, the amount of heat release is large and the shape is easily unstable, and temperature variations may occur.

なお、反転機構と温度計との配置関係については、いずれも熱間加工が施される前であればよいので、反転機構により中空素材の先端と後端を反転した後に、温度計で中空素材の先端と後端の内面温度を計ってもよいし、温度計で中空素材の先端と後端の内面温度を計った後に、反転機構により中空素材の先端と後端を反転してもよい。   In addition, about the arrangement | positioning relationship between an inversion mechanism and a thermometer, since it is all necessary before hot processing is given, after inverting the front-end and back end of a hollow material by an inversion mechanism, a hollow material is measured by a thermometer. The inner surface temperature of the front end and the rear end of the hollow material may be measured, or after the inner surface temperature of the front end and the rear end of the hollow material is measured by a thermometer, the front end and the rear end of the hollow material may be reversed by an inversion mechanism.

本発明では、中空素材の先端および後端の内面温度が1100℃以上δ℃以下となるように熱間加工装置の加熱炉の温度を制御する。熱間加工における加工温度とひずみの関係が材質に与える影響は、材料成分により異なるため、低減すべき温度差の目標は材料により異なる。主には、高温でフェライト相を含む材料については高温で粒成長しやすく、熱間加工中の温度管理が重要となる。穿孔圧延において、使用される内面工具は体積が小さいため熱容量が小さい。なおかつ接触的な冷却ができないため、穿孔圧延時には先端から後端にかけて徐々に温度上昇する。それに伴い、中空素材内面からの抜熱量が減少し、中空素材の先端に比べて後端の温度は大幅に高くなる。さらに、後に続く熱間加工においても、最初に工具に触れる先端と工具温度が上昇した状態で接触する後端側の温度差はさらに拡大される。特に穿孔圧延後に減肉・拡管圧延を行う場合に、温度差の拡大が顕著である。 In the present invention, front and rear ends the temperature of the inner surface of the hollow material to control the temperature of the heating furnace of the hot working apparatus so that the 1100 ° C. or higher [delta] A ° C. or less. Since the influence of the relationship between processing temperature and strain on hot working on the material is different depending on the material component, the target of the temperature difference to be reduced is different depending on the material. Mainly, grain growth is likely to occur at high temperatures for materials containing ferrite phases at high temperatures, and temperature control during hot working becomes important. In piercing and rolling, the inner surface tool used has a small heat capacity because of its small volume. Furthermore, since contact cooling can not be performed, the temperature rises gradually from the front end to the rear end at the time of piercing and rolling. Along with this, the heat removal amount from the inner surface of the hollow material decreases, and the temperature of the rear end becomes significantly higher than that of the front end of the hollow material. Furthermore, also in the subsequent hot working, the temperature difference on the rear end side which contacts with the tip end which touches the tool first and the tool temperature rises is further enlarged. The expansion of the temperature difference is remarkable particularly when thinning and expansion rolling are performed after piercing and rolling.

このように、中空素材の外面に比べて内面では工具への抜熱量が少ないことから、温度が上がりやすい。したがって、中空素材の後端の内面側が最も温度が高くなる。管の温度が上がると、先端に対して靭性が大きく低下する。本発明者らが検討した結果、材料がδ(昇温過程でδフェライト相単相になる温度)超えの温度にさらされるとフェライト相が急激に成長・粗大化して靭性が顕著に低下することがわかった。一方、材料が1100℃未満でその後の熱間圧延に供されると、フェライトより強度の高い第二相の分率が大きくなりすぎて、圧延負荷が増大し、圧延疵等の原因となることがわかった。 As described above, since the heat removal amount to the tool is smaller at the inner surface than at the outer surface of the hollow material, the temperature tends to rise. Therefore, the temperature is highest at the inner surface side of the rear end of the hollow material. As the temperature of the tube increases, the toughness decreases significantly with respect to the tip. As a result of investigations by the present inventors, when the material is exposed to a temperature exceeding δ A (the temperature at which the δ ferrite phase becomes a single phase in the temperature rising process), the ferrite phase is rapidly grown and coarsened, and the toughness is significantly lowered. I understood it. On the other hand, when the material is subjected to the subsequent hot rolling at less than 1100 ° C., the fraction of the second phase having higher strength than the ferrite becomes too large, and the rolling load increases, causing the rolling defects and the like. I understand.

以上より、本発明では、熱間加工前に中空素材の先端および後端の内面温度を測定し、測定したそれぞれの内面温度が1100℃以上δ℃以下の範囲になるように、加熱炉の温度を制御する。これにより、鋼管長手方向における先端と後端の内面温度の差を相殺し、長手方向で材質の均質化を図り、長手方向における機械的特性のばらつきを少なくすることができる。 From the above, in the present invention, the inner surface temperatures of the front end and the rear end of the hollow material are measured before hot working, and the inner surface temperature measured is in the range of 1100 ° C. or more and δ A ° C. or less. Control the temperature. As a result, it is possible to offset the difference in inner surface temperature between the front end and the rear end in the longitudinal direction of the steel pipe, achieve homogenization of the material in the longitudinal direction, and reduce variations in mechanical characteristics in the longitudinal direction.

加熱炉は、熱間加工における中空素材の加熱に使用する加熱炉であり、中空素材を所定温度に加熱できる常用の加熱炉であればよく、とくに限定する必要はない。例えば、回転炉床式加熱炉が例示できる。なお、誘導加熱方式の加熱炉としてもよい。   The heating furnace is a heating furnace used to heat the hollow material in hot working, and may be a commonly used heating furnace that can heat the hollow material to a predetermined temperature, and it is not necessary to limit it in particular. For example, a rotary hearth furnace can be exemplified. In addition, it is good also as a heating furnace of an induction heating system.

加熱炉の温度の制御は、測定した内面温度が1100℃以上δ℃以下の範囲を外れた時点で行えばよい。測定直後に加熱炉の温度を制御することで、その後の熱間加工時において鋼管長手方向における先端と後端の内面温度の差を相殺し、長手方向で材質の均質化を図ることができる。 Control of the temperature of the furnace is measured inner surface temperature may be performed at the time out of the range of 1100 ° C. or higher [delta] A ° C. or less. By controlling the temperature of the heating furnace immediately after the measurement, it is possible to offset the difference in the inner surface temperature of the front end and the rear end in the longitudinal direction of the steel pipe during the subsequent hot working and to achieve homogenization of the material in the longitudinal direction.

また、加熱炉の温度制御については、測定した内面温度が1100℃よりも低い際は、その差分だけ加熱炉の温度を上げ、測定した内面温度がδ℃よりも高い際は、その差分だけ加熱炉の温度を下げればよい。このように加熱炉の温度を制御することにより、鋼管の内面温度を適正な範囲に保ち、長手方向で材質の均質化を図り、長手方向における機械的特性のばらつきをより少なくするとともに、圧延疵の発生を抑制することができる。 With regard to temperature control of the heating furnace, when the measured inner surface temperature is lower than 1100 ° C., the temperature of the heating furnace is increased by the difference, and when the measured inner surface temperature is higher than δ A ° C., only the difference The temperature of the heating furnace may be lowered. By controlling the temperature of the heating furnace in this manner, the inner surface temperature of the steel pipe is maintained in an appropriate range, the material homogenization in the longitudinal direction is achieved, and the variation in mechanical characteristics in the longitudinal direction is further reduced. Can be suppressed.

また、加熱炉の温度制御について、測定した内面温度が1180℃以上(δ−70)℃以下の範囲となるように加熱炉の温度を制御することが好ましく、このとき、測定した内面温度が1180℃以上(δ−70)℃以下の範囲を外れると判定された時点で、加熱炉の温度を制御することが好ましい。測定した内面温度を1180℃以上(δ−70)℃以下の範囲とすることにより、熱間加工装置の加熱炉の温度をより適切に制御することができるため、鋼管の内面温度を1100℃以上δ℃以下の範囲に制御することが可能となる。その結果、その後の熱間加工時において鋼管長手方向における先端と後端の内面温度の差を相殺し、長手方向で材質の均質化を図ることができる。また、測定した内面温度が1180℃以上(δ−70)℃以下の範囲となるように加熱炉の温度を制御する際は、測定した内面温度が1180℃よりも低い際は、その差分だけ加熱炉の温度を上げ、測定した内面温度が(δ−70)℃よりも高い際は、その差分だけ加熱炉の温度を下げればよい。このように加熱炉の温度を制御することにより、鋼管の内面温度を適正な範囲に保ち、長手方向で材質の均質化を図り、長手方向における機械的特性のばらつきを少なくするとともに、圧延疵の発生を抑制することができる。 Further, with regard to temperature control of the heating furnace, it is preferable to control the temperature of the heating furnace such that the measured inner surface temperature is in the range of 1180 ° C. or more (δ A- 70) ° C. It is preferable to control the temperature of the heating furnace when it is determined that the temperature is outside the range of 1180 ° C. or more and (δ A −70) ° C. or less. By setting the measured inner surface temperature in the range of 1180 ° C. or higher (δ A −70) ° C., the temperature of the heating furnace of the hot working apparatus can be more appropriately controlled, so the inner surface temperature of the steel pipe is 1100 ° C. it is possible to control the range of [delta] a ° C. or higher. As a result, during the subsequent hot working, it is possible to offset the difference in the inner surface temperature of the front end and the rear end in the longitudinal direction of the steel pipe, and to homogenize the material in the longitudinal direction. When the temperature of the heating furnace is controlled so that the measured inner surface temperature is in the range of 1180 ° C. or higher (δ A -70) ° C., when the measured inner surface temperature is lower than 1180 ° C., only the difference If the temperature of the heating furnace is raised and the measured inner surface temperature is higher than (δ A −70) ° C., the temperature of the heating furnace may be lowered by the difference. By controlling the temperature of the heating furnace in this manner, the inner surface temperature of the steel pipe is maintained in an appropriate range, homogenization of the material is achieved in the longitudinal direction, and variations in mechanical properties in the longitudinal direction are reduced. Occurrence can be suppressed.

次に、本発明の鋼素材の組成の限定理由について説明する。本発明の適用により効果が発揮される鋼素材は、比較的低温でδフェライト相単相となり、かつ、常温における製品時にδフェライト相が残存する組成を有する鋼素材が好ましく、前記鋼素材が、質量%で、C:0.050%以下、Si:1.00%以下、Mn:0.20〜1.80%、Cr:15.5〜18.0%、Ni:1.5〜5.0%、Mo:1.0〜3.5%、V:0.02〜0.20%、N:0.01〜0.15%、O:0.006%以下を含み、残部Feおよび不可避的不純物からなる成分組成であることがより好ましい。   Next, the reasons for limitation of the composition of the steel material of the present invention will be described. The steel material which exhibits effects by the application of the present invention is preferably a steel material having a composition in which the δ ferrite phase is single phase at a relatively low temperature and the δ ferrite phase remains at the time of the product at normal temperature. C: 0.050% or less, Si: 1.00% or less, Mn: 0.20 to 1.80%, Cr: 15.5 to 18.0%, Ni: 1.5 to 5% by mass. 0%, Mo: 1.0 to 3.5%, V: 0.02 to 0.20%, N: 0.01 to 0.15%, O: 0.006% or less, balance Fe and unavoidable It is more preferable that it is the component composition which consists of a chemical impurity.

鋼素材の好ましい成分組成の限定理由について説明する。なお、とくに断わらないかぎり、質量%は単に%で記す。   The reasons for limitation of the preferred composition of the steel material will be described. Incidentally, mass% is simply expressed as% unless otherwise specified.

C:0.050%以下
Cは、マルテンサイト相の生成量に影響を与える重要な元素であり、0.005%以上含有することが望ましい。一方、0.050%を超えて含有すると、Ni含有による焼戻時の鋭敏化が増大する。耐食性の観点からはCは少ないほうが望ましい。このようなことから、Cは0.050%以下に限定した。なお、好ましくは0.030〜0.050%である。
C: 0.050% or less C is an important element that affects the formation amount of the martensite phase, and it is desirable to contain 0.005% or more. On the other hand, if the content is more than 0.050%, the sensitization at tempering due to the Ni content is increased. From the viewpoint of corrosion resistance, it is desirable that C be small. From such a thing, C was limited to 0.050% or less. In addition, Preferably it is 0.030 to 0.050%.

Si:1.00%以下
Siは、脱酸剤として作用する元素であり、0.05%以上含有することが望ましい。1.00%を超える含有は、耐食性を低下させ、さらに熱間加工性をも低下させる。このため、Siは1.00%以下に限定した。なお、好ましくは0.10〜0.30%である。
Si: 1.00% or less Si is an element that acts as a deoxidizer, and it is desirable to contain 0.05% or more. A content of more than 1.00% reduces the corrosion resistance and further reduces the hot workability. For this reason, Si was limited to 1.00% or less. In addition, Preferably it is 0.10 to 0.30%.

Mn:0.20〜1.80%
Mnは、オーステナイト相分率を増大する作用を有する元素であり、このような効果を得るためには0.20%以上の含有を必要とする。一方、1.80%を超えて含有すると、靭性に悪影響を及ぼす。このため、Mnは0.20〜1.80%に限定した。なお、好ましくは0.20〜1.00%である。
Mn: 0.20 to 1.80%
Mn is an element having the effect of increasing the austenite phase fraction, and in order to obtain such an effect, the content needs to be 0.20% or more. On the other hand, if the content exceeds 1.80%, the toughness is adversely affected. For this reason, Mn was limited to 0.20 to 1.80%. In addition, Preferably it is 0.20 to 1.00%.

Cr:15.5〜18.0%
Crは、保護皮膜を形成し耐食性を向上させる主要元素であり、同時にフェライト相の相分率を増大する作用を持つ元素である。このような効果を得るためには、15.5%以上の含有を必要とする。一方、18.0%を超えて多量に含有すると、強度が低下する。このため、Crは15.5〜18.0%に限定した。なお、好ましくは16.0〜18.0%である。
Cr: 15.5 to 18.0%
Cr is a main element which forms a protective film and improves the corrosion resistance, and at the same time, is an element having an effect of increasing the phase fraction of the ferrite phase. In order to obtain such an effect, the content needs to be 15.5% or more. On the other hand, if the content is more than 18.0%, the strength is reduced. For this reason, Cr was limited to 15.5 to 18.0%. In addition, Preferably it is 16.0 to 18.0%.

Ni:1.5〜5.0%
Niは、保護膜を補修し、耐食性を高める作用を有する元素であり、同時にオーステナイト相の相分率を増大する作用を持つ元素である。さらに靭性を向上させる元素でもある。このような効果は1.5%以上の含有で認められる。一方、5.0%を超えて含有すると、材料コストが高騰する上に、強度が低下する。このため、Niは1.5〜5.0%に限定した。なお、好ましくは2.5〜4.5%である。
Ni: 1.5 to 5.0%
Ni is an element having the function of repairing the protective film and enhancing the corrosion resistance, and at the same time, an element having the function of increasing the phase fraction of the austenite phase. It is also an element that improves toughness. Such effects are observed at a content of 1.5% or more. On the other hand, if the content exceeds 5.0%, the material cost rises and the strength is lowered. For this reason, Ni was limited to 1.5 to 5.0%. In addition, Preferably it is 2.5 to 4.5%.

Mo:1.0〜3.5%
Moは、Clによる孔食に対する抵抗性を増加させる元素である。このような効果を得るためには、1.0%以上含有することが望ましい。一方、3.5%を超える多量の含有は、強度が低下するとともに、材料コストが高騰する。このため、Moは1.0〜3.5%に限定した。なお、好ましくは2.0〜3.5%である。
Mo: 1.0 to 3.5%
Mo is an element that increases the resistance to pitting corrosion by Cl . In order to acquire such an effect, it is desirable to contain 1.0% or more. On the other hand, when the content is more than 3.5%, the strength is lowered and the material cost is increased. For this reason, Mo was limited to 1.0 to 3.5%. In addition, Preferably it is 2.0 to 3.5%.

V:0.02〜0.20%
Vは、強度を増加させるとともに、耐食性を改善する元素である。このような効果を得るためには、0.02%以上の含有を必要とする。一方、0.20%を超えて含有すると、靭性が低下する。このため、Vは0.02〜0.20%に限定した。なお、好ましくは0.02〜0.08%である。
V: 0.02 to 0.20%
V is an element that improves the corrosion resistance as well as increasing the strength. In order to acquire such an effect, it is necessary to contain 0.02% or more. On the other hand, if the content exceeds 0.20%, the toughness is lowered. For this reason, V was limited to 0.02 to 0.20%. In addition, Preferably it is 0.02 to 0.08%.

N:0.01〜0.15%
Nは、耐孔食性を著しく向上される元素であり、このような効果を得るためには0.01%以上の含有を必要とする。一方、0.15%を超えて含有すると、種々の窒化物を形成し靭性を低下させる。このため、Nは0.01〜0.15%に限定した。なお、好ましくは0.02〜0.08%である。
N: 0.01 to 0.15%
N is an element that significantly improves the pitting resistance, and in order to obtain such an effect, it is necessary to contain 0.01% or more. On the other hand, if the content is more than 0.15%, various nitrides are formed to lower the toughness. For this reason, N was limited to 0.01 to 0.15%. In addition, Preferably it is 0.02 to 0.08%.

O:0.006%以下
Oは、鋼中では酸化物として存在し、各種特性に悪影響を及ぼす。このため、できるだけ低減することが望ましい。とくに、Oが0.006%を超えて多量に含有すると、熱間加工性、靭性、耐食性の低下が著しくなる。このため、Oは0.006%以下に限定した。
O: 0.006% or less O is present as an oxide in steel and adversely affects various properties. For this reason, it is desirable to reduce as much as possible. In particular, when O is contained in a large amount exceeding 0.006%, the hot workability, the toughness and the corrosion resistance remarkably decrease. For this reason, O was limited to 0.006% or less.

上記した成分が基本の成分であるが、基本成分に加えてさらに、選択元素として、次A群〜D群
A群:Al:0.002〜0.050%
B群:Cu:3.5%以下、W:3.5%以下、REM:0.3%以下のうちから選ばれた1種または2種以上
C群:Nb:0.2%以下、Ti:0.3%以下、Zr:0.2%以下のうちから選ばれた1種または2種以上
D群:Ca:0.01%以下、B:0.01%以下のうちから選ばれた1種または2種
のうちから選ばれた1群または2群以上を含有することができる。
Although the above-described components are basic components, in addition to the basic components, the following groups A to D are also selected elements: Al: 0.002 to 0.050%
Group B: Cu: 3.5% or less, W: 3.5% or less, REM: 0.3% or less One or more selected from C group: Nb: 0.2% or less, Ti One or more selected from 0.3% or less, Zr: 0.2% or less D group: Ca: 0.01% or less, B: 0.01% or less It can contain one group or two or more groups selected from one or two.

A群:Al:0.002〜0.050%
A群:Alは、脱酸剤として作用する元素であり、このような効果を得るためには、0.002%以上含有することが好ましいが、0.050%を超えて含有すると、靭性に悪影響を及ぼす。このため、含有する場合には、0.002〜0.050%に限定することが好ましい。なお、Al無添加の場合には、不可避的不純物として0.002%未満程度が許容される。
Group A: Al: 0.002 to 0.050%
Group A: Al is an element acting as a deoxidizing agent, and in order to obtain such an effect, it is preferable to contain 0.002% or more, but if it is contained more than 0.050%, it is to toughness Adversely affect. For this reason, when it contains, it is preferable to limit to 0.002 to 0.050%. In the case where Al is not added, about 0.002% or less is acceptable as an unavoidable impurity.

B群:Cu:3.5%以下、W:3.5%以下、REM:0.3%以下のうちから選ばれた1種または2種以上
B群:Cu、W、REMは、保護皮膜を強固にし、鋼中への水素の侵入を抑制し、耐硫化物応力腐食割れ性を高める。このような効果はCu:0.5%以上、W:0.5%以上、REM:0.001%以上の含有で顕著となる。しかし、Cu:3.5%、W:3.5%、REM:0.3%をそれぞれ超えて含有すると靭性が低下する。このため、含有する場合には、Cu、Wはそれぞれ3.5%以下、REMは0.3%以下に限定することが好ましい。なお、より好ましくはCu:0.8〜1.2%、W:0.8〜1.2%、REM:0.001〜0.010である。
Group B: Cu: 3.5% or less, W: 3.5% or less, REM: 0.3% or less One or more selected from B group: Cu, W, REM, protective film Strengthens, suppresses the entry of hydrogen into the steel, and increases the resistance to sulfide stress corrosion cracking. Such effects are significant when Cu: 0.5% or more, W: 0.5% or more, and REM: 0.001% or more. However, if the content of Cu: 3.5%, W: 3.5%, REM: 0.3% or more is contained, the toughness is lowered. Therefore, it is preferable to limit Cu and W to 3.5% or less and REM to 0.3% or less. More preferably, Cu: 0.8 to 1.2%, W: 0.8 to 1.2%, and REM: 0.001 to 0.010.

C群:Nb:0.2%以下、Ti:0.3%以下、Zr:0.2%以下のうちから選ばれた1種または2種以上
C群:Nb、Ti、Zrはいずれも、強度や熱間加工性を向上させる元素であり、必要に応じて選択して含有できる。このような効果は、Nb:0.03%以上、Ti:0.03%以上、Zr:0.03%以上の含有で認められる。一方、Nb:0.2%、Ti:0.3%、Zr:0.2%をそれぞれ超える含有は、靭性を低下させる。このため、含有する場合は、Nb:0.2%以下、Ti:0.3%以下、Zr:0.2%以下に、それぞれ限定することが好ましい。
C group: Nb: 0.2% or less, Ti: 0.3% or less, Zr: 0.2% or less selected from one or more selected from C group: Nb, Ti, Zr all It is an element that improves strength and hot workability, and can be selected and contained as necessary. Such effects are observed when Nb: 0.03% or more, Ti: 0.03% or more, and Zr: 0.03% or more. On the other hand, the contents exceeding Nb: 0.2%, Ti: 0.3%, and Zr: 0.2%, respectively, lower the toughness. Therefore, when it is contained, it is preferable to limit each to Nb: 0.2% or less, Ti: 0.3% or less, and Zr: 0.2% or less.

D群:Ca:0.01%以下、B:0.01%以下のうちから選ばれた1種または2種
D群:Ca、Bは、多相域圧延時の熱間加工性を向上させ、製品疵を抑制する作用をもち、必要に応じて1種または2種を含有できる。このような効果は、Ca:0.0005%以上、B:0.0005%以上の含有で顕著となるが、Ca:0.01%、B:0.01%を超えて含有すると、耐食性が低下する。このため、含有する場合には、Ca:0.01%以下、B:0.01%以下に限定することが好ましい。
Group D: Ca: 0.01% or less, B: 0.01% or less One or two selected from Group D: Ca, B improve the hot workability during multiphase rolling Has an effect of suppressing product wrinkles, and may contain one or two if necessary. Such effects are significant when Ca: 0.0005% or more and B: 0.0005% or more. However, when Ca: 0.01% and B: 0.01% or more, corrosion resistance is descend. For this reason, when it contains, it is preferable to limit to Ca: 0.01% or less and B: 0.01% or less.

上記した成分以外の残部は、Feおよび不可避的不純物である。なお、不可避的不純物としてはP:0.03%以下、S:0.005%以下が許容できる。   The balance other than the above components is Fe and unavoidable impurities. As unavoidable impurities, P: 0.03% or less and S: 0.005% or less are acceptable.

上記した組成を有する鋼素材の製造方法はとくに限定する必要はない。転炉、電気炉等、常用の溶製炉を使用して、上記した組成の溶鋼を溶製し、連続鋳造法等の常用の鋳造方法で、鋳片(丸鋳片)としたものを鋼素材とすることが好ましい。なお、鋳片を熱間圧延して所定寸法の鋼片として鋼素材としてもよい。また、造塊−分塊圧延法で鋼片とし、鋼素材としてもなんら問題はない。   The method for producing the steel material having the composition described above is not particularly limited. A molten steel of the above composition is melted using a conventional melting furnace such as a converter or an electric furnace, and a slab (round slab) is formed by ordinary casting method such as continuous casting. It is preferable to use a material. In addition, it is good also as a steel material as a steel piece of a predetermined dimension by hot-rolling a cast piece. Moreover, it is made into a billet by the ingot-slab rolling method, and there is no problem as a steel material at all.

表1に示す組成を有する溶鋼を溶製し、さらに脱ガス処理を施し、引き続き造塊法で230φ×6000長さのビレットを製造して、室温まで空冷した。次に、ビレットを加熱炉で加熱した後、ピアサーで穿孔圧延した。   A molten steel having the composition shown in Table 1 was melted and subjected to a degassing treatment, and then a billet of 230φ × 6000 length was produced by the ingot method and air-cooled to room temperature. Next, the billet was heated in a heating furnace and then pierced and rolled in a piercer.

Figure 0006520892
Figure 0006520892

また、表2に示す通り、発明例については、穿孔圧延後に鋼管の長手方向の先端と後端を反転させてから熱間加工工程に搬送した。また、穿孔後の熱間加工工程として、エロンゲータによる減肉・拡管圧延を行った後、プラグミルによる延伸圧延、リーラによる磨管、サイジングミルによる定型圧延を行った。もしくは、マンドレルミルによる延伸圧延を行った後、レデューサーによる定型圧延を行った。定型圧延後、放冷して、外径248.8mm、肉厚13.91mm、長さ15mの継目無鋼管を得た。なお、穿孔圧延後の鋼管(中空素材)の先端および後端の内面温度については、放射温度計にて測定した。放射温度計にて穿孔圧延後に鋼管の先端および後端の内面温度を測定し、発明例については、表2に示す内面温度になるように加熱炉の温度を適宜制御した後、熱間加工を施した。また、δフェライト単相になる温度(δ)については予め加熱過程の熱膨張曲線を測定し、δフェライトへの変態が完了し、膨張曲線の曲率が変化した点を使用した。 In addition, as shown in Table 2, in the invention example, after piercing and rolling, the front end and the rear end in the longitudinal direction of the steel pipe were reversed, and then transported to the hot working process. In addition, as a hot working process after drilling, thickness reduction and tube expansion rolling with an Elongator were performed, followed by drawing rolling with a plug mill, polishing with a reel, and fixed form rolling with a sizing mill. Alternatively, after drawing rolling with a mandrel mill, fixed rolling with a reducer was performed. After the fixed form rolling, it was allowed to cool, and a seamless steel pipe having an outer diameter of 248.8 mm, a thickness of 13.91 mm and a length of 15 m was obtained. In addition, about the inner surface temperature of the front end and back end of the steel pipe (hollow material) after piercing-rolling, it measured with the radiation thermometer. After drilling and rolling with a radiation thermometer, the inner surface temperatures of the front and rear ends of the steel pipe are measured, and for the invention example, the temperature of the heating furnace is appropriately controlled to reach the inner surface temperature shown in Table 2, and then hot working is performed. gave. In addition, for the temperature (δ A ) at which the δ ferrite single phase is obtained, the thermal expansion curve in the heating process was measured in advance, and the transformation to δ ferrite was completed, and the point at which the curvature of the expansion curve changed was used.

その後、所定の焼入れ温度に加熱された継目無鋼管を、空冷以上の冷却速度で100℃以下まで冷却することによって、焼入れを行なった。焼入れ加熱条件は、いずれの鋼管も960℃で20分とした。焼入れの後、継目無鋼管に、加熱後に空冷以上の冷却速度で室温まで冷却する焼戻しを行った。焼き戻し加熱条件は、いずれの鋼管も600℃で40分とした。   Thereafter, quenching was performed by cooling the seamless steel pipe heated to a predetermined quenching temperature to 100 ° C. or less at a cooling rate higher than air cooling. The quenching and heating conditions were 20 minutes at 960 ° C. for all steel pipes. After quenching, the seamless steel pipe was subjected to tempering to cool to room temperature at a cooling rate higher than air cooling after heating. The tempering heating conditions were 40 minutes at 600 ° C. for all steel pipes.

また、得られた継目無鋼管の先端位置および後端位置から試験片を採取して、引張特性、靭性を調査した。その調査方法は以下の通りである。   In addition, test pieces were collected from the leading end position and the trailing end position of the obtained seamless steel pipe, and the tensile properties and toughness were examined. The survey method is as follows.

(A)引張特性
焼入れおよび焼戻しを施した継目無鋼管の肉厚中央部から、API−5CT規格に準拠して引張方向が管軸方向となるようにAPI弧状引張試験片を採取し、さらにAPI規格に準拠して引張試験を行なって、引張特性として降伏強さYS(MPa)、引張強さTS(MPa)を測定した。
(A) Tensile properties From the thickness center of the hardened and tempered seamless steel pipe, an API arc-shaped tensile test specimen is taken so that the tensile direction is in the axial direction according to the API-5CT standard, and further API A tensile test was conducted in accordance with the standard, and as tensile properties, yield strength YS (MPa) and tensile strength TS (MPa) were measured.

(B)靭性
焼入れおよび焼戻しを施した継目無鋼管の肉厚中央部から、ISO−11960規格に準拠して、円周方向が試験片長さとなるようにVノッチ試験片(厚さ10mm)を採取し、さらに試験温度を−10℃としてシャルピー衝撃試験を行なって、吸収エネルギーvE−10(J)を測定した。なお、試験片は、それぞれ3本とし、それらの算術平均値を当該鋼管の吸収エネルギーとした。
(B) Toughness From V-notch test piece (10 mm thickness) is taken from the thickness center of the hardened and tempered seamless steel pipe in accordance with the ISO-11960 standard so that the circumferential direction becomes the test piece length. Further, a Charpy impact test was performed at a test temperature of -10 ° C to measure the absorbed energy vE -10 (J). Three test pieces were used, and their arithmetic mean value was used as the absorbed energy of the steel pipe.

(C)圧延疵
得られた継目無鋼管の内面および外面を目視で観察し、熱間加工性を評価した。継目無鋼管の長さ5mm以上の割れが認められたものを「有:×」とし、それ以外のものを「無:○」として示す。
(C) Rolling Stock The inner surface and the outer surface of the obtained seamless steel pipe were visually observed to evaluate hot workability. Those with cracks of 5 mm or more in length of the seamless steel pipe are regarded as "presence: x", and those other than that are shown as "no: ○".

得られた結果を表2に示す。   The obtained results are shown in Table 2.

Figure 0006520892
Figure 0006520892

表2から明らかなように、発明例は、いずれもYSが758MPa(=110ksi)以上の高強度と、vE−10が40J以上の高靭性とを有しており、先端と後端で機械的特性のバラツキはみられない。また、これに対して比較例は、先後端の反転を行わなかった、もしくは加熱炉温度を制御しなかったため、圧延疵が発生しているかあるいは、後端で靭性が低下し、長手方向で機械的特性に差が生じている。これは、拡管圧延中もしくは定型圧延中に後端内面側で鋼管温度が上昇し、フェライト粒が粗大化したためと考えられる。 As is clear from Table 2, each of the inventive examples has high strength of 758 MPa (= 110 ksi) or more for YS and high toughness of 40 J or more for vE- 10 , and mechanical at the front and rear ends There is no variation in the characteristics. On the other hand, in the comparative example, since inversion of the front and rear ends was not performed or the furnace temperature was not controlled, rolling defects were generated or toughness was lowered at the rear end, and the machine in the longitudinal direction Characteristics have been different. It is considered that this is because the temperature of the steel pipe rises on the inner surface at the rear end during tube expansion rolling or fixed form rolling, and the ferrite grains become coarse.

また、内面温度が1100℃以上δ℃以下の範囲になるように加熱炉の温度を制御した場合、1100℃以上δ℃以下の範囲を外れた鋼管は、4本(製造本数:110本)であった。これに対して、内面温度が1180℃以上(δ−70)℃以下の範囲となるように加熱炉を制御した場合、1100℃以上δ℃以下の範囲を外れた鋼管は0本となった。 Further, if the inner surface temperature to control the temperature of the furnace to be in the range of 1100 ° C. or higher [delta] A ° C. or less, the steel pipe outside the range of 1100 ° C. or higher [delta] A ° C. or less, four (manufacturing number: 110 present )Met. On the other hand, when the heating furnace is controlled so that the inner surface temperature is in the range of 1180 ° C. or more (δ A- 70) ° C., there are 0 steel pipes out of the range of 1100 ° C. or more and δ A ° C. The

1 加熱装置
2 穿孔圧延装置
3 熱間加工装置
31 エロンゲータ
32 プラグミル
33 サイジングミル
Reference Signs List 1 heating device 2 piercing and rolling device 3 hot working device 31 Elongator 32 plug mill 33 sizing mill

Claims (8)

鋼素材を加熱した後、加熱された前記鋼素材に穿孔圧延を施して中空素材とし、前記中空素材に熱間加工を施して継目無鋼管とするにあたり、
穿孔圧延後、前記中空素材の先端と後端を反転させてから熱間加工を施すとともに、
穿孔圧延後、熱間加工前に前記中空素材の先端と後端の内面温度を測定し、測定したそれぞれの内面温度が1100℃以上δ℃以下の範囲となるように加熱炉の温度を制御する
ことを特徴とする継目無鋼管の製造方法。
ただし、δ:昇温過程でδフェライト相単相になる温度である。
After heating the steel material, the heated steel material is subjected to piercing rolling to obtain a hollow material, and the hollow material is subjected to hot working to form a seamless steel pipe,
After piercing and rolling, the front end and the rear end of the hollow material are inverted and then subjected to hot working,
After piercing, the prior hot working to measure a hollow material of the tip and rear end of the inner surface temperature, controls the temperature of the heating furnace so that each inner surface temperature measured is in the range of 1100 ° C. or higher [delta] A ° C. or less A manufacturing method of a seamless steel pipe characterized by doing.
However, δ A is a temperature at which the δ ferrite phase becomes a single phase in the temperature raising process.
前記測定した内面温度が1100℃以上δ℃以下の範囲を外れた時点で、前記加熱炉の温度を制御することを特徴とする請求項1に記載の継目無鋼管の製造方法。 Wherein when the measured inner surface temperature is outside the range of 1100 ° C. or higher [delta] A ° C. or less, method of producing a seamless steel pipe according to claim 1, characterized in that to control the temperature of the heating furnace. 測定した内面温度が1180℃以上(δ−70)℃以下の範囲を外れると判定された時点で、加熱炉の温度を制御することを特徴とする請求項2に記載の継目無鋼管の製造方法。 The temperature of the heating furnace is controlled when it is determined that the measured inner surface temperature is out of the range of 1180 ° C. or more (δ A -70) ° C. or less, and the seamless steel pipe is manufactured according to claim 2. Method. 前記測定した内面温度が1100℃よりも低い際は、その差分だけ前記加熱炉の温度を上げ、
前記測定した内面温度がδ℃よりも高い際は、その差分だけ前記加熱炉の温度を下げる
ように前記加熱炉の温度を制御することを特徴とする請求項1または2に記載の継目無鋼管の製造方法。
When the measured inner surface temperature is lower than 1100 ° C., the temperature of the heating furnace is increased by the difference,
The seam temperature according to claim 1 or 2, wherein the temperature of the heating furnace is controlled to lower the temperature of the heating furnace by the difference when the measured inner surface temperature is higher than δ A ° C. Method of manufacturing steel pipe.
前記測定した内面温度が1180℃よりも低い際は、その差分だけ前記加熱炉の温度を上げ、
前記測定した内面温度が(δ−70)℃よりも高い際は、その差分だけ前記加熱炉の温度を下げる
ように前記加熱炉の温度を制御することを特徴とする請求項3に記載の継目無鋼管の製造方法。
When the measured inner surface temperature is lower than 1180 ° C., the temperature of the heating furnace is increased by the difference,
The temperature of the heating furnace is controlled to lower the temperature of the heating furnace by the difference when the measured inner surface temperature is higher than (δ A- 70) ° C. Method of manufacturing seamless steel pipe.
前記鋼素材が、質量%で、
C :0.050%以下、 Si:1.00%以下、
Mn:0.20〜1.80%、 Cr:15.5〜18.0%、
Ni:1.5〜5.0%、 Mo:1.0〜3.5%、
V :0.02〜0.20%、 N :0.01〜0.15%、
O :0.006%以下
を含有し、残部Feおよび不可避的不純物からなることを特徴とする請求項1〜5のいずれかに記載の継目無鋼管の製造方法。
The steel material is in mass%,
C: 0.050% or less Si: 1.00% or less
Mn: 0.20 to 1.80% Cr: 15.5 to 18.0%
Ni: 1.5 to 5.0%, Mo: 1.0 to 3.5%,
V: 0.02 to 0.20%, N: 0.01 to 0.15%,
O: 0.006% or less is contained and it consists of remainder Fe and an unavoidable impurity, The manufacturing method of the seamless steel pipe in any one of the Claims 1-5 characterized by the above-mentioned.
前記鋼素材が、さらに、質量%で、次A群〜D群
A群:Al:0.002〜0.050%
B群:Cu:3.5%以下、W:3.5%以下、REM:0.3%以下のうちから選ばれた1種または2種以上
C群:Nb:0.2%以下、Ti:0.3%以下、Zr:0.2%以下のうちから選ばれた1種または2種以上
D群:Ca:0.01%以下、B:0.01%以下のうちから選ばれた1種または2種
のうちから選ばれた1群または2群以上を含有することを特徴とする請求項6に記載の継目無鋼管の製造方法。
The above-mentioned steel material is, furthermore, in mass%, next group A to group D group A: Al: 0.002 to 0.050%
Group B: Cu: 3.5% or less, W: 3.5% or less, REM: 0.3% or less One or more selected from C group: Nb: 0.2% or less, Ti One or more selected from 0.3% or less, Zr: 0.2% or less D group: Ca: 0.01% or less, B: 0.01% or less The method for producing a seamless steel pipe according to claim 6, characterized in that it contains one group or two or more groups selected from among one type or two types.
鋼素材を加熱する加熱装置と、加熱された鋼素材に穿孔圧延を施して中空素材とする穿孔圧延装置と、前記穿孔圧延装置と連続して配置されて、前記中空素材に熱間加工を施して継目無鋼管とする熱間加工装置とを備える継目無鋼管製造設備であって、
前記熱間加工装置は、
加熱炉と、
前記熱間加工装置の入側に、前記中空素材の先端と後端を反転可能な反転機構と、
前記熱間加工装置の入側に、前記中空素材の先端および後端の内面温度を測定する温度測定手段と
前記温度測定手段により測定されるそれぞれの内面温度が1100℃以上δ℃以下となるように加熱炉の温度を制御する
ことを特徴とする継目無鋼管製造設備。
ただし、δ:昇温過程でδフェライト相単相になる温度である。
A heating device for heating a steel material, a piercing-rolling device for forming a hollow material by subjecting the heated steel material to piercing-rolling, and the piercing-rolling device are disposed continuously to perform hot working on the hollow material A seamless steel pipe manufacturing facility equipped with a hot working apparatus for forming a seamless steel pipe,
The hot working apparatus
A heating furnace,
A reversing mechanism capable of reversing the front end and the rear end of the hollow material on the inlet side of the hot working apparatus;
The inner surface temperature measured by the temperature measuring means for measuring the inner surface temperature of the front end and the rear end of the hollow material and the temperature measuring means becomes 1100 ° C. or more and δ A ° C. or less on the inlet side of the hot working apparatus A seamless steel pipe manufacturing facility characterized by controlling a temperature of a heating furnace.
However, δ A is a temperature at which the δ ferrite phase becomes a single phase in the temperature raising process.
JP2016216902A 2016-11-07 2016-11-07 Seamless steel pipe manufacturing method and seamless steel pipe manufacturing equipment Active JP6520892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016216902A JP6520892B2 (en) 2016-11-07 2016-11-07 Seamless steel pipe manufacturing method and seamless steel pipe manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016216902A JP6520892B2 (en) 2016-11-07 2016-11-07 Seamless steel pipe manufacturing method and seamless steel pipe manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2018075576A JP2018075576A (en) 2018-05-17
JP6520892B2 true JP6520892B2 (en) 2019-05-29

Family

ID=62149590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016216902A Active JP6520892B2 (en) 2016-11-07 2016-11-07 Seamless steel pipe manufacturing method and seamless steel pipe manufacturing equipment

Country Status (1)

Country Link
JP (1) JP6520892B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114425561B (en) * 2021-12-15 2023-12-05 承德建龙特殊钢有限公司 Seamless steel pipe is a tracking production system by a tracking

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59603Y2 (en) * 1980-03-28 1984-01-09 住友金属工業株式会社 Pipe inner temperature measuring device
JPS5856003Y2 (en) * 1980-10-13 1983-12-23 株式会社日立製作所 Rolling equipment for perforation
JPS5978706A (en) * 1982-10-28 1984-05-07 Kawasaki Steel Corp Train of installation for producing seamless steel pipe
JP2550896Y2 (en) * 1993-01-08 1997-10-15 住友金属工業株式会社 Rolling control device for steel pipe
JP3891067B2 (en) * 2002-07-31 2007-03-07 Jfeスチール株式会社 Steel pipe rolling temperature control method
JP6137082B2 (en) * 2014-07-31 2017-05-31 Jfeスチール株式会社 High strength stainless steel seamless steel pipe excellent in low temperature toughness and method for producing the same
JP6202010B2 (en) * 2015-01-16 2017-09-27 Jfeスチール株式会社 Manufacturing method of high-strength duplex stainless steel seamless steel pipe
JP6341125B2 (en) * 2015-03-17 2018-06-13 Jfeスチール株式会社 Method for producing duplex stainless steel pipe

Also Published As

Publication number Publication date
JP2018075576A (en) 2018-05-17

Similar Documents

Publication Publication Date Title
JP6197850B2 (en) Method for producing duplex stainless steel seamless pipe
JP6635194B2 (en) Seamless steel pipe and method of manufacturing the same
US11821051B2 (en) Apparatus line for manufacturing seamless steel pipe and tube and method of manufacturing duplex seamless stainless steel pipe
JP6341125B2 (en) Method for producing duplex stainless steel pipe
CA2971828C (en) High-strength heavy-walled stainless steel seamless tube or pipe and method for manufacturing the same
EP3023507B1 (en) Equipment line for manufacturing seamless steel pipes, and method for manufacturing high-strength stainless seamless steel pipe for oil wells
JP2016164288A (en) Method for producing high strength stainless seamless steel pipe for oil well
CA3108758C (en) Duplex stainless steel seamless pipe and method for manufacturing same
CA3118704C (en) Duplex stainless steel seamless pipe and method for manufacturing same
JP6341128B2 (en) Manufacturing method of thin-walled high strength stainless steel seamless pipe for oil well
WO2015005119A1 (en) METHOD FOR PRODUCING HIGH-Cr STEEL PIPE
JP6202010B2 (en) Manufacturing method of high-strength duplex stainless steel seamless steel pipe
JP6520892B2 (en) Seamless steel pipe manufacturing method and seamless steel pipe manufacturing equipment
EP2656931B1 (en) PRODUCTION METHOD FOR ROUND STEEL BAR FOR SEAMLESS PIPE COMPRISING HIGH Cr-Ni ALLOY, AND PRODUCTION METHOD FOR SEAMLESS PIPE USING ROUND STEEL BAR
JP6315076B2 (en) Manufacturing method of high strength stainless steel seamless steel pipe for oil well
CN103917307B (en) The manufacture method of seamless metal pipe
EP3061836B1 (en) Device array for producing thick steel material, and method for producing thick steel material
JP7559728B2 (en) Seamless steel pipe and method for manufacturing steel pipe
JPH0672262B2 (en) Stainless steel seamless pipe manufacturing method
JP2002263712A (en) Method of manufacturing for seamless steel tube excellent in general applicability

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190326

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190415

R150 Certificate of patent or registration of utility model

Ref document number: 6520892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250