JPS6158982B2 - - Google Patents

Info

Publication number
JPS6158982B2
JPS6158982B2 JP52018465A JP1846577A JPS6158982B2 JP S6158982 B2 JPS6158982 B2 JP S6158982B2 JP 52018465 A JP52018465 A JP 52018465A JP 1846577 A JP1846577 A JP 1846577A JP S6158982 B2 JPS6158982 B2 JP S6158982B2
Authority
JP
Japan
Prior art keywords
region
conductivity type
bit line
opposite conductivity
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52018465A
Other languages
Japanese (ja)
Other versions
JPS53103330A (en
Inventor
Junichi Nishizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1846577A priority Critical patent/JPS53103330A/en
Priority to DE2807181A priority patent/DE2807181C2/en
Priority to GB6699/78A priority patent/GB1602361A/en
Priority to NL7801879A priority patent/NL191683C/en
Priority to GB36296/80A priority patent/GB1602362A/en
Priority to FR7804914A priority patent/FR2381373B1/en
Publication of JPS53103330A publication Critical patent/JPS53103330A/en
Priority to US06/174,724 priority patent/US4434433A/en
Publication of JPS6158982B2 publication Critical patent/JPS6158982B2/ja
Priority to US07/087,974 priority patent/US4994999A/en
Priority to US07/839,704 priority patent/US5883406A/en
Priority to NL9500518A priority patent/NL9500518A/en
Priority to US08/465,014 priority patent/US5808328A/en
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、集積度が高く、書き込み読み出し速
度が速い半導体記憶装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor memory device with a high degree of integration and a fast read/write speed.

半導体メモリは、高集積化、大容量化の一途を
たどり、特にRAM(Random Access Memory)
では殆んど一チツプ当り16Kビツトが標準品とな
りつつある。こうした高集積化、大容量化が進む
につれて、メモリセル内に使われるトランジスタ
の数が減少し、16KビツトRAMのメモリセルで
は、一部1トランジスタ、1容量の構成をなすメ
モリセルも存在するが、殆んどはメモリセル内に
1つもトランジスタを含まない電荷結合型の構造
となつている。その構造の一例を第1図、第2図
に示す。
Semiconductor memory continues to become more highly integrated and larger in capacity, especially RAM (Random Access Memory).
In most cases, 16K bits per chip is becoming the standard product. As higher integration and larger capacity progress, the number of transistors used in memory cells decreases, and some 16K-bit RAM memory cells have a one-transistor, one-capacity configuration. Most of them have a charge-coupled structure in which no transistor is included in the memory cell. An example of the structure is shown in FIGS. 1 and 2.

第1図で、データの書き込み読み出し用ビツト
線は、P領域に設けられたn+領域であり、デー
タの書き込み読み出しを指令するアドレス線(ワ
ード線)は酸化膜を介して設けられたAlやMoな
どの金属やポリシリコンなどの低抵抗半導体など
の電極である。ビツト線n+領域に隣接したP領
域表面近傍にはB(ホウ素)などのP型のイオン
が打込まれ不純物密度が1桁程度高くされてい
る。このように一部表面に沿つて不純物密度が変
化していると、ワード線に加える電圧VGによつ
て変化するP領域表面電位が第1図cのようにな
る。第1図cには、抵抗率15Ω―cm(9×1014cm
-3)のP領域aと、1Ω―cm(1.5×1016cm-3)b
の表面電位φsとが示されている。15Ω―cmの
P領域にBのイオン打込みをしたときcの表面電
位のVG依存性も第1図cには示されている。第
1図cに示されるように、邸抗率が低い場合ほど
表面電位φsは低くなる。従つて、ワード線にた
とえば10V程度の電圧を加えると第1図bの“書
き込み”とある表面電位分布となりビツト線であ
るn+領域から電子が流れ込み、書き込み時の電
圧の半分程度の電圧、たとえば5V程度に保つ
と、蓄積領域の表面電位が十分になつた領域に電
子がストアされデータが記憶される。読み出し時
には、ワード線電位を接地電位程度に下げれば第
1図bのような表面電位分布となつて、ストアさ
れていた電子がビツト線に流れてデータが読み出
される。ワード線の電位が書き込み電位まで上げ
られたときに、データを書き込まない個所のビツ
ト線の電位をワード線電位と同程度に上げれば、
データは書き込まれない。このように、ワード
線、ビツト線の作るマトリツクスの所望の交点に
データの書き込み、また所望の点からのデータの
読み出しが行える。第1図の例では、書き込み、
ストア、読み出しに対しワード線に3電位が必要
であつたが、ワード線に2電位を加えるのみで、
書き込み、ストア、読み出しの全てが行われる例
が第2図である。
In Fig. 1, the bit line for reading and writing data is an n + area provided in the P area, and the address line (word line) for commanding writing and reading of data is an Al or other line provided through an oxide film. The electrode is made of a metal such as Mo or a low-resistance semiconductor such as polysilicon. Near the surface of the P region adjacent to the bit line n + region, P-type ions such as B (boron) are implanted to increase the impurity density by about an order of magnitude. When the impurity density changes along a part of the surface in this way, the P region surface potential changes depending on the voltage V G applied to the word line, as shown in FIG. 1c. Figure 1c shows a resistivity of 15Ω-cm (9×10 14 cm
-3 ) P region a and 1Ω-cm (1.5×10 16 cm -3 ) b
The surface potential φs of is shown. FIG. 1c also shows the dependence of the surface potential of c on V G when B ions are implanted into the P region of 15 Ω-cm. As shown in FIG. 1c, the lower the resistivity, the lower the surface potential φs. Therefore, when a voltage of about 10 V is applied to the word line, a certain surface potential distribution occurs as shown in FIG . For example, if the voltage is maintained at about 5V, electrons are stored in the area where the surface potential of the storage area is sufficient, and data is stored. At the time of reading, when the word line potential is lowered to about the ground potential, a surface potential distribution as shown in FIG. 1b is obtained, the stored electrons flow to the bit line, and data is read out. When the potential of the word line is raised to the write potential, if the potential of the bit line where no data is written is raised to the same level as the word line potential,
No data is written. In this way, data can be written to a desired intersection of a matrix formed by word lines and bit lines, and data can be read from a desired point. In the example in Figure 1, writing,
Three potentials were required on the word line for storing and reading, but by adding only two potentials to the word line,
FIG. 2 shows an example in which writing, storing, and reading are all performed.

蓄積領域となるP領域に、たとえばB、Pの2
段イオン打ち込みを行ない、フラツトバンド電圧
を変えることにより、ワード線に加えられる電圧
Gに対する表面電位が第2図cのようになる。
書き込み、読み出し時の印加電圧を加えたとき
は、転送領域の表面電位が正でより高くなるが、
ストア時の印加電圧が殆んど接地電位に近いとき
は、蓄積領域の方が正電位で高くなる。
For example, 2 of B and P are placed in the P area which becomes the storage area.
By performing staged ion implantation and changing the flat band voltage, the surface potential with respect to the voltage V G applied to the word line becomes as shown in FIG. 2c.
When applying voltage during writing and reading, the surface potential of the transfer area becomes positive and higher, but
When the applied voltage during storage is almost close to ground potential, the storage region has a higher positive potential.

こうした電荷結合型RAMメモリセルでは集積
密度は高くなるが、表面伝導のみを利用するので
移動度が低く書き込み読み出し速度が遅い欠点が
ある。
These charge-coupled RAM memory cells have a high integration density, but because they only utilize surface conduction, they have low mobility and slow read and write speeds.

本発明の目的は、叙上の電荷結合型RAMメモ
リセルの欠点を除去して、書き込み、読み出し速
度が速く集積度も同等もしくはこれ以上の半導体
記憶装置を提供することである。
An object of the present invention is to eliminate the drawbacks of the above-mentioned charge-coupled RAM memory cells and to provide a semiconductor memory device with faster write and read speeds and an equivalent or higher degree of integration.

ラテラル構造に構成された本発明のRAMメモ
リセルの断面構造の一例を第3図に示す。第3図
はP基板にビツト線となるn+領域11、蓄積領
域n-13が設けられており、P+領域14は分離
のための領域である。15はSiO2、Si3N4
Al2O3、P2O5等もしくはこれらを複数個組み合せ
た絶縁層であり、16はワード線でAl、Mo等の
金属もしくはポリシリコンなどの低抵抗半導体で
ある。n+,P+,n-領域を製造する方法は拡散技
術でもイオン打込みでもまた他の方法でも良い。
n+領域の不純物密度は、1017〜1021cm-3程度、P+
領域は1016〜1021cm-3程度、P領域は1014〜1017cm
-3程度、n-領域は1012〜1016cm-3程度である。n-
領域の不純物密度及び寸法はPn-接合やP+n-接合
の拡散電位により殆んどもしくは完全にn-領域
が空乏層となるように選定される。絶縁層の厚さ
はP領域の上20が薄く、n+領域、n-領域の上
は厚く設定される。n-領域の上の絶縁層の厚さ
をn+領域上により薄くすることも有効である。
また第3図で薄く示された部分の絶縁層20を他
の領域より誘導率の高い絶縁層にして、厚さに殆
んど差を設けない場合もある。データ書き込み時
にはワード線16に正電圧を印加する。たとえば
10Vである。データを書き込まないメモリセルの
場合にはビツト線の電位をワード線を同程度に高
くすればよい。蓄積された電子は、P+n-接合の
拡散電位差を反映してビツト線に近い側に多く蓄
積される。従つて、読み出し時には蓄積された電
位が速くビツト線に流れることになる。第4図は
P+基板にn-領域をエピ成長させて殆んど第3図
と同様の構造を構成したものである。電子の流れ
を制御する電位障壁層となるP領域12は、ビツ
ト線11を囲むような形状に、拡散、イオン打ち
込みなどで形成される。n-領域13は、P+n-
合の拡散電位差により殆んどもしくは完全に空乏
層になつている。動作は殆んど第3図の場合と同
様で、n-領域13の表面近傍に電子が蓄積され
る。第3図及び第4図の構造では蓄積領域が高抵
抗のn-領域で、蓄積される電子は表面ごく近傍
だけでなく、かなり中に入り込んだ所まで分布す
るから、移動度等の伝導に寄与するパラメータは
かなり半導体バルクそのものの値に近くなるが、
やはり表面伝導的であるので移動度、拡散係数な
どは小さい。このようなメモリセルをワード線、
ビツト線で作るマトリツクス状に所要個数配置す
ることにより、半導体メモリは構成される。
FIG. 3 shows an example of the cross-sectional structure of a RAM memory cell of the present invention configured in a lateral structure. In FIG. 3, a P substrate is provided with an n + region 11 and an accumulation region n - 13, which serve as bit lines, and a P + region 14 is a region for isolation. 15 is SiO 2 , Si 3 N 4 ,
It is an insulating layer made of Al 2 O 3 , P 2 O 5 or a combination of a plurality of these, and 16 is a word line made of a metal such as Al or Mo or a low resistance semiconductor such as polysilicon. The n + , P + , and n - regions may be produced by diffusion techniques, ion implantation, or other methods.
The impurity density in the n + region is about 10 17 to 10 21 cm -3 , P +
The area is about 10 16 ~ 10 21 cm -3 , the P area is 10 14 ~ 10 17 cm
-3 , and the n - region is about 10 12 to 10 16 cm -3 . n -
The impurity density and dimensions of the region are selected such that the n - region becomes a depletion layer almost or completely depending on the diffusion potential of the Pn - junction or the P + n - junction. The thickness of the insulating layer is set to be thinner 20 above the P region and thicker above the n + region and n region. It is also effective to make the thickness of the insulating layer on the n - region thinner than on the n + region.
Further, in some cases, the insulating layer 20 in the thin portion shown in FIG. 3 is made into an insulating layer having a higher conductivity than other regions, so that there is almost no difference in thickness. When writing data, a positive voltage is applied to the word line 16. for example
It is 10V. In the case of a memory cell in which data is not written, the potential of the bit line may be set to the same level as that of the word line. Most of the accumulated electrons are accumulated on the side near the bit line, reflecting the diffusion potential difference of the P + n -junction . Therefore, during reading, the accumulated potential quickly flows to the bit line. Figure 4 is
The structure is almost the same as that shown in FIG. 3 by epitaxially growing an n - region on a P + substrate. The P region 12, which serves as a potential barrier layer for controlling the flow of electrons, is formed in a shape surrounding the bit line 11 by diffusion, ion implantation, or the like. The n - region 13 is almost or completely a depletion layer due to the diffusion potential difference of the P + n - junction. The operation is almost the same as that shown in FIG. 3, and electrons are accumulated near the surface of the n - region 13. In the structures shown in Figures 3 and 4, the accumulation region is a high-resistance n - region, and the accumulated electrons are distributed not only near the surface but also far into the interior, which affects conduction such as mobility. Although the contributing parameters are quite close to the values of the semiconductor bulk itself,
Since it is surface conductive, its mobility and diffusion coefficient are small. Connect such memory cells to word lines,
A semiconductor memory is constructed by arranging the required number of bit lines in a matrix.

これまで、メモリアレイ部について高速でしか
も集積度の上がる例を述べてきたが、これらの構
造例はもちろんこれに限るものではなく、たとえ
ば導電型をまつたく反対にしたものでもよいこと
はもちろん、個々の構造もこれに限らない。たと
えば、第3図及び第4図の領域12,13等に不
純物分布があつてもよいことはいうまでもない。
Up to now, we have described examples of high-speed and high-density memory array sections, but these structural examples are of course not limited to these; for example, it is also possible to use structures with completely opposite conductivity types. The individual structures are not limited to this either. For example, it goes without saying that there may be an impurity distribution in regions 12, 13, etc. in FIGS. 3 and 4.

半導体メモリのアクセスタイムは、殆んど入出
力部分のインタフエースに存在するバツフア回路
によつている。この入出力バツフア回路に高入力
インピーダンスで電極間容量が小さくしかも変換
コンダクタンスの大きい静電誘導トランジスタを
用いると、アクセスタイムがきわめて短くなるこ
とは、昭和52年特許願第16460号「半導体集積回
路」で述べた通りであり、本発明についてもバツ
フア回路に静電誘導トランジスタを用いた構造
は、もちろんそのまま適用される。また、半導体
メモリの消費電力の殆んどすべてを占めているの
は、読み出された信号を増幅するセンスアンプ部
分である。センスアンプはビツト線の数だけ必要
であるから、記憶容量が大きくなれば、それにつ
れて数が増加し、消費電力の増大につながる。従
つて、高入力インピーダンスで、電極間容量が小
さくかつ変換コンダクタンスも電圧増幅度も大き
く取れ、低電流状態でも殆んど特性の劣化しない
静電誘導トランジスタでセンスアンプを構成する
ことは低電力化にきわめて有効である。
The access time of semiconductor memory mostly depends on the buffer circuit present in the interface of the input/output section. If a static induction transistor with high input impedance, small interelectrode capacitance, and large conversion conductance is used in this input/output buffer circuit, the access time will be extremely short. As described above, the structure in which a static induction transistor is used in the buffer circuit can of course be applied to the present invention as is. Moreover, almost all of the power consumption of a semiconductor memory is accounted for by the sense amplifier section that amplifies the read signal. Since the number of sense amplifiers is equal to the number of bit lines, the number of sense amplifiers increases as the storage capacity increases, leading to an increase in power consumption. Therefore, configuring the sense amplifier with a static induction transistor that has high input impedance, small interelectrode capacitance, high conversion conductance, and high voltage amplification, and whose characteristics hardly deteriorate even under low current conditions is an effective way to reduce power consumption. It is extremely effective.

ここで述べた各種構造例は、従来公知の拡散イ
オン打ち込み技術、結晶成長技術、各種ウエツト
もしくはドライの選択エツチング技術、熱酸化技
術、CVD技術等を用いることにより製造でき
る。
The various structural examples described herein can be manufactured using conventionally known diffusion ion implantation techniques, crystal growth techniques, various wet or dry selective etching techniques, thermal oxidation techniques, CVD techniques, and the like.

本発明は、きわめて集積度が高くできる電荷結
合型メモリに相当するメモリを各ビツト線の周囲
に設けられた電位障壁を超えてキヤリアを注入す
る静電誘導トランジスタの概念を発展させて構成
したものであり、殆んど半導体バルクの伝導性を
利用しているので書き込み読み出しが高速で行わ
れる上に、従来のものより同一の電荷量蓄積に対
してより集積度が高くできる特徴を有しており、
高速、低電力、大容量化を指向している半導体工
業界への寄与はきわめて高く、その工業的価値は
顕著である。
The present invention is a memory equivalent to a charge-coupled memory that can be highly integrated, and is constructed by developing the concept of a static induction transistor that injects carriers across a potential barrier provided around each bit line. Since it utilizes the conductivity of the semiconductor bulk, it can write and read at high speed, and has the feature that it can be integrated more highly for the same amount of charge storage than conventional devices. Ori,
Its contribution to the semiconductor industry, which is aiming for high speed, low power, and large capacity, is extremely high, and its industrial value is remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a乃至C及び第2図a乃至cは電荷結合
型RAMメモリセル、第3図及び第4図はラテラ
ル構造に構成された本発明のRAMメモリセルの
断面構造の実施例である。
1A to 1C and 2A to 2C show charge-coupled RAM memory cells, and FIGS. 3 and 4 show embodiments of cross-sectional structures of RAM memory cells of the present invention configured in a lateral structure.

Claims (1)

【特許請求の範囲】 1 高不純物密度領域よりなるビツト線近傍に設
けられた反対導電型領域の作る電位障壁を介し
て、蓄積領域となるべき、ビツト線とは同導電型
もしくは反対導電型高抵抗領域を殆んど空乏層と
なるべき不純物密度と諸寸法に選定し、前記ビツ
ト線領域、反対導電型領域、蓄積領域がほぼ横型
に構成され、かつ前記反対導電型領域上には薄い
絶縁物層を介してワード線電極が形成され、かつ
前記電位障壁の高さは前記反対導電型領域がビツ
ト線領域との間につくる拡散電位及び、蓄積領域
との間につくる蓄積電圧との間の拡散電位によつ
て決定され、前記反対導電型領域は前記2つの拡
散電位によつてほぼ空乏化され、かつ蓄積領域に
蓄積されるキヤリア、及びビツト線領域のキヤリ
アにとつて十分な高さとなるべく形成され、ワー
ド線電極に印加された電圧によつて電位障壁の高
さが引き下げられることで前記蓄積領域へのキヤ
リアの流入、流出を行わせるべく構成したメモリ
セルを所要本数のワード用列線及び所要本数のビ
ツト線用行線の行列線からなるマトリツクスの交
点中の少なくとも一部に含んだことを特徴とする
半導体メモリ。 2 高不純物密度領域よりなるビツト線近傍に設
けられた反対導電型領域の作る電位障壁を介し
て、蓄積領域となるべき、ビツト線とは同導電型
もしくは反対導電型高抵抗領域及び該領域上に設
けられた第1の絶縁層の厚さが少なくともビツト
線上に設けられた前記第1の絶縁層よりも薄くな
され、前記ビツト線とは同導電型もしくは反対導
電型高抵抗領域を殆んど空乏層となるべき不純物
密度と諸寸法に選定し、前記ビツト線領域、反対
導電型領域、蓄積領域がほぼ横型に構成され、か
つ前記反対導電型領域上には薄い絶縁物層を介し
てワード線電極が形成され、かつ前記電位障壁の
高さは前記反対導電型領域がビツト線領域との間
につくる拡散電位及び、蓄積領域との間につくる
蓄積電圧との間の拡散電位によつて決定され、前
記反対導電型領域は前記2つの拡散電位によつて
ほぼ空乏化され、かつ蓄積領域に蓄積されるキヤ
リア、及びビツト線領域のキヤリアにとつて十分
な高さとなるべく形成され、ワード線電極に印加
された電圧によつて電位障壁の高さが引き下げら
れることで前記蓄積領域へのキヤリアの流入、流
出を行なわせるべく構成したメモリセルを、所要
本数のワード用列線及び所要本数のビツト線用行
線の行列線からなるマトリツクスの交点中の少な
くとも一部に含んだことを特徴とする半導体メモ
リ。 3 高不純物密度領域よりなるビツト線とは反対
導電型の高不純物密度領域よりなる基板上に前記
高不純物密度領域と同導電型の高抵抗領域を形成
し、前記ビツト線と同一表面に前記ビツト線と同
導電型高抵抗蓄積領域を、反対導電型領域を介し
て配置し、前記反対導電型領域上の絶縁物層厚さ
が他の領域上の絶縁物層厚さより薄くなるべく構
成し、かつ前記ビツト線領域、反対導電型領域、
蓄積領域がほぼ横型に構成され、かつ前記反対導
電型領域上には薄く絶縁物層を介してワード線電
極が形成され、かつ前記電位障壁の高さは前記反
対導電型領域がビツト線領域との間につくる拡散
電位及び、蓄積領域との間につくる蓄積電圧との
拡散電位によつて決定され、前記反対導電型領域
は前記2つの拡散電位によつてほぼ空乏化され、
かつ蓄積領域に蓄積されるキヤリア、及びビツト
線領域のキヤリアにとつて十分な高さとなるべく
形成され、ワード線電極に印加された電圧によつ
て電位障壁の高さが引き下げられることで前記蓄
積領域へのキヤリアの流入、流出を行なわせるべ
く構成したメモリセルを所要本数のワード用列線
及び所要本数のビツト線用行線の行列線からなる
マトリツクスの交点中の少なくとも一部に配置し
たことを特徴とする半導体メモリ。
[Scope of Claims] 1. A high impurity concentration region of the same or opposite conductivity type as the bit line, which is to become an accumulation region, is The resistance region is selected to have an impurity density and various dimensions that will almost become a depletion layer, the bit line region, the opposite conductivity type region, and the storage region are configured almost horizontally, and a thin insulating layer is formed on the opposite conductivity type region. A word line electrode is formed through a material layer, and the height of the potential barrier is equal to the difference between the diffusion potential created between the opposite conductivity type region and the bit line region and the storage voltage created between the storage region and the opposite conductivity type region. The opposite conductivity type region is substantially depleted by the two diffusion potentials and has a height sufficient for carriers accumulated in the storage region and carriers in the bit line region. A required number of word columns are formed in which memory cells are formed as much as possible and configured to cause carriers to flow into and out of the storage region by lowering the height of the potential barrier by the voltage applied to the word line electrode. What is claimed is: 1. A semiconductor memory comprising at least a part of the intersections of a matrix consisting of lines and a required number of rows and matrix lines for bit lines. 2. A high-resistance region of the same or opposite conductivity type as the bit line, which is to become an accumulation region, and a high resistance region above the bit line, which is to become an accumulation region, are The thickness of the first insulating layer provided on the bit line is at least thinner than the first insulating layer provided on the bit line, and the high resistance region of the same conductivity type or the opposite conductivity type from the bit line is almost completely covered. The impurity density and various dimensions are selected to be a depletion layer, and the bit line region, opposite conductivity type region, and storage region are configured almost horizontally, and a word is formed on the opposite conductivity type region through a thin insulating layer. A line electrode is formed, and the height of the potential barrier is determined by the diffusion potential between the opposite conductivity type region and the bit line region and the storage voltage created between the region and the storage region. The opposite conductivity type region is substantially depleted by the two diffusion potentials and is formed to have a height sufficient for carriers accumulated in the storage region and carriers in the bit line region, and is formed to have a height sufficient for carriers accumulated in the storage region and carriers in the bit line region. A memory cell configured to cause carriers to flow into and out of the storage region by lowering the height of a potential barrier by a voltage applied to an electrode is connected to a memory cell using a required number of word column lines and a required number of word column lines. What is claimed is: 1. A semiconductor memory comprising at least a part of an intersection point of a matrix consisting of row lines and matrix lines for bit lines. 3. A high resistance region of the same conductivity type as the high impurity density region is formed on a substrate comprising a high impurity density region of the opposite conductivity type to the bit line comprising the high impurity density region, and the bit line is formed on the same surface as the bit line. A high resistance storage region of the same conductivity type as the line is arranged through a region of opposite conductivity type, and the thickness of the insulator layer on the region of the opposite conductivity type is thinner than the thickness of the insulator layer on other regions, and the bit line region, the opposite conductivity type region;
The storage region is configured almost horizontally, and a word line electrode is formed on the opposite conductivity type region with a thin insulating layer interposed therebetween, and the height of the potential barrier is such that the opposite conductivity type region is similar to the bit line region. determined by the diffusion potential created between the diffusion potential and the storage voltage created between the storage region, and the opposite conductivity type region is substantially depleted by the two diffusion potentials,
The potential barrier is formed to have a height sufficient for the carriers accumulated in the storage region and the carriers in the bit line region, and the height of the potential barrier is lowered by the voltage applied to the word line electrode. Memory cells configured to allow carriers to flow into and out of the memory cell are arranged at at least some of the intersection points of a matrix consisting of a required number of word column lines and a required number of bit line row lines. Features of semiconductor memory.
JP1846577A 1977-02-21 1977-02-21 Semiconductor memory Granted JPS53103330A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP1846577A JPS53103330A (en) 1977-02-21 1977-02-21 Semiconductor memory
DE2807181A DE2807181C2 (en) 1977-02-21 1978-02-20 Semiconductor memory device
GB6699/78A GB1602361A (en) 1977-02-21 1978-02-20 Semiconductor memory devices
NL7801879A NL191683C (en) 1977-02-21 1978-02-20 Semiconductor memory circuit.
GB36296/80A GB1602362A (en) 1977-02-21 1978-02-20 Semiconductor memory devices
FR7804914A FR2381373B1 (en) 1977-02-21 1978-02-21 FAST, HIGH DENSITY SEMICONDUCTOR MEMORY
US06/174,724 US4434433A (en) 1977-02-21 1980-08-04 Enhancement mode JFET dynamic memory
US07/087,974 US4994999A (en) 1977-02-21 1987-08-17 High-speed and high-density semiconductor memory
US07/839,704 US5883406A (en) 1977-02-21 1992-02-24 High-speed and high-density semiconductor memory
NL9500518A NL9500518A (en) 1977-02-21 1995-03-16 Semiconductor memory circuit
US08/465,014 US5808328A (en) 1977-02-21 1995-06-05 High-speed and high-density semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1846577A JPS53103330A (en) 1977-02-21 1977-02-21 Semiconductor memory

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP58140128A Division JPS5946062A (en) 1983-07-30 1983-07-30 Semiconductor memory
JP58140129A Division JPS59130474A (en) 1983-07-30 1983-07-30 Non-volatile memory

Publications (2)

Publication Number Publication Date
JPS53103330A JPS53103330A (en) 1978-09-08
JPS6158982B2 true JPS6158982B2 (en) 1986-12-13

Family

ID=11972375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1846577A Granted JPS53103330A (en) 1977-02-21 1977-02-21 Semiconductor memory

Country Status (1)

Country Link
JP (1) JPS53103330A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172773A (en) * 1980-12-22 1982-10-23 Texas Instruments Inc Non-volatile high integrated jfetram cell

Also Published As

Publication number Publication date
JPS53103330A (en) 1978-09-08

Similar Documents

Publication Publication Date Title
US4298962A (en) Memory
US4994999A (en) High-speed and high-density semiconductor memory
US4403307A (en) Semiconductor memory device
KR101689409B1 (en) Low power memory device with jfet device structures
JPS6167953A (en) Semiconductor memory device and manufacture thereof
JPH0212868A (en) Static memory cell, method of storing binary information in the cell and static memory
JP2014517535A (en) Techniques for providing semiconductor memory devices
JP5420517B2 (en) DRAM memory cell with vertical bipolar injector
US4959709A (en) Semiconductor memory device with capacitor on opposite surface of substrate
US7894255B1 (en) Thyristor based memory cell
US4118794A (en) Memory array with larger memory capacitors at row ends
US4392210A (en) One transistor-one capacitor memory cell
US5218217A (en) Dynamic random access memory device and method of manufacturing
JPH0576785B2 (en)
JPS6158982B2 (en)
US4432073A (en) Semiconductor memory device
EP0071042B1 (en) Memory array
US4115871A (en) MOS random memory array
JPH0351109B2 (en)
JPS60109265A (en) Semiconductor ic device
EP0032279B1 (en) One transistor-one capacitor memory cell
JPH0351110B2 (en)
JPH1092954A (en) Semiconductor storage device
US5166763A (en) Static type semiconductor memory device and method of manufacturing thereof
US5132748A (en) Semiconductor memory device