JPS6159688B2 - - Google Patents

Info

Publication number
JPS6159688B2
JPS6159688B2 JP52125076A JP12507677A JPS6159688B2 JP S6159688 B2 JPS6159688 B2 JP S6159688B2 JP 52125076 A JP52125076 A JP 52125076A JP 12507677 A JP12507677 A JP 12507677A JP S6159688 B2 JPS6159688 B2 JP S6159688B2
Authority
JP
Japan
Prior art keywords
culture medium
phenolic resin
foam
resin foam
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52125076A
Other languages
Japanese (ja)
Other versions
JPS5460146A (en
Inventor
Yoshihiro Ikeda
Eiichi Ajisaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP12507677A priority Critical patent/JPS5460146A/en
Publication of JPS5460146A publication Critical patent/JPS5460146A/en
Publication of JPS6159688B2 publication Critical patent/JPS6159688B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Mushroom Cultivation (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、食用きのこの菌床栽培方法に関する
ものである。 食用きのこの菌床栽培方法は、びん、箱、袋な
どの如き菌床栽培用容器におが屑などから成る培
養基を仕込み、それにきのこ菌を植菌し培養する
もので、シイタケ、ヒラタケ、エノキタケ、ナメ
コ、タモギタケなどの如き食用きのこの栽培によ
く採用されている。この方法では、種菌が培養基
によく蔓延し菌糸がよく培養されることが肝要
で、それいかんによつてきのこの収量が決つてく
る。そして、菌糸の培養にあつては温度と湿度の
調節が極めて重要である。しかし、広い室内に置
かれた多数の栽培容器を所望の温度、湿度に維持
することは困難で、又そのように維持するには高
価な設備を必要とするし、培養容器内の培養基に
も水分の調節ができないという欠点があつた。さ
らに、特公昭43―10303号、特公昭50―10222号及
び特開昭51―96456号各公報にはおが屑などから
成る培養基においてポリウレタン発泡体を使用す
る技術が開示されている。しかし該ポリウレタン
発泡体は木材への親和性が悪く、また機械的強度
が高すぎるために、培養基として用いた場合、き
のこ菌の繁殖効果は末だ充分とは言えない。 本発明者らは、このような現状に鑑み研究した
結果、保水能に優れたフエノール樹脂発泡体を含
み、それに特定量の水を保持して成る培養基を用
いることにより、上記の如き困難を克服でき、効
率良くきのこを収穫できることを見出して本発明
を完成させたものである。 したがつて、本発明の目的は、新規な培養基及
びその培養基を用いる食用きのこの栽培方法を提
供する点にある。 本発明の食用きのこの菌床栽培方法は、少なく
とも10%の飽和含水率の保水能を有するフエノー
ル樹脂発泡体を10〜90容量%の範囲の割合で含
み、該フエノール樹脂発泡体に含水率10〜100%
の範囲の割合の水を保持して成る培養基を用いる
ことを特徴とするものである。 尚、本発明に於る飽和含水率は、フエノール樹
脂発泡体の保水能を示すパラメーターであり、容
積250c.c.のフエノール樹脂発泡体(100mm×100mm
×25mm)を水中に浸漬し吸収量が増加しなくなる
まで吸水せしめた後、取り出して吸水性のない平
滑なプラスチツクス板上に室温で30分間静置しフ
エノール樹脂発泡体中に保持できぬ水を流出さ
せ、次いで保持されている水の容積を測定し、次
の()式に基づいて算出される百分率である。
又、含水率は、培養基中のフエノール樹脂発泡体
に保持されている水の量を示すもので、次の
()式で算出される百分率である。 飽和含水率(%)=フエノール樹脂発泡体に保持されている水の容積/フエノール樹脂発泡体の容積×100……(
) 含水率(%)=フエノール樹脂発泡体中に保持されている水の容積/培養基中のフエノール樹脂発泡体の容積×10
0……() 本発明における培養基はヌカ、オガ屑などの如
き公知の構成成分質と特定量の前記フエノール樹
脂発泡体とから成り、かつ該フエノール樹脂発泡
体に特定量の水を保持して成るものである。この
培養基を用いることにより、栽培室の温度や湿度
の調整に特別な配慮をしなくとも、種菌を速やか
に培養でき、その結果きのこ収量の増大を期待で
きる。この作用効果は、培養基が適量の水を保持
しているフエノール樹脂発泡体を含んでいるので
栽培室の温度や湿度が変化しても水の蒸発や吸湿
によりその変化に基づく影響が緩和され菌床容器
内が菌糸の蔓延に適した条件に保たれるという理
由に基づくものと考えられる。しかし、このよう
な理由だけで本発明の範囲が制限されるものでな
い。 フエノール樹脂発泡体は、飽和含水率が少なく
とも10%の保水能を有するものであれば良く、
種々のものを有効に使用できる。フエノール樹脂
発泡体は上記の如き保水能を有することが必須の
要件であるが、密度0.02〜0.2g/c.c.、曲げ強度
1.0〜5.0Kg/cm2、圧縮強度0.2〜1.0Kg/cm2の如き
特性値を持つものが有効である。また、フエノー
ル樹脂発泡体1gを粉砕し、蒸溜水50mlを冷却器
を装備したフラスコ中で、120分間煮沸したの
ち、プラスチツク発泡体をろ別し、冷却したのち
PHを測定する。PHが5〜9の範囲にあるものが特
に有効である。しかし、特性値を全て満足する必
要はなく、本発明の目的を達成できる範囲内でか
えることができる。このような発泡体は、公知方
法で製造でき、又市販されている。例えば、フエ
ノール樹脂発泡体はフエノールとホルマリンとを
触媒の存在下に縮合させて得られるレゾールに発
泡剤、気泡安定剤、非イオン界面活性剤、硬化剤
を混合し発泡硬化せしめる公知方法で製造でき
る。又、生花用として市販されているフローラ
ル・フオーム(例えば、米国スミザース社製、商
品名“オアシス”)を有効に使用できる。フエノ
ール樹脂発泡体の形状や大きさに関しては特に制
限なく、任意に選択できる。例えばの場合、発泡
体の破砕片、切断片、人工加工片、ブロツク片、
板状、棒状と用途に応じて任意の形状に選んで使
用することができる。フエノール樹脂発泡体の使
用量は、培養基に対して10〜90容量%の範囲の割
合の量である。使用量が10容量%未満の少量では
少量に過ぎ効果を期待することができず、逆に90
容量%を越える多量としたのでは培養基としての
機能を十分発揮し得ぬものになつてしまう。 ヌカ、オガ屑などの如き公知の培養基構成成分
物質とフエノール樹脂発泡体とは、任意の方法で
容易に混合することができる。例えば両物質を適
当な混合機により混合できるし、又棒状、円筒状
のフエノール樹脂発泡体を用いる場合、人工的に
任意の配例又は間隔に混合調製機により混合でき
る。この際、フエノール樹脂発泡体は、水を含ん
でいても良いし、含んでいなくても良いものであ
る。 フエノール樹脂発泡体中に保持させる水の量、
即ち含水は、10〜100%、好ましくは30〜90%の
範囲内で適当に選択できるが、フエノール樹脂発
泡体の形状や使用量、菌床容器の容積などを考慮
して決めるのが好ましい。含水率を10%未満とし
たのでは水保持量が少量に過ぎフエノール樹脂発
泡体を用いる意味がなくなり、逆効果となること
もあるので好ましくない。含水率を10%以上とす
るには、フエノール樹脂発泡体に充分水を吸収さ
せれば良い。水を吸収させる時点に関しては制限
はないが、フエノール樹脂発泡体の形状や大きさ
などを考慮して決めるのが良く、ヌカ、オガ屑な
どの如き公知の培養基構成成分物質と多孔質物質
とを混合する前、途中又は後の任意の段階で水を
吸収させることができる。又、棒状や円筒状など
の如き形状のフエノール樹脂発泡体を用いる場
合、予じめ水を充分吸収させておく方が好都合で
ある。含水率を少なくとも10%に維持するには、
例えば培養基の調製時にフエノール樹脂発泡体に
水を充分な量吸収させることにより行なえる。そ
して、必要ならば、適当な段階で水を補給するこ
ともできる。 本発明は以上詳述したように培養基にきのこ菌
を植菌し培養する食用きのこの菌床栽培方法にお
いて、少なくとも10%の飽和含水率の含水能を有
するフエノール樹脂発泡体を10〜90容量%の範囲
の割合で含み、該フエノール樹脂発泡体に含水率
10〜100%の範囲の割合の水を保持して成る培養
基を用いることを特徴とする食用きのこの菌床栽
培方法であり、本発明の作用及び効果については
以下の事項が挙げられる。 すなわち、本発明は、おが屑などから成る培養
基においてフエノール樹脂発泡体を含有せしめる
ことを特定し、その保有する保水能を利用しかつ
その特有の木材への親和性ならびに機械的性質と
から、他の多孔性物質にないすぐれた特性を発揮
することを開示するものである。 まず第1に指摘すべき特徴点は、フエノール樹
脂の木材への親和性とその奏する効果である。例
えば、「フエノール樹脂」(村山新一著、日刊工業
新聞社 昭和37年7月30日発行)第87〜88頁の記
載によれば、フエノール樹脂が、木質に対しすぐ
れた親和性を有することが明らかであり、このフ
エノール樹脂と木質との親和性が、そのままきの
こ菌糸の繁殖作用に好都合な条件を与えることが
知見されたのである。 また、シイタケなどの菌糸の繁殖が木材中のセ
ルロースやリグニン(フエノール骨格を有する)
の分解を利用するものであることが知られている
ことからもこの有効性が首肯されるところといえ
る(「シイタケのつくり方森喜作著、農山漁村文
化協会発行第56〜57頁参照。) 以上のようにフエノール樹脂と木材との親和性
が良く、かつきのこ菌糸にとつても違和感がない
と考えられるフエノール樹脂を用いてなる培養基
を使用する本発明方法においては例えば、ウレタ
ンフオームの場合と比較して、きのこ菌糸の成長
に伴う影響がないといえる。 さらに、機械的性質においても本発明方法にお
けるフエノール樹脂は優れた有効性を有する。例
えば、フエノール樹脂フオームとウレタンフオー
ムとはその脆弱性(もろさ)の点において以下に
示したように顕著な差が指摘される。 すなわち、本発明方法におけるフエノール樹脂
フオームを用いて作つた培養基においてはフエノ
ール樹脂フオームの脆弱性のため、きのこ菌糸の
成長が何ら阻害されることなく容易にフオームが
破壊され、成長が進んでいくが、脆弱性の低いウ
レタンフオームにおいてはきのこ菌糸の成長が阻
害され充分な成長が期待できない。
The present invention relates to a method for cultivating edible mushroom beds. The edible mushroom bed cultivation method involves placing a culture medium made of sawdust etc. in a container for mushroom bed cultivation, such as a bottle, box, or bag, and then inoculating and cultivating mushroom fungi. It is often used for the cultivation of edible mushrooms such as Tamogitake. In this method, it is important that the inoculum spreads well in the culture medium and the mycelia are well cultured, and this determines the yield of mushrooms. In culturing mycelia, controlling temperature and humidity is extremely important. However, it is difficult to maintain a large number of cultivation containers placed in a large room at the desired temperature and humidity, and such maintenance requires expensive equipment, and the culture medium in the cultivation containers is also difficult to maintain. The drawback was that the moisture content could not be adjusted. Furthermore, Japanese Patent Publications No. 43-10303, Japanese Patent Publication No. 50-10222, and Japanese Patent Application Laid-open No. 51-96456 disclose techniques for using polyurethane foam in a culture medium made of sawdust or the like. However, the polyurethane foam has poor affinity for wood and has too high mechanical strength, so when it is used as a culture medium, it cannot be said to have a sufficient breeding effect for mushroom fungi. As a result of research in view of the current situation, the present inventors have overcome the above-mentioned difficulties by using a culture medium that contains a phenolic resin foam with excellent water retention ability and retains a specific amount of water. The present invention was completed by discovering that mushrooms can be harvested efficiently. Therefore, an object of the present invention is to provide a novel culture medium and a method for cultivating edible mushrooms using the culture medium. The edible mushroom bed cultivation method of the present invention includes a phenolic resin foam having a water retention capacity of at least 10% saturated water content in a proportion ranging from 10 to 90% by volume, and the phenolic resin foam has a water content of 10%. ~100%
This method is characterized by using a culture medium containing water in a proportion within the range of . In addition, the saturated water content in the present invention is a parameter indicating the water retention capacity of the phenolic resin foam, and the saturated water content in the phenolic resin foam with a volume of 250 c.c.
× 25 mm) in water to absorb water until the amount of absorption no longer increases, then take it out and leave it for 30 minutes at room temperature on a smooth plastic plate with no water absorbency. is drained, then the volume of water retained is measured, and the percentage is calculated based on the following equation ().
Moreover, the water content indicates the amount of water retained in the phenolic resin foam in the culture medium, and is a percentage calculated by the following formula (). Saturated water content (%) = Volume of water retained in the phenolic resin foam / Volume of the phenolic resin foam x 100... (
) Moisture content (%) = Volume of water retained in the phenolic foam / Volume of phenolic foam in the culture medium x 10
0...() The culture medium in the present invention consists of known constituents such as rice bran, sawdust, etc. and a specific amount of the phenolic resin foam, and the phenolic resin foam retains a specific amount of water. It is what it is. By using this culture medium, the inoculum can be quickly cultured without special consideration for adjusting the temperature and humidity of the cultivation room, and as a result, an increase in mushroom yield can be expected. This effect is due to the fact that the culture medium contains a phenolic resin foam that retains an appropriate amount of water, so even if the temperature and humidity of the cultivation room changes, the effects of these changes are alleviated due to water evaporation and moisture absorption. This is thought to be due to the fact that conditions within the floor container are maintained suitable for the spread of mycelium. However, the scope of the present invention is not limited solely by this reason. The phenolic resin foam may have a water retention capacity with a saturated water content of at least 10%;
Various types can be used effectively. It is essential for the phenolic resin foam to have the above-mentioned water retention capacity, but it also has a density of 0.02 to 0.2 g/cc and bending strength.
Those having characteristic values such as 1.0 to 5.0 Kg/cm 2 and compressive strength of 0.2 to 1.0 Kg/cm 2 are effective. In addition, 1 g of phenolic resin foam was crushed, boiled with 50 ml of distilled water for 120 minutes in a flask equipped with a condenser, the plastic foam was filtered out, and after cooling.
Measure PH. Those with a pH in the range of 5 to 9 are particularly effective. However, it is not necessary to satisfy all of the characteristic values, and they can be changed within a range that can achieve the object of the present invention. Such foams can be manufactured by known methods and are commercially available. For example, a phenolic resin foam can be produced by a known method in which a resol obtained by condensing phenol and formalin in the presence of a catalyst is mixed with a foaming agent, a foam stabilizer, a nonionic surfactant, and a hardening agent, and then foamed and cured. . In addition, commercially available floral foam for fresh flowers (for example, manufactured by Smithers, USA, trade name "Oasis") can be effectively used. The shape and size of the phenolic resin foam are not particularly limited and can be arbitrarily selected. For example, in the case of crushed pieces of foam, cut pieces, artificially processed pieces, block pieces,
It can be used in any shape, such as a plate or a rod, depending on the purpose. The amount of phenolic resin foam used is in a proportion ranging from 10 to 90% by volume relative to the culture medium. If the amount used is less than 10% by volume, the effect is too small to be expected;
If the amount exceeds % by volume, the culture medium will not be able to fully function as a culture medium. Known culture medium constituent materials such as rice bran, sawdust, etc. and the phenolic resin foam can be easily mixed by any method. For example, both substances can be mixed using a suitable mixer, or when a rod-shaped or cylindrical phenolic resin foam is used, they can be mixed artificially in any arrangement or spacing using a mixer. At this time, the phenolic resin foam may or may not contain water. the amount of water retained in the phenolic foam;
That is, the water content can be appropriately selected within the range of 10 to 100%, preferably 30 to 90%, but it is preferably determined by taking into consideration the shape and amount of the phenolic resin foam, the volume of the bacterial bed container, etc. If the water content is less than 10%, the amount of water retained will be too small and there will be no point in using the phenolic resin foam, which may have the opposite effect, which is not preferable. In order to increase the water content to 10% or more, the phenolic resin foam should absorb enough water. There is no limit to the point at which water is absorbed, but it is best to determine it by taking into account the shape and size of the phenolic resin foam. Water can be absorbed at any stage before, during or after mixing. Further, when using a phenolic resin foam having a rod-like or cylindrical shape, it is more convenient to absorb water sufficiently in advance. To maintain moisture content at least 10%,
For example, this can be done by allowing the phenolic resin foam to absorb a sufficient amount of water during the preparation of the culture medium. If necessary, water can be replenished at an appropriate stage. As detailed above, the present invention provides a method for cultivating edible mushroom beds in which mushroom fungi are inoculated and cultured in a culture medium, in which a phenolic resin foam having a water content of at least 10% saturated water content is used in an amount of 10 to 90% by volume. The water content of the phenolic resin foam is within the range of
This is a method for cultivating edible mushroom beds, which is characterized by using a culture medium that retains water in a proportion ranging from 10 to 100%, and the functions and effects of the present invention are as follows. That is, the present invention specifies the inclusion of a phenolic resin foam in a culture medium made of sawdust, etc., utilizes its water retention ability, and utilizes its unique affinity for wood and mechanical properties. It is disclosed that the material exhibits excellent properties not found in porous materials. The first feature to point out is the affinity of phenolic resin to wood and the effects it produces. For example, according to the description in "Phenol Resin" (written by Shinichi Murayama, published by Nikkan Kogyo Shimbun, July 30, 1960), pages 87-88, phenol resin has an excellent affinity for wood. It was found that this affinity between phenolic resin and wood provides favorable conditions for the propagation of mushroom hyphae. In addition, the propagation of mycelia such as shiitake mushrooms is caused by cellulose and lignin (with a phenol skeleton) in wood.
This effectiveness can be said to be confirmed as it is known that it utilizes the decomposition of shiitake mushrooms. As described above, in the method of the present invention using a culture medium made of phenolic resin, which has good affinity with wood and which is thought to cause no discomfort to Katsukino mycelium, for example, compared to the case of urethane foam, In comparison, it can be said that there is no influence associated with the growth of mushroom mycelia.Furthermore, the phenolic resin in the method of the present invention has excellent mechanical properties.For example, the phenolic resin foam and urethane foam have a weak In other words, in the culture medium made using the phenolic resin foam in the method of the present invention, due to the brittleness of the phenolic resin foam, the growth of mushroom hyphae is difficult. The foam is easily destroyed without being inhibited in any way, and growth proceeds. However, with less brittle urethane foam, the growth of mushroom hyphae is inhibited and sufficient growth cannot be expected.

【表】 以上述べたように本発明におけるフエノール樹
脂発泡体を用いてなる培養基を使用した場合は、
ウレタンフオームのものにくらべ、以下に示す実
施例4,5および比較実施例から明らかなように
すぐれたきのこ菌糸の繁殖効率を示すのである。 以下、実施例により本発明を更に詳しく説明す
る。しかし、以下の実施例だけで本発明が制限さ
れるものでない。 実施例 1 フローラル・フオーム(商品名“オアシス”)
から2〜5mmの短形状の多孔質物質(以下、フオ
ーム「」という。)を作つた。尚、フローラ
ル・フオームは飽和含水率80%の保水能を有し、
次の特性値を有していた。密度=0.02g/c.c.、曲
げ強度=2.0Kg/cm2、圧縮強度=0.8Kg/cm2。 オガ屑(見掛比重=0.175)220g及びヌカ7g
と50vo1%(対培養基)相当量のフオーム「」
とを混合して培養基を調製した。フオーム「」
はオガ屑及びヌカと混合する前に水を吸収させて
おき、含水率を80%としておいた。 培養基をポリエチレン製栽培ビン(容積800
c.c.、口径52mm)に仕込み、その基にひらたけの菌
を植え付けた。25日後に菌掻を行なつた。5周間
後に、ひらたけを収穫した。収量は第1回目51.2
gであつた。第2回目は31gであつた。 比較のため、フオーム「」を用いずオガ屑と
ヌカとだけから成る比較培養基を用いる他は同様
にしてひらたけを栽培しこ。収量は第1回目35.5
gであつた。収量が24.9gと極めて少ない場合も
あつた。第2回目は26gであつた。 実施例 2 実施例1において、フオーム「」の使用量を
30vo1%とする他は同様にして培養基を調製し、
次いでひらたけを栽培した。収量は50.8gであつ
た。第2回目は30gであつた。 実施例 3 フローラル・フオーム(商品名“オアシス”)
から径20mm×20mm、高さ80mmの角柱状の多孔質物
質(以下、フオーム「」という。)を作つた。 オガ屑220g及びヌカ7gとフオーム「」2
本とを混合して培養基を調製した。フオーム
「」は混合する前に水を吸収させておき、含水
率を80%としておいた。 培養基をポリプロピレン製栽培ビン(容積800
c.c.、口径52mm)に仕込み、その基にひらたけの菌
を植え付けた。25日後に菌掻を行なつた。5周間
後に、ひらたけを収穫した。収量は45.0gであつ
た。 実施例1〜3及び比較例から明らかなように、
本発明に従えば、収穫量は公知方法(比較例)に
比べ約1.5倍も多かつた。又、公知方法と同量の
収穫量(例えば35.5g)とするのに、数日早く収
穫できることが判明した。 実施例 4 実施例1におけるのと同様にして得た培養基を
ポリエチレン製培養ビン(容積1000c.c.、口径38
mm)に仕込み、その基にシイタケ菌を植付けた。
1周間後から培養状態を菌糸の生長でみるとビン
縦方向に5mm/日であつた。ビンに培養完成する
のに30日必要とした。 比較のため、オガ屑とヌカとだけから成る比較
培養基を用いる他は同様にしてシイタケ菌を培養
した。培養完成するのに50日必要とした。 実施例 5 実施例1において、フオーム「」の使用量を
30V01%とする他は同様にして培養基を調製し
た。 このようにして得た培養基を用い、実施例4と
同様の手順に従つてシイタケ菌を培養した。培養
完成に要する日数は35日であつた。 実施例4〜5及び比較例から明らかなように、
本発明に従えば培養完成日数は公知方法(比較
例)より少なく、しかも良質のものが容易に得ら
れる。 比較実施例(ウレタンフオームの場合) 市販の半硬質ウレタンフオーム(飽和含水率80
%、密度=0.022g/c.c.、曲げ強度=3.4Kg/cm2
圧縮強度=0.9Kg/cm2)を用いた以外は、本発明
実施例1におけると同様にしてえた培養基をポリ
エチレン製培養ビン(容積1000c.c.、口径38mm)に
仕込み、その基にシイタケ菌を植付けた。そし
て、菌糸の生長状態を観察した。ビンに培養完成
するのに40日必要とした。
[Table] As mentioned above, when using the culture medium made of the phenolic resin foam of the present invention,
As is clear from Examples 4 and 5 and comparative examples shown below, it exhibits superior mushroom mycelia propagation efficiency compared to the urethane foam. Hereinafter, the present invention will be explained in more detail with reference to Examples. However, the present invention is not limited only to the following examples. Example 1 Floral foam (product name “Oasis”)
A short-shaped porous material (hereinafter referred to as "foam") with a diameter of 2 to 5 mm was made from the foam. In addition, Floral Foam has a water retention capacity of 80% saturated water content,
It had the following characteristic values. Density = 0.02g/cc, bending strength = 2.0Kg/cm 2 , compressive strength = 0.8Kg/cm 2 . Sawdust (apparent specific gravity = 0.175) 220g and bran 7g
and 50vo1% (to culture medium) equivalent amount of foam ""
A culture medium was prepared by mixing the following. Form ""
was allowed to absorb water before being mixed with sawdust and rice bran, and the moisture content was set at 80%. The culture medium was placed in a polyethylene cultivation bottle (capacity: 800
cc, caliber 52 mm), and oyster mushroom fungi were planted at the base. Bacteria scraping was performed 25 days later. After 5 laps, the oyster mushrooms were harvested. The yield is 51.2 for the first time.
It was hot at g. The second time was 31g. For comparison, oyster mushrooms were grown in the same manner except that the foam was not used and a comparative culture medium consisting only of sawdust and rice bran was used. The yield is 35.5 for the first time.
It was hot at g. In some cases, the yield was extremely small at 24.9g. The second time was 26g. Example 2 In Example 1, the amount of use of the form “”
A culture medium was prepared in the same manner except that the concentration was 30vo1%.
Next, we cultivated Hiratake mushrooms. The yield was 50.8g. The second time was 30g. Example 3 Floral foam (product name “Oasis”)
A prismatic porous material (hereinafter referred to as "foam") with a diameter of 20 mm x 20 mm and a height of 80 mm was made from the foam. 220g of sawdust and 7g of bran and foam 2
A culture medium was prepared by mixing with this material. The foam ``'' was allowed to absorb water before mixing, and the moisture content was set at 80%. Transfer the culture medium to a polypropylene cultivation bottle (capacity: 800
cc, caliber 52 mm), and oyster mushroom fungi were planted at the base. Bacteria scraping was performed 25 days later. After 5 laps, the oyster mushrooms were harvested. The yield was 45.0g. As is clear from Examples 1 to 3 and comparative examples,
According to the present invention, the yield was about 1.5 times higher than that of the known method (comparative example). In addition, it was found that the same amount of harvest (for example, 35.5 g) as in the known method could be obtained several days earlier. Example 4 A culture medium obtained in the same manner as in Example 1 was placed in a polyethylene culture bottle (volume 1000 c.c., diameter 38
mm), and Shiitake fungi were planted on the base.
After one round, the culture condition was examined in terms of mycelium growth, which was 5 mm/day in the vertical direction of the bottle. It took 30 days to complete the culture in bottles. For comparison, Shiitake fungi were cultured in the same manner except that a comparative culture medium consisting only of sawdust and rice bran was used. It took 50 days to complete the culture. Example 5 In Example 1, the amount of use of the form “”
A culture medium was prepared in the same manner except that 30V01% was used. Using the culture medium thus obtained, Shiitake fungi were cultured according to the same procedure as in Example 4. The number of days required to complete the culture was 35 days. As is clear from Examples 4 to 5 and Comparative Examples,
According to the present invention, the number of days required to complete culturing is shorter than that of the known method (comparative example), and high-quality products can be easily obtained. Comparative Example (Urethane foam) Commercially available semi-rigid urethane foam (saturated moisture content 80
%, density = 0.022g/cc, bending strength = 3.4Kg/cm 2 ,
A culture medium obtained in the same manner as in Example 1 of the present invention, except that compressive strength = 0.9 Kg/cm 2 ) was used, was placed in a polyethylene culture bottle (volume 1000 c.c., diameter 38 mm), and Shiitake fungi were added to the base. was planted. Then, the growth state of the hyphae was observed. It took 40 days to complete the culture in bottles.

Claims (1)

【特許請求の範囲】 1 培養基にきのこ菌を植菌し培養する食用きの
この菌床栽培方法において、少なくとも10%の飽
和含水率の含水能を有するフエノール樹脂発泡体
を10〜90容量%の範囲の割合で含み、該フエノー
ル樹脂発泡体に含水率10〜100%の範囲の割合の
水を保持して成る培養基を用いることを特徴とす
る食用きのこの菌床栽培方法。 2 含水率は30〜90%である特許請求の範囲第1
項記載の食用きのこの菌床栽培方法。
[Scope of Claims] 1. A method for cultivating edible mushroom beds by inoculating and culturing mushroom fungi in a culture medium, in which a phenolic resin foam having a water content of at least 10% saturated water content is used in a range of 10 to 90% by volume. 1. A method for cultivating edible mushroom beds, which comprises using a culture medium in which the phenolic resin foam contains water in a proportion of 10 to 100%. 2 The first claim that the moisture content is 30 to 90%
The method for cultivating edible mushroom beds as described in Section 1.
JP12507677A 1977-10-20 1977-10-20 Germ bed cultivating method of edible mushroom Granted JPS5460146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12507677A JPS5460146A (en) 1977-10-20 1977-10-20 Germ bed cultivating method of edible mushroom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12507677A JPS5460146A (en) 1977-10-20 1977-10-20 Germ bed cultivating method of edible mushroom

Publications (2)

Publication Number Publication Date
JPS5460146A JPS5460146A (en) 1979-05-15
JPS6159688B2 true JPS6159688B2 (en) 1986-12-17

Family

ID=14901221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12507677A Granted JPS5460146A (en) 1977-10-20 1977-10-20 Germ bed cultivating method of edible mushroom

Country Status (1)

Country Link
JP (1) JPS5460146A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2953673B2 (en) * 1990-09-28 1999-09-27 シチズン時計株式会社 Osa for high-speed loom

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840015A (en) * 1981-08-31 1983-03-08 花王株式会社 Culture medium for edible mushroom

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2953673B2 (en) * 1990-09-28 1999-09-27 シチズン時計株式会社 Osa for high-speed loom

Also Published As

Publication number Publication date
JPS5460146A (en) 1979-05-15

Similar Documents

Publication Publication Date Title
Hidalgo et al. Physical and chemical properties of substrates containing earthworm castings and effects on marigold growth
EP0038457B1 (en) Composition for use as a precursor for a casing layer in the cultivation of mushrooms, process for the preparation of a casing layer and process for the cultivation of mushrooms
US4443969A (en) Mushroom casing composition and process
JPS6159688B2 (en)
JPS59173020A (en) Production of artificial seeding log of mushroom
JP2610660B2 (en) Culture medium for mushroom cultivation
GB2146319A (en) Cultivation of mushrooms
JPH01264987A (en) Mycelium fertilizer and production thereof
EP0486105A1 (en) Method for preparing a substrate material and the substrate material obtained
JP2766702B2 (en) Culture medium for mushroom cultivation
JPH01199525A (en) Medium for artificial cultivation of edible mushroom
JP2699145B2 (en) Seed bacteria in molded pack
JPH0466029A (en) Soil cover for cultivating mushroom and cultivation of mushroom
JPH06181630A (en) Culture medium for wood destroying mushroom
JP2655197B2 (en) Culture medium for fungi
JPS6310972B2 (en)
JPH0365125A (en) Culture base and culture medium for mushroom
JPH08113506A (en) Agent for stimulating growth of mushroom
JPS633563B2 (en)
JPH01165317A (en) Medium for artificial culture of edible mushroom
JPH01148123A (en) Culture medium for cultivating mushroom
Rainey A study of physical, chemical and biological properties of the mushroom casing layer.
JPS5910164B2 (en) improved soil
JPH038167B2 (en)
JPH0339644B2 (en)