JPS5856003Y2 - Rolling equipment for perforation - Google Patents

Rolling equipment for perforation

Info

Publication number
JPS5856003Y2
JPS5856003Y2 JP14589980U JP14589980U JPS5856003Y2 JP S5856003 Y2 JPS5856003 Y2 JP S5856003Y2 JP 14589980 U JP14589980 U JP 14589980U JP 14589980 U JP14589980 U JP 14589980U JP S5856003 Y2 JPS5856003 Y2 JP S5856003Y2
Authority
JP
Japan
Prior art keywords
round steel
temperature
steel cable
perforation
mandrel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14589980U
Other languages
Japanese (ja)
Other versions
JPS56137802U (en
Inventor
輝男 伊藤
修 高橋
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP14589980U priority Critical patent/JPS5856003Y2/en
Publication of JPS56137802U publication Critical patent/JPS56137802U/ja
Application granted granted Critical
Publication of JPS5856003Y2 publication Critical patent/JPS5856003Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Heat Treatment Processes (AREA)

Description

【考案の詳細な説明】 本考案は、継目無し管を製造するための穿孔機例えばマ
ンネスマン穿孔機を含む圧延装置に関するもの・である
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rolling apparatus including a perforator, such as a Mannesmann perforator, for producing seamless pipes.

゛第1図に公知のマンネスマン穿孔機の例を示す。Fig. 1 shows an example of a known Mannesmann drilling machine.

第1図aはマンネスマス穿孔機の原理を示すト ド 図であり、第1図すは第1図a中の中心線を真上から見
た時の各中心線の傾きを示している。
FIG. 1a is a top diagram showing the principle of the Mannesmouth drilling machine, and FIG. 1a shows the inclination of each centerline when the centerline in FIG. 1a is viewed from directly above.

第1図において、1はたる型の傾斜ロールであり、図中
の矢印の方向に回転し、2の丸鋼索材を回転させながら
図中の左から右へ押し出している。
In FIG. 1, reference numeral 1 denotes a barrel-shaped inclined roll, which rotates in the direction of the arrow in the figure, and pushes out the round steel cable material 2 from left to right in the figure while rotating.

但し、ハンチング部は断面である。丸鋼索材が図中の左
から右へ移動するのは、上下の傾斜ロールの中心軸それ
ぞれ1−1,1−2、及び丸鋼索材の中心転が第1図す
に示す様にある傾斜角θを持ち、それぞれ接しているか
らである。
However, the hunting portion is a cross section. The round steel cable moves from left to right in the figure because the center axes of the upper and lower inclined rolls are 1-1 and 1-2, respectively, and the center rotation of the round steel cable is at an inclination as shown in Figure 1. This is because they have an angle θ and are in contact with each other.

2の丸鋼索材は変形しながら回転している為、いわゆる
公知のマンネスマン効果により、丸鋼索材の中心軸上に
巣が発生しやすくなる。
Since the round steel cable in No. 2 rotates while being deformed, nests are likely to occur on the central axis of the round steel cable due to the so-called Mannesmann effect.

従って、4のマンドレルにより定位置に置かれた3のプ
ラグにより、容易に穿孔される。
It is therefore easily perforated by a plug of 3 placed in place by a mandrel of 4.

通常、加熱された丸鋼索材を穿孔するマンネスマン穿孔
機で最も問題となる点は、丸鋼索材の温度である。
Usually, the biggest problem with Mannesmann drilling machines that perforate heated round steel cables is the temperature of the round steel cables.

たとえば、円周方向の温度分布が不均一な場合は、穿孔
終了後の丸鋼索材(以後、粗管と呼ぶ)は、円周方向の
肉厚分布が不均一となる。
For example, if the temperature distribution in the circumferential direction is non-uniform, the round steel cable material (hereinafter referred to as a rough pipe) after drilling will have a non-uniform wall thickness distribution in the circumferential direction.

また、長手方向の温度分布が不均一な場合、穿孔過程に
おいて、長平方向にむりな、ねじれが生ずるほか、長手
方向の肉厚分布が不均一となる。
Further, if the temperature distribution in the longitudinal direction is uneven, in the drilling process, unreasonable twisting occurs in the longitudinal direction, and the thickness distribution in the longitudinal direction becomes uneven.

前者、後者いずれの場合も粗管の内外面に疵を生ずる場
合が多い。
In both the former and latter cases, flaws often occur on the inner and outer surfaces of the tube.

即ち、継目無し管の製造におけ、る穿孔工程で、粗管の
内外面に疵を生ぜしめ歩留りを最も低下させる要因とし
て、丸鋼索材の温度不均一があげられる。
That is, in the manufacturing of seamless pipes, the temperature non-uniformity of the round steel cable is a factor that causes flaws on the inner and outer surfaces of the rough pipe and reduces the yield the most.

この丸鋼索材の温度分布の不均一を無くする為に、通常
、第1図中の5に示す温度計で穿孔中の丸鋼索材の円周
方向、及び長手方向の温度分布をサンプリングし、温度
の絶対値、及び温度分布を検出して、炉温制御にフィー
ドバックする方法が用いられ、丸鋼索材の炉出し温度を
制御している。
In order to eliminate unevenness in the temperature distribution of the round steel cable, the temperature distribution in the circumferential direction and longitudinal direction of the round steel cable being drilled is usually sampled using a thermometer shown in 5 in Figure 1. A method of detecting the absolute value of temperature and temperature distribution and feeding it back to furnace temperature control is used to control the temperature of the round steel cable material taken out of the furnace.

しかし、ここで問題となる点は、従来の温度測定が、丸
鋼索材あるいは粗管の表面温度分布のみであった点であ
り、内面疵を発生する原因となる丸鋼索材の中心軸付近
の内部温度分布を測定する事が全く不可能であった点で
ある。
However, the problem here is that conventional temperature measurements only measure the surface temperature distribution of round steel cables or rough pipes. The point was that it was completely impossible to measure the internal temperature distribution.

本考案の目的は、丸鋼索材の表面温度ではなく、中心軸
上の内部温度を間接的に検出するとともに測定された丸
鋼索材の内部温度及び長手方向温度分布を炉温制御にフ
ィードバックする事により、加熱炉の在炉時間制御の向
上をはがり、また、温度分布が均一な丸鋼索材の穿孔を
可能とし、粗管の内外面の疵を少なくし、歩留りの向上
をはがる事である。
The purpose of this invention is to indirectly detect the internal temperature on the central axis rather than the surface temperature of the round steel cable, and to feed back the measured internal temperature and longitudinal temperature distribution of the round steel cable to the furnace temperature control. This improves the control of the heating furnace's in-furnace time, enables the perforation of round steel cables with uniform temperature distribution, reduces flaws on the inner and outer surfaces of rough tubes, and improves yield. It is.

本考案の要点は下記3点である。The main points of this invention are the following three points.

(1) 第1図aで示される穿孔機の3プラグと4マ
ンドレル間、あるいは4マンドレルを固定する台の間に
圧力検出器をもうける事により、プラグにかかる圧延方
向の圧力を検出する。
(1) The pressure in the rolling direction applied to the plugs is detected by installing a pressure detector between the 3rd plug and 4th mandrel of the drilling machine shown in Figure 1a, or between the stand that fixes the 4th mandrel.

(2)上記圧力検出器により検出された圧力Pより(1
)式を用いて、丸鋼索材の内部温度Tを計算する。
(2) From the pressure P detected by the above pressure detector (1
) Calculate the internal temperature T of the round steel cable using the formula.

T=f (P) (1)(3)上記で
検出した丸鋼索材の内部温度を加熱炉制御にフィードバ
ックする事を特徴とした加熱炉温度制御装置。
T=f (P) (1) (3) A heating furnace temperature control device characterized by feeding back the internal temperature of the round steel cable material detected above to heating furnace control.

第2図に本考案の具体例を示す。FIG. 2 shows a specific example of the present invention.

第2図中1は傾斜ロールであり、矢印の方向に回転して
いる。
Reference numeral 1 in FIG. 2 is an inclined roll, which rotates in the direction of the arrow.

2は穿孔中の丸鋼索材であり、矢印の方向に回転、進行
している。
2 is a round steel cable material that is being drilled, and is rotating and moving in the direction of the arrow.

4は第1図中3のプラグをささえる心棒(マンドレル)
であり、7は穿孔中の圧力によりプラグ及び心棒(マン
ドレル)4が材料と同じ方向に移動しないようにささえ
る固定台である。
4 is the mandrel that supports the plug 3 in Figure 1.
7 is a fixing base that supports the plug and mandrel 4 so that they do not move in the same direction as the material due to the pressure during drilling.

上記の1〜4及び7により公知のマンネスマン穿孔機が
構成されている。
The above-described components 1 to 4 and 7 constitute a known Mannesmann drilling machine.

6が本考案の位置に取り付けられた圧力検出器であり、
プラグと穿孔中の丸鋼索材の間にかかる丸鋼索材の進行
方向の圧力Pを検出する。
6 is a pressure detector attached to the position of the present invention,
The pressure P in the traveling direction of the round steel cable material applied between the plug and the round steel cable material being drilled is detected.

この圧力検出器としては、公知のロードセル、あるいは
別の検出器が使用できる。
As this pressure detector, a known load cell or another detector can be used.

プラグと穿孔中の丸鋼索材の間にかかる丸鋼索材の進行
方向の圧力Pは、丸鋼索材の内部温度TMを計算する内
部温度計算装置8へ入力される。
The pressure P in the traveling direction of the round steel cable applied between the plug and the round steel cable being drilled is input to the internal temperature calculation device 8 that calculates the internal temperature TM of the round steel cable.

プラグと穿孔中の丸鋼索材の間にかかる圧力Pは、丸鋼
索材が同一圧延仕様(材質、穿孔前、穿孔後の素材の外
径、穿孔後の素材肉圧、マンネスマン穿孔機の傾斜ロー
ル径、ロール傾斜角等が同一)ならば、Pは丸鋼索材の
変形抵抗、特に、丸鋼素材内部の変形抵抗に比例する。
The pressure P applied between the plug and the round steel cable material during drilling is determined by the fact that the round steel cable material has the same rolling specifications (material, outer diameter of the material before and after drilling, material wall pressure after drilling, and inclined roll of the Mannesmann drilling machine). (diameter, roll inclination angle, etc. are the same), P is proportional to the deformation resistance of the round steel cable material, especially the deformation resistance inside the round steel material.

丸鋼索材の内部の変形抵抗にとすれば、 P=a−k (2) Pは、(2)式で示される。If we consider the deformation resistance inside the round steel cable, P=ak (2) P is expressed by equation (2).

ここでaは圧延仕様により決定できる定数であり、実験
により求められる。
Here, a is a constant that can be determined based on rolling specifications and is obtained through experiments.

丸鋼素材内部の変形抵抗には、丸鋼素材内部の温度とほ
ぼ比例関係にある。
The deformation resistance inside the round steel material has a nearly proportional relationship with the temperature inside the round steel material.

例えば、日本鉄鋼協会編「圧延理論とその応用」の第3
,37図18−8Mo図18−8Mo鋼の変形抵抗と、
材料温度の関係は第3図の様になる。
For example, see Part 3 of “Rolling Theory and Its Applications” edited by the Japan Iron and Steel Institute.
, 37 Figure 18-8Mo Figure 18-8Mo Deformation resistance of steel,
The relationship between material temperatures is shown in Figure 3.

第3図は材料温度と、鋼の変形抵抗の関係を示すが、材
料温度Tと変形抵抗には、はぼ(3)式で近似できる。
FIG. 3 shows the relationship between material temperature and deformation resistance of steel, and material temperature T and deformation resistance can be approximated by equation (3).

k = bT + c (3)b
及びCは、材料毎に実験により決定できる定数である。
k = bT + c (3)b
and C are constants that can be determined experimentally for each material.

従って、第2図中1の丸鋼索材の内部温度TMは(4)
式で示れる。
Therefore, the internal temperature TM of the round steel cable material 1 in Figure 2 is (4)
It can be shown by the formula.

TM= (P−a−c)/ (a−b)
(4)以上の様に、(4)式で本考案第2の内部温度計
算装置が実施できる。
TM= (P-a-c)/(a-b)
(4) As described above, the second internal temperature calculation device of the present invention can be implemented using equation (4).

第1図中、5が丸鋼索材の表面温度T5を検出する温度
検出器である。
In FIG. 1, numeral 5 indicates a temperature detector that detects the surface temperature T5 of the round steel cable material.

10は2の丸鋼索材を加熱した加熱炉であり、2以降に
穿孔する丸鋼索材を加熱中である。
10 is a heating furnace which heated the round steel cable material 2, and is heating the round steel cable material to be drilled after 2.

9は本考案第3の加熱炉制御装置であり、丸鋼索材の内
部温度TM、外部温度T5を取り込み10で加熱中の丸
鋼索材の残り在炉時間t、及び燃料流量Qを決定し、加
熱炉に出力する。
9 is the third heating furnace control device of the present invention, which takes in the internal temperature TM and external temperature T5 of the round steel cable material and determines the remaining furnace time t and fuel flow rate Q of the round steel cable material being heated at 10; Output to heating furnace.

燃料流量Q及び残り在炉時間tは、それぞれ下記のごと
く決定できる。
The fuel flow rate Q and the remaining reactor time t can be determined as follows.

燃料流量Q:表面温度T5、内部温度TMとして表面基
準温度TToに対し、 Q=Qoo+c (’ro Ts) (
5)残り在炉時間t:T5.TMの差の基準値ΔT。
Fuel flow rate Q: Surface temperature T5, internal temperature TM, relative to the surface reference temperature TTo, Q=Qoo+c ('ro Ts) (
5) Remaining furnace time t: T5. Reference value ΔT of TM difference.

とし T5−TM≧ΔT。year T5-TM≧ΔT.

ならばt=To+a (T5−TM−ΔT(、)
’(6)Ts−TM〈ΔToならばt=t。
Then t=To+a (T5-TM-ΔT(,)
'(6) If Ts-TM<ΔTo, t=t.

但し、Qo 、 joはそれぞれ丸鋼素材2を加熱した
時の燃料流量、及び在炉時間である。
However, Qo and jo are the fuel flow rate and furnace time when the round steel material 2 is heated, respectively.

また、C9dは定数である。Further, C9d is a constant.

以上の加熱炉制御により加熱炉の燃料流量のむだを無く
し、かつ、最適な在炉時間管理が可能である。
By controlling the heating furnace as described above, it is possible to eliminate wasted fuel flow in the heating furnace and to optimally manage the in-furnace time.

本考案により、マンネスマン穿孔機、プレスピアシング
ミル等で穿孔される継目無し管用素材の内部温度を測定
可能にしたので、内部温度と外部温度の差、または穿孔
中の管用素材内部温度の長手方向分布を加熱炉の炉温制
御、あるいはオペレーターガイドにフィードバックして
、マンネスマン穿孔に最適な温度、及び温度分布を得る
加熱炉制御が可能となった。
With this invention, it is possible to measure the internal temperature of seamless pipe material that is perforated with a Mannesmann drilling machine, press piercing mill, etc., so it is possible to measure the difference between the internal temperature and the external temperature, or the longitudinal distribution of the internal temperature of the pipe material during drilling. By feeding this information back to the furnace temperature control or operator guide, it is now possible to control the heating furnace to obtain the optimum temperature and temperature distribution for Mannesmann drilling.

このようにして、炉出しされた管用素材は、マンネスマ
ン穿孔機にてその内部温度分布が一様であるため、穿孔
による粗管の内外面の疵が減少して歩留りが向上し、か
つ、穿孔過程での素材のむりなねじれを減少させ、製品
の品質を向上できる。
In this way, the tube material discharged from the furnace has a uniform internal temperature distribution in the Mannesmann perforator, which reduces the number of defects on the inner and outer surfaces of the rough tube due to perforation and improves the yield. It can reduce unnecessary twisting of materials during the process and improve product quality.

また、長手方向の肉厚分布も均一となる。Furthermore, the thickness distribution in the longitudinal direction is also uniform.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aはマンネスマン穿孔機の原理図、第1図すはa
の上下基ロール及び丸鋼索材の中心軸を上から見た図、
第2図は本考案の具体例を示す図である。 第3図は温度と変形抵抗との線図である。1・・・・・
・傾斜ロール、2・・・・・・丸鋼素材、4・・・・・
・マンドレル、5・・・・・・温度検出器、6・・回圧
力検出器、7・・・・・・マンドレル固定台、8・・・
・・・内部温度計算装置、9・・・・・・炉温制御装置
、10・・・・・・加熱炉。
Figure 1 a is a diagram of the principle of Mannesmann drilling machine, Figure 1 is a
A view from above of the upper and lower base rolls and the central axis of the round steel cable material,
FIG. 2 is a diagram showing a specific example of the present invention. FIG. 3 is a diagram of temperature and deformation resistance. 1...
- Inclined roll, 2... Round steel material, 4...
・Mandrel, 5... Temperature detector, 6... Pressure detector, 7... Mandrel fixing stand, 8...
... Internal temperature calculation device, 9 ... Furnace temperature control device, 10 ... Heating furnace.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 温度及び在炉時間の制御装置を有する加熱炉、前記炉か
ら素材を供給され穿孔圧延用のロールと穿孔用のプラグ
とプラグをささえるマンドレルとマンドレルをささえる
台を有する穿孔機よりなる穿孔用圧延装置において、プ
ラグとマンドレル間、あるいは、マンドレルとアンドレ
ルをささえる台の間に圧力検出器をもうけ、この検出器
の出力を前記制御装置に与えることを特徴とした穿孔用
圧延装置。
A rolling device for perforation, which comprises a heating furnace having a temperature and furnace time control device, a perforation rolling roll supplied with material from the furnace, a perforation plug, a mandrel for supporting the plug, and a perforation machine having a stand for supporting the mandrel. A rolling mill for piercing, characterized in that a pressure detector is provided between the plug and the mandrel or between the mandrel and a table supporting the andrel, and the output of this detector is provided to the control device.
JP14589980U 1980-10-13 1980-10-13 Rolling equipment for perforation Expired JPS5856003Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14589980U JPS5856003Y2 (en) 1980-10-13 1980-10-13 Rolling equipment for perforation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14589980U JPS5856003Y2 (en) 1980-10-13 1980-10-13 Rolling equipment for perforation

Publications (2)

Publication Number Publication Date
JPS56137802U JPS56137802U (en) 1981-10-19
JPS5856003Y2 true JPS5856003Y2 (en) 1983-12-23

Family

ID=29666893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14589980U Expired JPS5856003Y2 (en) 1980-10-13 1980-10-13 Rolling equipment for perforation

Country Status (1)

Country Link
JP (1) JPS5856003Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6520892B2 (en) * 2016-11-07 2019-05-29 Jfeスチール株式会社 Seamless steel pipe manufacturing method and seamless steel pipe manufacturing equipment

Also Published As

Publication number Publication date
JPS56137802U (en) 1981-10-19

Similar Documents

Publication Publication Date Title
US4006618A (en) Method of producing seamless steel tube
JPS5856003Y2 (en) Rolling equipment for perforation
JP3692597B2 (en) Method and apparatus for piercing and rolling seamless metal pipe
JPH11156435A (en) Manufacture of square steel tube
JPS58110106A (en) Stretch reducer for seamless pipe and controlling method
JPS6068110A (en) Method for controlling dimension of hot extruded material
JP3087592B2 (en) Method and apparatus for controlling pipe temperature in hot welded pipe production
JP2748852B2 (en) How to control the extension length of a seamless tube
JPH0654403U (en) Rolling control device for steel pipe
JPH0581322B2 (en)
JPH0586286B2 (en)
JPH0639412A (en) Method for hot rolling steel tube
JPS6023888B2 (en) How to control the reduction of Leela Mill
JPS60206514A (en) Skew rolling method of metallic pipe
JPH0221324B2 (en)
JPS60257912A (en) Automatic screw down control method for reeling mill
JPH0372390B2 (en)
JPS6239283Y2 (en)
JPS58110108A (en) Stretch reducing method for seamless pipe
JPS5978704A (en) Rolling method which prevents flawing on outside and inside surfaces in mandrel mill
JPS597407A (en) Method for eliminating uneven thickness of seamless steel pipe
JPS5846364B2 (en) Pipe rolling method in reeling mill
JPH05212416A (en) Production of hot seamless steel tube
JPH04147708A (en) Rolling control method for reeling mill
JPH05212415A (en) Production of hot seamless steel tube