JPS6160741A - Pressure-sensitive, reversely variable resistance electroconductive rubber and its production - Google Patents

Pressure-sensitive, reversely variable resistance electroconductive rubber and its production

Info

Publication number
JPS6160741A
JPS6160741A JP18331584A JP18331584A JPS6160741A JP S6160741 A JPS6160741 A JP S6160741A JP 18331584 A JP18331584 A JP 18331584A JP 18331584 A JP18331584 A JP 18331584A JP S6160741 A JPS6160741 A JP S6160741A
Authority
JP
Japan
Prior art keywords
rubber
pressure
pattern
conductive
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18331584A
Other languages
Japanese (ja)
Inventor
Michio Akakabe
明壁 道夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Composites Inc
Original Assignee
Fujikura Rubber Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Rubber Ltd filed Critical Fujikura Rubber Ltd
Priority to JP18331584A priority Critical patent/JPS6160741A/en
Publication of JPS6160741A publication Critical patent/JPS6160741A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain the title inexpensive rubber easily in good efficiency, by laying a semiconductive rubber on a transfer film on which a pattern of an electroconductive material is printed and transferring the pattern to the rubber by heating. CONSTITUTION:A semiconductive rubber (A) of a volume resistivity of 10<4>-10<7> OMEGA.cm a JIS A hardness of 40-90 is obtained by kneading 100pts.wt. base (a) such as silicone rubber with 5-10pts.wt. carbon black (b) (e.g., Ketjen black) of an average particle diameter of 0.01-0.2mu and a vulcaniziang agent (c). An electroconductive material (B) of a volume resistivity of 1-10<2>OMEGA.cm is obtained by kneading 100pts.wt. component (a) with 20-50pts.wt. components (b) and (c). Material (B) is applied to the surface of a transfer film of good releasability such as a PE film by screen printing to form a pattern of a height of 5-10mu and a space <=2mm on the film. Rubber (A) is laid on said transfer film, the pattern is transferred to rubber (A) by application of heat and pressure, and the transfer film is peeled off to obtain a pressure-sensitive, reversely vari able resistance electroconductive rubber.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は感圧逆可変抵抗導電性コムおよびその製造方法
、さらに詳しくは、非加圧時には低抵抗性あるいは導電
性を示し、加圧時には高抵抗性あるいは絶縁性を示す導
電性ゴムにおいて、前記抵抗が負荷される圧力に応じて
変化する感圧逆可変抵抗導電性ゴムおよびその感圧逆可
変抵抗導電性ゴムを製造する方法に関するものである。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a pressure-sensitive reverse variable resistance conductive comb and a method for manufacturing the same. The present invention relates to a pressure-sensitive reverse variable resistance conductive rubber in which the resistance changes depending on the applied pressure in a conductive rubber exhibiting resistance or insulation, and a method for producing the pressure-sensitive reverse variable resistance conductive rubber. .

〔発明の背景〕[Background of the invention]

非加圧時には絶縁性を示し、加圧時には導電性を示す感
圧導電性ゴムとしては所望形状に成形した導電性ゴムの
表面に絶縁材のミクロパターンを形成したものが知られ
ている。
As a pressure-sensitive conductive rubber that exhibits insulating properties when no pressure is applied and exhibits conductivity when pressurized, there is a known pressure-sensitive conductive rubber that is formed into a desired shape and has a micropattern of an insulating material formed on the surface of the conductive rubber.

このような感圧導電性ゴムは第1図(alに示すように
半導電性ゴム1上に絶縁材よりなるパターン2を離間し
て形成してなるものである。そしてこの感圧導電性ゴム
を圧力Pで電極3により押圧する(第1図(bl参照)
と前記パターン2は半導電性ゴム1中に埋没するととも
に、変形偏平化し、したがって半導電性ゴム1が電極3
に接触するようになる(第1図(C)参照)、この感圧
導電性ゴムの裏面にはやはり電極3″が接着されている
ので、電極3および3′間に電流が流れることになる。
This pressure-sensitive conductive rubber is made by forming patterns 2 made of an insulating material at intervals on a semi-conductive rubber 1, as shown in FIG. 1 (al). is pressed by the electrode 3 with a pressure P (see Fig. 1 (bl)).
The pattern 2 is buried in the semiconductive rubber 1 and deformed and flattened, so that the semiconductive rubber 1 becomes the electrode 3.
(See Figure 1 (C)).Since the electrode 3'' is also bonded to the back side of this pressure-sensitive conductive rubber, a current will flow between the electrodes 3 and 3'. .

前述のような感圧導電性ゴムは、非加圧時に絶縁性を示
し、加圧時に導電性を示すように構成された、いわゆる
オン−オフスイッチであり、これと反対の機能、すなわ
ち非加圧時に導電性あるいは低抵抗性を示し、加圧時に
絶縁性ないし高抵抗性を示す感圧導電性ゴムは、従来製
造されていない、さらには圧力負荷に比例して導電性よ
り絶縁性に徐々に抵抗が上昇するような感圧逆可変抵抗
導電性ゴムもなかった。
The pressure-sensitive conductive rubber described above is a so-called on-off switch that exhibits insulation when no pressure is applied and conductivity when pressure is applied, and has the opposite function, that is, when no pressure is applied. Pressure-sensitive conductive rubber, which exhibits conductivity or low resistance when pressure is applied, and insulating or high resistance when pressure is applied, has not been manufactured previously, and furthermore, it gradually becomes more insulating than conductive in proportion to the pressure load. There was also no pressure-sensitive reverse variable resistance conductive rubber that would increase the resistance.

また、前述のような感圧導電性ゴムにおいては前記絶縁
材よりなるパターン2は、絶縁材フォトレジストを半導
電性ゴム1上に形成するとともに、このフォトレジスト
を水銀灯などにより所定のパターンに露光し、エツチン
グして半導電性ゴム1上にパターン2を形成して製造さ
れている。
Further, in the pressure-sensitive conductive rubber as described above, the pattern 2 made of the insulating material is formed by forming an insulating material photoresist on the semiconductive rubber 1 and exposing this photoresist to a predetermined pattern using a mercury lamp or the like. It is manufactured by etching and forming a pattern 2 on a semiconductive rubber 1.

しかしながらこのようなフォトエツチング法によりパタ
ーン2を形成させる方法にあっては、半導電性ゴム1と
絶縁材パターン2との接着性を良好にするために酸素プ
ラズマ処理などの前処理を必要とするとともに、フォト
レジストの形成工程、パターンを有するマスクを被せ露
光する工程、未感光部の化学エツチングなどの種々の制
御の困難な諸工程を経ねばならないという欠点があり、
製造上コスト高になるとともに、多量生産に通さないと
いう欠点があった。
However, this method of forming the pattern 2 by photoetching requires pretreatment such as oxygen plasma treatment to improve the adhesion between the semiconductive rubber 1 and the insulating material pattern 2. At the same time, it has the disadvantage that it requires various difficult-to-control processes, such as the process of forming a photoresist, the process of covering with a patterned mask and exposing it to light, and the chemical etching of unexposed areas.
This method has the disadvantage of being expensive to manufacture and not suitable for mass production.

〔発明の概要〕[Summary of the invention]

本発明は上述の点に鑑みなされたものであり、従来存在
しなかった圧力の負荷状態に応じて抵抗が上昇する可変
抵抗の感圧導電性ゴム、すなわち感圧逆可変抵抗導電性
ゴムを提供すること、さらにはこのような感圧逆可変抵
抗導電性ゴムを容易にかつ安価に製造する方法を提供す
ることを目的とする。
The present invention has been made in view of the above-mentioned points, and provides a variable resistance pressure-sensitive conductive rubber whose resistance increases depending on the pressure load condition, which has not existed in the past, that is, a pressure-sensitive reverse variable resistance conductive rubber. Another object of the present invention is to provide a method for easily and inexpensively manufacturing such a pressure-sensitive reverse variable resistance conductive rubber.

したがって、本発明による感圧逆可変抵抗導電性ゴムは
、カーボンブラックを添加し半導電性とした半導電性ゴ
ム上に、カーボンブラックを添加し導電性とした導電性
材パターンを形成したことを特徴とするものである。
Therefore, the pressure-sensitive reverse variable resistance conductive rubber according to the present invention is obtained by forming a conductive material pattern on a semiconductive rubber made semiconductive by adding carbon black to make it conductive. This is a characteristic feature.

また、本発明による感圧逆可変抵抗導電性ゴムの製造方
法は、離型性の良好な転写フィルムにカーボンブラック
を添加し導電性にした導電性材料のパターンをスクリー
ン印刷し、この所定パターンの印刷された転写フィルム
を、カーボンブラックを添加し半導電性とした半導電性
ゴムに積層するとともに、加熱し、前記パターンを半導
電性ゴム上に転写した後、前記転写フィルムを剥離する
ことを特徴とするものである。
In addition, the method for producing the pressure-sensitive reverse variable resistance conductive rubber according to the present invention involves screen printing a pattern of a conductive material made conductive by adding carbon black to a transfer film having good mold releasability. The printed transfer film is laminated on a semiconductive rubber made semiconductive by adding carbon black, and the pattern is transferred onto the semiconductive rubber by heating, and then the transfer film is peeled off. This is a characteristic feature.

本発明によれば、カーボンブラック添加の半導電性ゴム
および導電性材を用い、前記半導電性ゴムに導電性材の
パターンを形成したため、負荷する圧力に比例し、抵抗
が上昇する感圧逆可変抵抗導電性ゴムとなるという利点
がある。
According to the present invention, a semiconductive rubber added with carbon black and a conductive material are used, and a pattern of the conductive material is formed on the semiconductive rubber. It has the advantage of being a variable resistance conductive rubber.

さらに本発明による感圧逆可変抵抗導電性ゴムの製造方
法によれば、転写フィルムに所定パターンをスクリーン
印刷するとともに、このパターンを半導電性ゴム上に積
層して加熱し、あるいは加熱とともに圧力を負荷して転
写するので、半導電性ゴム上に導電性材パターンが容易
にかつ安価に形成できる。また転写フィルムよりパター
ンを加熱転写するため半導電性ゴムと導電性材パターン
の接着性が良好になり、実用上同等支障なく使用できる
感圧逆可変抵抗導電性ゴムを製造できる利点がある。
Further, according to the method for producing a pressure-sensitive reverse variable resistance conductive rubber according to the present invention, a predetermined pattern is screen printed on a transfer film, and this pattern is laminated on a semiconductive rubber and heated, or a pressure is applied together with heating. Since the transfer is carried out under load, a conductive material pattern can be easily and inexpensively formed on the semiconductive rubber. Furthermore, since the pattern is thermally transferred from the transfer film, the adhesiveness between the semiconductive rubber and the conductive material pattern is improved, and there is an advantage that a pressure-sensitive reverse variable resistance conductive rubber that can be used practically without any problems can be produced.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明を更に詳しく説明する。 The present invention will be explained in more detail.

本発明において用いられる半導電性ゴムの基材になる材
料は弾性を有するものであればいかなるものでもよい、
たとえば、シリコーンゴム、NBI? 。
The base material of the semiconductive rubber used in the present invention may be any material as long as it has elasticity.
For example, silicone rubber, NBI? .

ポリブタジェン、天然ゴム、ポリイソプレン、5BR1
ネオブレン、El’DH、ウレタンゴムなどであること
ができる。
Polybutadiene, natural rubber, polyisoprene, 5BR1
It can be neorene, El'DH, urethane rubber, etc.

このようなゴム材料に半導電性を付与するための導電性
材料としてはケッチェンブランク、アセチレンブランク
などのカーボンブラック粉末を用いる。
As a conductive material for imparting semiconductivity to such a rubber material, carbon black powder such as Ketjen blank or acetylene blank is used.

さらにこのカーボンブラック粉末の添加量は、好ましく
は、ゴム 100重量部に対し5〜10重量部である。
Further, the amount of carbon black powder added is preferably 5 to 10 parts by weight per 100 parts by weight of rubber.

5重量部未満であると、所望の導電性が得られないし、
一方、10重量部を超えると導電性が良好になりすぎて
、最早半導電性とは言い難くなるからである。
If it is less than 5 parts by weight, the desired conductivity cannot be obtained;
On the other hand, if it exceeds 10 parts by weight, the conductivity becomes too good and it can no longer be called semiconductive.

前記カーボンブラック粉末の平均粒径は好ましくは、0
.01〜0.2 μm、特に好ましくは0.01〜0゜
05μ閑である。前記平均粒径が0.01μm未満であ
ると、所定量のカーボンブラック粉末を加えても目的と
する導電性が得られず、また、0.2 mを超えると、
ゴム材料中の基本的性能を著しく層なうからである。
The average particle size of the carbon black powder is preferably 0.
.. 0.01 to 0.2 μm, particularly preferably 0.01 to 0.05 μm. If the average particle size is less than 0.01 μm, the desired conductivity cannot be obtained even if a predetermined amount of carbon black powder is added, and if it exceeds 0.2 m,
This is because it significantly enhances the basic performance of the rubber material.

このような半導電性ゴムの体積抵抗率は、好ましくは1
04〜10’Ω国である。104Ω鍾より小さいと、導
電性ゴムとの体積抵抗率の差が小さすぎて、感圧逆可変
抵抗の導電性ゴムに鳴りにくく、また107Ω口を超え
ると、導電性ゴムとの体積抵抗率の差が大きすぎて、感
圧逆可変抵抗の導電性ゴムになりにくいからである。
The volume resistivity of such semiconductive rubber is preferably 1
04-10'Ω country. If it is smaller than 104Ω, the difference in volume resistivity with the conductive rubber will be too small, making it difficult for the conductive rubber of the pressure-sensitive reverse variable resistor to respond, and if it exceeds 107Ω, the difference in volume resistivity with the conductive rubber will be too small. This is because the difference is too large, making it difficult to use as a conductive rubber for pressure-sensitive reverse variable resistance.

また、この半導電性ゴムの硬度は、好ましくはJIS 
A硬度において、40〜90であるのがよい、硬度が4
0未満であると、弾性がありすぎて小さい圧力で絶縁性
が発揮されることになり、実用的ではないし、一方90
を超えると硬くなりすぎ、大きな圧力負荷をかけなけれ
ば絶縁性が発現しないので、やはり実用的ではない。
Further, the hardness of this semiconductive rubber is preferably JIS
A hardness is preferably 40 to 90, hardness is 4
If it is less than 0, there is too much elasticity and the insulation properties will be exhibited with a small pressure, which is not practical.
If it exceeds this value, it will become too hard and will not exhibit insulation properties unless a large pressure load is applied, so it is not practical.

前述のような半導電性ゴム上に形成される導電性材は本
発明においてはカーボンブラックを添加したものが用い
られる。このような導電性材料の基材としては、たとえ
ば、前述の半導電性ゴムの基材として用いられるシリコ
ーンゴム、NBR、ポリブタジェン、天然ゴム、ポリイ
ソプレン、58)1 。
In the present invention, the conductive material formed on the semiconductive rubber as described above is one to which carbon black is added. Examples of base materials for such conductive materials include silicone rubber, NBR, polybutadiene, natural rubber, polyisoprene, and 58) 1 which are used as base materials for the above-mentioned semiconductive rubber.

ネオプレン、EPDM、ウレタンゴムなどを例として挙
げることができる。
Examples include neoprene, EPDM, and urethane rubber.

添加されるカーボンブラック粉末は前述のようにケッチ
ェンブランク、アセチレンブラックなどを使用すること
ができ、その好ましい粒径は、前述のように、0.01
〜0.2 μm、特に好ましくは0゜01〜0.05μ
mである。前記平均粒径が0.01μm未満であると、
所定量のカーボンブラック粉末を加えても目的とする導
電性が得られず、また0、2μmを超えると、基材中の
基本的性能を著しく損なうからである。
As the carbon black powder to be added, Ketjen blank, acetylene black, etc. can be used as described above, and the preferable particle size thereof is 0.01 as described above.
~0.2μm, particularly preferably 0°01~0.05μm
It is m. The average particle size is less than 0.01 μm,
This is because even if a predetermined amount of carbon black powder is added, the desired conductivity cannot be obtained, and if it exceeds 0.2 μm, the basic performance of the base material will be significantly impaired.

前述のカーボンブラック粉末は好ましくはゴム材料10
0重量部に対し、20〜50重量部、特に好ましくは2
0〜30重量部である。20重量部より少ないと、導電
性を示さないおそれがあり、一方、50重量部を超える
と、ゴム材料の基本的性能、たとえば引張強度、圧縮永
久歪などを損なうことになるからである。
The aforementioned carbon black powder is preferably a rubber material 10
0 parts by weight, 20 to 50 parts by weight, particularly preferably 2 parts by weight.
The amount is 0 to 30 parts by weight. If it is less than 20 parts by weight, there is a risk that it will not exhibit electrical conductivity, while if it exceeds 50 parts by weight, the basic performance of the rubber material, such as tensile strength and compression set, will be impaired.

このような導電性材の体積抵抗率は、好ましくは1〜1
02Ω備である0体積固有抵抗率が1Ω口より小さいと
、半導電性ゴムとの体積抵抗率の差が大きくなりすぎ、
感圧逆可変抵抗導電性ゴムになりに<<、また102Ω
値より大きいと、半導電性ゴムとの体82抵抗率が小さ
くなりすぎ、感圧逆可変抵抗になりにくいからである。
The volume resistivity of such a conductive material is preferably 1 to 1.
If the 0 volume resistivity, which is 02Ω, is smaller than 1Ω, the difference in volume resistivity with the semiconductive rubber becomes too large.
Pressure sensitive reverse variable resistance conductive rubber <<, also 102Ω
This is because if it is larger than this value, the resistivity of the body 82 with the semiconductive rubber becomes too small, making it difficult to create a pressure-sensitive reverse variable resistance.

前記のような導電性材により、前記半導電性ゴム上にパ
ターンを形成させるものであるが、このような半導電性
パターン形状は本発明において基本的に限定されるもの
ではない、たとえば、第2図に示すように、立方体形の
絶縁材を所定間隔に形成したパターンであってもよい。
Although a pattern is formed on the semiconductive rubber using the conductive material as described above, the shape of the semiconductive pattern is not fundamentally limited in the present invention. As shown in FIG. 2, it may be a pattern in which cubic insulating materials are formed at predetermined intervals.

このパターンの硬度は好ましくは、JIS A硬度で、
40〜90であるのがよい、90を超えると、固くなり
すぎて、大きな圧力負荷をかけても変形せず感圧逆可変
抵抗導電性ゴムになりにくく、また、40より小さいと
、柔らかすぎて、小さな圧力負荷で変形してしまい、感
圧逆可変抵抗導電性ゴムになりにくい。
The hardness of this pattern is preferably JIS A hardness,
A value of 40 to 90 is good; if it exceeds 90, it will become too hard and will not deform even when a large pressure load is applied, making it difficult to become a pressure-sensitive reverse variable resistance conductive rubber. If it is less than 40, it will be too soft. Therefore, it deforms with a small pressure load, making it difficult to become a pressure-sensitive reverse variable resistance conductive rubber.

このパターンの高さは基本的に限定されるものではない
が、好ましくは5〜10usであるのがよい、5μ層未
満であると、圧力による体積抵抗率の変化が急峻になり
、また10μmを超えると、体積固有抵抗を上昇させる
のに多大な圧力が必要になり、実用的ではなくなる。
Although the height of this pattern is basically not limited, it is preferably 5 to 10 us. If the height is less than 5 μm, the change in volume resistivity due to pressure will be steep, and if the height is less than 10 μm, If it exceeds this, a large amount of pressure will be required to increase the volume resistivity, making it impractical.

さらに、このパターンの間隔は2膳麿以下であるのが好
ましい、211+を超えると、圧力負荷による体積抵抗
率の変化が小さすぎて、実用的でなくなる。
Furthermore, it is preferable that the spacing between the patterns is 2 or less. If it exceeds 211+, the change in volume resistivity due to pressure load will be too small to be practical.

本発明による感圧逆可変抵抗導電性ゴムの製造方法は基
本的に限定されるものではなく、従来の方法を有効に使
用できる。しかしながら、安価にかつ容易に製造するた
めには、後述する本発明による感圧逆可変抵抗導電性ゴ
ムの製造方法を用いるのが好ましい。
The method for producing the pressure-sensitive reverse variable resistance conductive rubber according to the present invention is basically not limited, and conventional methods can be used effectively. However, in order to manufacture it cheaply and easily, it is preferable to use a method for manufacturing a pressure-sensitive reverse variable resistance conductive rubber according to the present invention, which will be described later.

本発明による感圧逆可変抵抗導電性ゴムの製造方法によ
れば、離型性の良好な転写フィルムに所定の導電性材パ
ターンをスクリーン印刷する。
According to the method for producing a pressure-sensitive reverse variable resistance conductive rubber according to the present invention, a predetermined pattern of conductive material is screen printed on a transfer film having good mold releasability.

本発明による転写フィルムは、離型性が良好であれば基
本的に限定されるものではなく、用いられる半導電性ゴ
ム、パターン印刷用のインクの種類などによって種々選
択可能である。このような離型性の良好な転写フィルム
としては、たとえばポリエステルフィルム、ポリエチレ
ンフィルム、シリコーン系離型剤を塗布した紙などを有
効に用いることができる。
The transfer film according to the present invention is not fundamentally limited as long as it has good mold release properties, and various types can be selected depending on the semiconductive rubber used, the type of ink for pattern printing, etc. As such a transfer film with good mold release properties, for example, polyester film, polyethylene film, paper coated with a silicone mold release agent, etc. can be effectively used.

またこのような転写フィルムに印刷する導電性パターン
用インクも導電性材の基材の種類、転写フィルムの種類
などにより機能的に定めることができる。たとえば、シ
リコーンゴム、NBR、ポリブタジェン、天然ゴム、ポ
リイソプレン、SBI+ 。
Further, the conductive pattern ink to be printed on such a transfer film can also be determined functionally depending on the type of the base material of the conductive material, the type of the transfer film, etc. For example, silicone rubber, NBR, polybutadiene, natural rubber, polyisoprene, SBI+.

ネオブレン、EPDM、ウレタンゴムなとゴム系インク
などにカーボンブラック粉末を所定量添加した導電性イ
ンクなどを有効に用いることができる。
Conductive inks made by adding a predetermined amount of carbon black powder to neoprene, EPDM, urethane rubber, or rubber-based inks can be effectively used.

次ぎに前述のように所定導電性パターンを印刷した転写
フィルムを半導電性ゴム上に積層し、熱と圧力を負荷し
て所定パターンを加熱転写する。
Next, as described above, a transfer film printed with a predetermined conductive pattern is laminated on the semiconductive rubber, and heat and pressure are applied to thermally transfer the predetermined pattern.

つぎに、このような半導電性ゴム上に導電性材パターン
がスクリーン印刷された転写フィルムを積層し、加熱転
写する。
Next, a transfer film having a conductive material pattern screen-printed thereon is laminated on such semiconductive rubber, and heat transfer is performed.

このような加熱転写工程は転写フィルムに形成された導
電性材パターンを半導電性ゴムに転写するためのもので
あり、加熱転写条件としては、以下が基本である。
Such a heat transfer process is for transferring the conductive material pattern formed on the transfer film to the semiconductive rubber, and the heat transfer conditions are basically as follows.

加熱温度は被写体の材質により異なり、概略被写体の熱
軟化点により選択されるが、温度が低いと接着が悪く、
所定のパターンが転写されない。
The heating temperature varies depending on the material of the subject, and is roughly selected based on the thermal softening point of the subject, but if the temperature is low, adhesion will be poor;
The specified pattern is not transferred.

また温度が高すぎるとパターンの崩れ(インクのにじみ
)を生じたり、離型性フィルムからの転写が悪くなる。
Furthermore, if the temperature is too high, the pattern may collapse (ink bleed) or the transfer from the release film may deteriorate.

加圧圧力は被写体の形状、強度などにより適性な力を選
択するのがよい、圧力が強すぎると、被写体の変形や破
壊が生じ、弱いときには部分的な転写しかできない虞が
あり、所定パターンにならないことがあるからである。
It is best to select an appropriate pressure depending on the shape and strength of the subject. If the pressure is too strong, the subject may be deformed or destroyed, and if it is too weak, only a partial transfer may be possible. This is because there are things that cannot be done.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

実施例 下記の組成の組成物■をロールで混練し、半導電性ゴム
を作製した。
Example Composition (1) having the following composition was kneaded with a roll to produce a semiconductive rubber.

組成物I シリコーンゴム          1oo 重量部ケ
ッチェンブランク (直i蚤0.03〜0.1 p m )       
 10 ffli部加硫剤             
  3重量部また、下記の組成の組成物■をロールで混
練し、導電性ゴムを作製した。
Composition I Silicone rubber 10 parts by weight Ketjen blank (straight flea 0.03-0.1 pm)
10 ffli part vulcanizing agent
3 parts by weight of Composition (2) having the following composition was also kneaded with a roll to prepare a conductive rubber.

組成物■ シリコーンゴム          100重量部ケッ
チェンブラック (直径0.03〜0.1 μm )        3
0 M置部加硫剤               3重
量部次ぎに転写フィルムであるポリエステルフィルム上
に組成物■を第2図のようなパターンにスクリーン印刷
することにより、ポリエステルフィルム上に導電性材パ
ターンを形成させた。
Composition ■ Silicone rubber 100 parts by weight Ketjenblack (diameter 0.03-0.1 μm) 3
0 M 3 parts by weight of part vulcanizing agent Next, composition (2) was screen printed on the polyester film as a transfer film in a pattern as shown in Figure 2 to form a conductive material pattern on the polyester film. .

前記の半導電性ゴム(組成物I)に前述の導電性材パタ
ーンが印刷された転写フィルム(ポリエステルフィルム
)を積層し、170℃、11分間加熱成形したのち転写
フィルムを剥離し、所定の4電性材パターンを半導電性
ゴム上に形成した。
A transfer film (polyester film) on which the conductive material pattern described above was printed was laminated on the semiconductive rubber (composition I), and after heat-forming at 170°C for 11 minutes, the transfer film was peeled off and a predetermined 4 A conductive material pattern was formed on semiconductive rubber.

このように作製された試験片の圧力付加による体積抵抗
率の変化を第3図に示す。
FIG. 3 shows the change in volume resistivity of the test piece prepared in this manner due to the application of pressure.

この第3図より明らかなように、本発明による感圧逆可
変抵抗導電性ゴムは圧力負荷に応じて体積抵抗率が上昇
し、良好な感圧逆可変抵抗性を示すことがわかる。
As is clear from FIG. 3, the volume resistivity of the pressure-sensitive reverse variable resistance conductive rubber according to the present invention increases in accordance with the pressure load, and it is found that the pressure-sensitive reverse variable resistance conductive rubber exhibits good pressure-sensitive reverse variable resistance.

さらに圧力負荷後、前記圧力を解除したときの体積固有
抵抗の変化(A″)を第4図に示す。圧力負荷後、体積
抵抗率の変化(A )は圧力解除したときの体積抵抗率
の変化(八°)とあまりかわらず、ヒステリーシスが小
さいことことが明らかになった。
Furthermore, after applying pressure, the change in volume resistivity (A″) when the pressure is released is shown in Figure 4. It became clear that the hysteresis was small, not much different from the change (8°).

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明による感圧逆可変抵抗導電
性ゴムによれば、半導電性ゴム上に導電性材のパターン
を設けたため、従来なかった感圧逆可変抵抗導電性ゴム
を提供することができる。
As explained above, according to the pressure-sensitive variable reverse resistance conductive rubber according to the present invention, a pattern of conductive material is provided on the semiconductive rubber, thereby providing a pressure-sensitive variable reverse resistance conductive rubber that has not been available in the past. be able to.

さらに、本発明による感圧逆可変抵抗導電性ゴムは良好
な感圧逆可変抵抗性を示し、また導電性粉末として安価
なカーボンブラックを用いているため、安価に製造でき
るという利点がある。
Furthermore, the pressure-sensitive reverse variable resistance conductive rubber according to the present invention exhibits good pressure-sensitive reverse variable resistance, and since inexpensive carbon black is used as the conductive powder, it has the advantage that it can be manufactured at low cost.

さらに本発明による感圧逆可変抵抗導電性ゴムの製造方
法によれば、基本的にはスクリーン印刷により導電性材
パターンを形成するため、効率よく、かつ簡便に感圧逆
可変抵抗導電性ゴムを製造可能になる。したがって感圧
逆可変抵抗導電性ゴムのコストをさらに大幅に低減しえ
るという利点がある。
Further, according to the method for producing a pressure-sensitive variable resistance conductive rubber according to the present invention, since a conductive material pattern is basically formed by screen printing, it is possible to efficiently and easily produce a pressure-sensitive variable resistance conductive rubber. Manufacturable. Therefore, there is an advantage that the cost of the pressure-sensitive reverse variable resistance conductive rubber can be further significantly reduced.

さらに転写フィルムにスクリーン印刷した導電性材パタ
ーンを半導電性ゴムに転写すうので、導電性材パターン
の半導電性ゴムとの剥離強度は著しく良好であるという
利点もある。
Furthermore, since the conductive material pattern screen printed on the transfer film is transferred to the semiconductive rubber, there is an advantage that the peel strength of the conductive material pattern with the semiconductive rubber is extremely good.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は感圧導電性ゴムを示す斜視図、第1図f
b)、第1図(C)はこの感圧導電性ゴムが圧縮された
ときの状態を示す断面図、第2図は導電性材パターンの
一例を示す正面図、第3図は本発明による方法で製造さ
れた感圧逆可変抵抗導電性ゴムの圧力負荷による体積抵
抗率の変化を示すグラフ、ff14図は圧力解除後の体
積抵抗率の変化を示すグラフである。 1 ・・・導電性ゴム、2 ・・・絶縁材パターン、3
 ・・・電極。 出願人代理人     雨 宮 正 季第1図 (a) (b)           (c) 手続補正書(瞳 昭和9年1139日
Figure 1(a) is a perspective view showing pressure-sensitive conductive rubber, Figure 1(f)
b), Fig. 1(C) is a cross-sectional view showing the state when this pressure-sensitive conductive rubber is compressed, Fig. 2 is a front view showing an example of the conductive material pattern, and Fig. 3 is a cross-sectional view showing the state when this pressure-sensitive conductive rubber is compressed. Figure ff14 is a graph showing changes in volume resistivity due to pressure loading of the pressure-sensitive reverse variable resistance conductive rubber manufactured by the method, and FIG. 14 is a graph showing changes in volume resistivity after pressure is released. 1... Conductive rubber, 2... Insulating material pattern, 3
···electrode. Applicant's agent Masaki Amemiya Figure 1 (a) (b) (c) Procedural amendment (Hitomi dated 1139, 1939)

Claims (2)

【特許請求の範囲】[Claims] (1)カーボンブラックを添加し半導電性とした半導電
性ゴム上にカーボンブラックを添加し導電性とした導電
性材パターンを形成したことを特徴とする感圧逆可変抵
抗導電性ゴム。
(1) A pressure-sensitive reverse variable resistance conductive rubber, characterized in that a pattern of conductive material made conductive by adding carbon black is formed on a semiconductive rubber made semiconductive by adding carbon black.
(2)離型性の良好な転写フィルムにカーボンブラック
を添加し導電性にした導電性材料のパターンをスクリー
ン印刷し、この所定パターンの印刷された転写フィルム
を、カーボンブラックを添加し半導電性とした半導電性
ゴムに積層するとともに、加熱し、前記パターンを半導
電性ゴム上に転写した後、前記転写フィルムを剥離する
ことを特徴とする感圧逆可変抵抗導電性ゴムの製造方法
(2) Screen-print a pattern of conductive material made conductive by adding carbon black to a transfer film with good mold releasability, and make the transfer film with the predetermined pattern printed on it by adding carbon black to make it semi-conductive. A method for producing a pressure-sensitive reverse variable resistance conductive rubber, which comprises laminating the conductive rubber on a semiconductive rubber, heating the pattern, transferring the pattern onto the semiconductive rubber, and then peeling off the transfer film.
JP18331584A 1984-08-31 1984-08-31 Pressure-sensitive, reversely variable resistance electroconductive rubber and its production Pending JPS6160741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18331584A JPS6160741A (en) 1984-08-31 1984-08-31 Pressure-sensitive, reversely variable resistance electroconductive rubber and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18331584A JPS6160741A (en) 1984-08-31 1984-08-31 Pressure-sensitive, reversely variable resistance electroconductive rubber and its production

Publications (1)

Publication Number Publication Date
JPS6160741A true JPS6160741A (en) 1986-03-28

Family

ID=16133545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18331584A Pending JPS6160741A (en) 1984-08-31 1984-08-31 Pressure-sensitive, reversely variable resistance electroconductive rubber and its production

Country Status (1)

Country Link
JP (1) JPS6160741A (en)

Similar Documents

Publication Publication Date Title
EP1102355A3 (en) Electrical connecting element and method of producing the same
US6667100B2 (en) Ultra-thin flexible expanded graphite heating element
WO2018037881A1 (en) Flexible electrode and sensor element
HK1056753A1 (en) Continuous treatment plant for a flat item and an electric contact method for it
ATE360903T1 (en) ELECTRIC BRUSH WITH COMPOSITE CONSTRUCTION
US20080057687A1 (en) Selective area deposition and devices formed therefrom
JP2007323910A (en) Planar heating element, and its manufacturing method
WO2004039134A3 (en) Printed circuit heaters with ultrathin low resistivity materials
JPS6160741A (en) Pressure-sensitive, reversely variable resistance electroconductive rubber and its production
US20110233193A1 (en) Flexible, flat heating strip using carbon filaments as heating element
JPS6160742A (en) Pressure-sensitive, variable resistance electroconductive rubber and its production
JPS61271706A (en) Pressure sensing conductive rubber
JP2004179639A (en) High-precision power resistor
JP2009055700A (en) Polymeric actuator and manufacturing method therefor
JPS6132913A (en) Method of producing pressure sensitive conductive rubber
JPH01308472A (en) Pressure-sensitive adhesive member, insulating pressure-sensitive adhesive tape and electrical component insulated therewith
JPS6413795A (en) Manufacture of circuit element
JP2534026Y2 (en) Organic positive temperature coefficient thermistor
JPS63301480A (en) Manufacture of heat emitting body
JP2000353606A (en) Variable resistor
TW200808099A (en) Manufacture of soft conductive material and thermal material
CN117835531A (en) Flexible circuit, manufacturing method thereof and electronic device
CN2138870Y (en) Heating device of electric heater
JP2000311804A (en) Resister substrate
JP2002025757A (en) Portable low-voltage sheet-like heating element and its manufacturing method