JPS6158230A - Crystal growth method - Google Patents

Crystal growth method

Info

Publication number
JPS6158230A
JPS6158230A JP17917784A JP17917784A JPS6158230A JP S6158230 A JPS6158230 A JP S6158230A JP 17917784 A JP17917784 A JP 17917784A JP 17917784 A JP17917784 A JP 17917784A JP S6158230 A JPS6158230 A JP S6158230A
Authority
JP
Japan
Prior art keywords
substrate
crystal
grown
converted
reactive deposit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17917784A
Other languages
Japanese (ja)
Other versions
JPH0464172B2 (en
Inventor
Koichiro Kotani
小谷 紘一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17917784A priority Critical patent/JPS6158230A/en
Publication of JPS6158230A publication Critical patent/JPS6158230A/en
Publication of JPH0464172B2 publication Critical patent/JPH0464172B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • H01L21/02661In-situ cleaning

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To prevent the generation of spits by adding a simple process by a method wherein, after a reactive deposit is grown on the surface of a crystal substrate, the reactive deposit is grown on the surface of a crystal substrate, the reactive deposit is evaporated by applying heat in a vacuum atmosphere, and then crystal is grown by performing a molecular beam epitaxial growth method. CONSTITUTION:A semiinsulative GaAs substrate is exposed to an oxidizing atmosphere. The C on the substrate surface is converted to CO2, a Ga single unit is converted to Ga2O, and an As single unit is converted to AsO3 respectively by the above-mentioned heat treatment. Then, said substrate is heated up in a vacuum atmosphere. The GaO2 and the AsO3 are sublimated by the above-mentioned heat treatment. A GaAs crystal layer is grown on the substrate, the surface of which is cleaned by the above-mentioned procedure, by performing a molecular beam epitaxial growth method (MBE). According to this method, the single unit substance located on the substrate surface, which is the cause of crystal defect generating in the crystal layer grown when the MBE is performed, is converted to a reactive deposit which can be aublimated easily and it is removed in the heat treatment which will be performed subsequently, thereby enabling to have a very clean surface of the substrate. Accord ingly, an excellent crystal layer, having few crystal defects, can be obtained on the above- mentioned substrate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、分子線エピタキシャル成長(molecul
ar  beam  epitaxy:MBE>法と呼
ばれている結晶成長方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to molecular beam epitaxial growth (molecular beam epitaxial growth).
This invention relates to improvements in a crystal growth method called the ar beam epitaxy (MBE) method.

〔従来の技術〕[Conventional technology]

近年、MBE法を適用することに依り化合物半導体結晶
層を成長・させる技術が多用されるようになっている。
In recent years, techniques for growing and growing compound semiconductor crystal layers by applying the MBE method have come into widespread use.

これは、極めて薄い良質の化合物半導体結晶層を成長さ
せるのに有用であることが理由になっている。
The reason for this is that it is useful for growing extremely thin, high-quality compound semiconductor crystal layers.

従来、MBE法を実施するに際し、良質の結晶層を成長
させる為の前処理として、結晶基板表面を存機系液体で
洗滌してから基板をウェット・エツチングし、その後、
純水で洗滌してから乾燥し、MBE成長装置内に配設し
て昇温することが行われている。尚、前記基板のエツチ
ングを行う場合、基板がGaAs系であれば、エツチン
グ液として、H2SO,+H2O2混合液を用いている
Conventionally, when implementing the MBE method, as a pretreatment to grow a high-quality crystal layer, the surface of the crystal substrate is washed with organic liquid, and then the substrate is wet-etched.
The method is to wash it with pure water, dry it, place it in an MBE growth apparatus, and heat it up. When etching the substrate, if the substrate is a GaAs-based substrate, a mixed solution of H2SO and +H2O2 is used as the etching solution.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記MBE法が良質の結晶を成長させることができると
はいいながら、やはり成る程度の結晶欠陥の発生は回避
できない。
Although it is said that the MBE method can grow high-quality crystals, the occurrence of some crystal defects cannot be avoided.

即ち、原因は確認されてはいないが、GaAs系基板の
場合、表面に残留するカーボン(C)、或いは、Ga単
体の存在がMBE法を適用して結晶層を成長させた場合
にスピットと呼ばれる結晶欠陥を誘発すると考えられて
いる。尚、カーボンの存在は、基板を加工する際に用い
た有機物(例えばワックス)或いは有機系液体で洗滌を
行った場合の残滓等が原因である。
In other words, although the cause has not been confirmed, in the case of GaAs-based substrates, carbon (C) remaining on the surface or the presence of Ga alone is called spit when the MBE method is applied to grow a crystal layer. It is thought to induce crystal defects. The presence of carbon is caused by organic substances (for example, wax) used when processing the substrate or residues from cleaning with an organic liquid.

本発明は、分子線エピタキシャル成長法にて結晶を成長
させる場合、ごく簡単な工程を付加するのみで、スピッ
トの発生を抑制することができるようにする。
The present invention makes it possible to suppress the generation of spits by adding a very simple process when growing crystals by molecular beam epitaxial growth.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の結晶成長方法では、活性ガス雰囲気中に結晶基
板を曝して該結晶基板表面に反応堆積物を生成させ、次
いで、高真空中で加熱することに依り前記反応堆積物を
蒸発させ、次いで、分子線エピタキシャル成長法にて前
記結晶基板表面に結晶を成長させるようにしている。
In the crystal growth method of the present invention, a crystal substrate is exposed to an active gas atmosphere to generate a reactive deposit on the surface of the crystal substrate, the reactive deposit is evaporated by heating in a high vacuum, and then the reactive deposit is evaporated by heating in a high vacuum. , a crystal is grown on the surface of the crystal substrate using a molecular beam epitaxial growth method.

〔作用〕[Effect]

前記したように、MBE法を適用してGaAs系結晶基
板に結晶を成長させた場合に発生するスピットと呼ばれ
る結晶欠陥は、表面に残留するカーボンであるとする説
とGa単体であるとする説とがあり、Ga単体であると
する説がを力のようであるが、本発明者の実験に依ると
、カーボンの影響もかなり大きいことが判っている。
As mentioned above, the crystal defects called spits that occur when crystals are grown on GaAs-based crystal substrates by applying the MBE method are believed to be carbon remaining on the surface, and those that are caused by Ga alone. Although the theory that it is Ga alone seems to be a strong force, according to the inventor's experiments, it has been found that the influence of carbon is also quite large.

前記手段によると、基板表面のカーボンは活性ガスと反
応してガス化し、また、Ga単体も活性ガスと反応して
昇華し易い堆積物となり、この堆積物は熱処理により簡
単に蒸発するので、基板表面はカーボンもGa単体も存
在しない清浄の状態にすることができ、従って、その上
に成長された結晶層の欠陥は極めて少な(なる。
According to the above means, carbon on the substrate surface reacts with the active gas and becomes gasified, and Ga alone also reacts with the active gas to form a deposit that easily sublimes.This deposit is easily evaporated by heat treatment, so that the substrate The surface can be kept in a clean state without the presence of carbon or Ga alone, and therefore the crystal layer grown thereon has extremely few defects.

・ 〔実施例〕 (1)  半絶縁性GaAs基板を有機系液体で洗滌す
る。
- [Example] (1) A semi-insulating GaAs substrate is cleaned with an organic liquid.

[21Hz S O4+ H20z混合液を用い前記基
板表面に軽度のエツチングを加える。
[Slight etching is applied to the substrate surface using a 21 Hz SO4+H20z mixture.

(3)前記基板を純水にて水洗する。(3) Wash the substrate with pure water.

(4)前記基板を酸化雰囲気(活性ガス雰囲気)中に曝
す。
(4) Expose the substrate to an oxidizing atmosphere (active gas atmosphere).

この酸化処理に依り、基板表面のカーボンはCOzに、
caB体はGa2Oに、As車体はAs03にそれぞれ
変化する。
Due to this oxidation treatment, the carbon on the substrate surface becomes COz,
The caB body changes to Ga2O, and the As body changes to As03.

(5)前記基板をMBE成長装置内に於いて500(”
C)以上の高温で熱処理する。
(5) Place the substrate in an MBE growth apparatus for 500
C) Heat treatment at a higher temperature.

通常、G a 20は〜500(’C)の温度で、また
、AS03は135(”II:)(7)温度でiiする
。尚、Co2はガスであるから既に気散している。
Usually, G a 20 is at a temperature of ~500 ('C), and AS03 is at a temperature of 135 ("II:) (7). Note that Co2 is a gas, so it is already vaporized.

(6)前記工程を経ることに依り表面が清浄化された前
記基板上に、通常のMBE法を適用して、GaAs結晶
層を成長させる。
(6) A normal MBE method is applied to grow a GaAs crystal layer on the substrate whose surface has been cleaned through the above steps.

このようにして得られたGaAs結晶層に於ける結晶欠
陥は、従来技術に依って成長させたGaAs結晶層に於
けるそれの約1/1o程度であった。尚、前記実施例に
於いては、基板を酸化雰囲気に曝したが、この雰囲気は
、水素雰囲気に代替することも可能であり、また、酸化
雰囲気のみであると酸化物層の層厚が厚くなり、逆に結
晶性が悪くなる虞がある場合には、活性ガスに適量のア
ルゴン(Ar)  ・ガスを混入してスパッタリング作
用を併用すると良い。
The crystal defects in the GaAs crystal layer thus obtained were about 1/10 of that in the GaAs crystal layer grown by the conventional technique. In the above example, the substrate was exposed to an oxidizing atmosphere, but this atmosphere can also be replaced by a hydrogen atmosphere, and if only an oxidizing atmosphere is used, the oxide layer will be thick. On the other hand, if there is a risk that the crystallinity may deteriorate, it is better to mix an appropriate amount of argon (Ar) gas into the active gas and use the sputtering effect together.

図は、本発明を実施して基板表面の処理を行った場合の
データを表す線図であり、縦軸にスピット数を、横軸に
処理時間(単位は〔分〕)を採っである。
The figure is a diagram showing data when a substrate surface is processed according to the present invention, with the number of spits plotted on the vertical axis and the processing time (in minutes) plotted on the horizontal axis.

ここでは、平行平板型ドライ・エツチング装置を用い、
13. 56 (MHz)の周波数でプラズマを発生さ
せて実験を行った。また、試料としたウェハは直径が約
5 (am)  (2(吋〕)であり、また、Δ印はH
2イオン、X印はArイオン、○印は02イオンの場合
をそれぞれ示している。
Here, a parallel plate type dry etching device is used.
13. Experiments were conducted by generating plasma at a frequency of 56 MHz. The diameter of the sample wafer is approximately 5 (am) (2 (inches)), and the Δ mark is H.
2 ion, X marks represent Ar ions, and O marks represent 02 ions.

〔発明の効果〕〔Effect of the invention〕

本発明の結晶成長方法は、活性ガス雰囲気中に結晶基板
を曝して該結晶基板表面に反応堆積物を生成させ、次い
で、高真空中で加熱することに依り前記反応堆積物を蒸
発させ、次いで、分子線エピタキシャル成長法にて前記
結晶基板表面に結晶を成長させるようにしている。
The crystal growth method of the present invention involves exposing a crystal substrate to an active gas atmosphere to generate a reactive deposit on the surface of the crystal substrate, then evaporating the reactive deposit by heating in a high vacuum, and then , a crystal is grown on the surface of the crystal substrate using a molecular beam epitaxial growth method.

このようにすると、MBE法を適用して成長させた結晶
層中に発生する結゛晶欠陥の原因となる基板表面の単体
物質は昇華し易い反応堆積物となって、その後に続く熱
処理の工程で基板表面からは除去され、また、カーボン
はガス化して気散しているので、前記基板の表面は極め
て清浄な状態となる。従って、その上に成長させた結晶
層は結晶欠陥が少ない良質のものが得られる。
In this way, the single substance on the substrate surface that causes crystal defects that occur in the crystal layer grown by applying the MBE method becomes a reaction deposit that easily sublimes, and is removed during the subsequent heat treatment process. Since the carbon is gasified and diffused, the surface of the substrate becomes extremely clean. Therefore, the crystal layer grown thereon can be of good quality with few crystal defects.

【図面の簡単な説明】[Brief explanation of drawings]

図はスピット数対処理時間の関係を表す線図である。 The figure is a diagram showing the relationship between the number of spits and the processing time.

Claims (1)

【特許請求の範囲】[Claims] 活性ガス雰囲気中に結晶基板を曝して該結晶基板表面に
反応堆積物を生成させ、次いで、高真空中で加熱するこ
とに依り前記反応堆積物を蒸発させ、次いで、分子線エ
ピタキシャル成長法にて前記結晶基板表面に結晶を成長
させる工程が含まれてなることを特徴とする結晶成長方
法。
A crystal substrate is exposed to an active gas atmosphere to generate a reactive deposit on the surface of the crystal substrate, then the reactive deposit is evaporated by heating in a high vacuum, and then the reactive deposit is evaporated by molecular beam epitaxial growth. A crystal growth method comprising the step of growing a crystal on the surface of a crystal substrate.
JP17917784A 1984-08-30 1984-08-30 Crystal growth method Granted JPS6158230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17917784A JPS6158230A (en) 1984-08-30 1984-08-30 Crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17917784A JPS6158230A (en) 1984-08-30 1984-08-30 Crystal growth method

Publications (2)

Publication Number Publication Date
JPS6158230A true JPS6158230A (en) 1986-03-25
JPH0464172B2 JPH0464172B2 (en) 1992-10-14

Family

ID=16061281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17917784A Granted JPS6158230A (en) 1984-08-30 1984-08-30 Crystal growth method

Country Status (1)

Country Link
JP (1) JPS6158230A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131593A (en) * 1989-10-16 1991-06-05 Nippon Mining Co Ltd Preliminary treatment of substrate for epitaxial grow

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5683946A (en) * 1979-12-12 1981-07-08 Fujitsu Ltd Manufacturing of semiconductor device
JPS5917315A (en) * 1982-07-20 1984-01-28 アップリカ葛西株式会社 Foldable chair
JPS6135510A (en) * 1984-07-27 1986-02-20 Agency Of Ind Science & Technol Molecular beam epitaxy growth method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5683946A (en) * 1979-12-12 1981-07-08 Fujitsu Ltd Manufacturing of semiconductor device
JPS5917315A (en) * 1982-07-20 1984-01-28 アップリカ葛西株式会社 Foldable chair
JPS6135510A (en) * 1984-07-27 1986-02-20 Agency Of Ind Science & Technol Molecular beam epitaxy growth method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131593A (en) * 1989-10-16 1991-06-05 Nippon Mining Co Ltd Preliminary treatment of substrate for epitaxial grow

Also Published As

Publication number Publication date
JPH0464172B2 (en) 1992-10-14

Similar Documents

Publication Publication Date Title
JPS61270830A (en) Surface cleaning method
JPS6158230A (en) Crystal growth method
JPS60239028A (en) Cleaning method of surface
JP2595935B2 (en) Surface cleaning method
JPS6246994A (en) Method and apparatus for growing thin film
JP2970236B2 (en) GaAs wafer and method of manufacturing the same
JP4186277B2 (en) Artificial quartz manufacturing method and artificial quartz and quartz substrate
JPS59162200A (en) Cleaning of surface of silicon substrate
US20240293850A1 (en) Method for removing layers of silicon carbide, as well as process and apparatus for cleaning epitaxial reactor components
JPH02143420A (en) Manufacture of hetero epitaxial film on silicon substrate
JPH05213695A (en) Method for depositing thin diamond film
JPH01214017A (en) Method and apparatus for molecular beam epitaxial growth
JPS6341014A (en) Epitaxial growth method
JP2637950B2 (en) Surface cleaning method
JP2520617B2 (en) Semiconductor crystal growth method and apparatus for implementing the same
JPH0410417A (en) Surface treatment of compound semiconductor
JP3419583B2 (en) Selective crystal growth method on gallium arsenide substrate
JPS63160324A (en) Molecular beam epitaxial crystal growth
JPH0243720A (en) Molecular beam epitaxial growth method
JPH03131593A (en) Preliminary treatment of substrate for epitaxial grow
JPH02288329A (en) Method of growing semiconductor thin film crystal
JPH01217928A (en) Treating method for gaas substrate
JPH02267187A (en) Method for treating substrate surface
JPS62207796A (en) Molecular beam epitaxy
JPS60177618A (en) Manufacture of semiconductor device