JPS61579A - Manufacture of thin film - Google Patents
Manufacture of thin filmInfo
- Publication number
- JPS61579A JPS61579A JP12319384A JP12319384A JPS61579A JP S61579 A JPS61579 A JP S61579A JP 12319384 A JP12319384 A JP 12319384A JP 12319384 A JP12319384 A JP 12319384A JP S61579 A JPS61579 A JP S61579A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- gas
- chamber
- thin film
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
- C23C16/509—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
- C23C16/5096—Flat-bed apparatus
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
技術分野
本発明は、プラズマCVD法による半導体膜等の薄膜の
薄膜製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method for manufacturing thin films such as semiconductor films by plasma CVD.
従来技術
近年、非晶質半導体、具体的にはアモルファスシリコン
a −S Sが注目されており、このアモルファスシリ
コンa−3iを用いた等倍センサ、太陽電池、薄膜トラ
ンジスタ等がある。この製造には、一般にプラズマCV
D (化学気相成長)法が用いられる。BACKGROUND OF THE INVENTION In recent years, amorphous semiconductors, specifically amorphous silicon a-SS, have been attracting attention, and there are life-size sensors, solar cells, thin film transistors, etc. that use this amorphous silicon a-3i. For this production, plasma CVD is generally used.
D (chemical vapor deposition) method is used.
図面は、平行平板型のプラズマCVD装置の概略を示す
ものである。その作用を説明すると、チャンバー1内に
SiH4,5izH6,PH3゜B2HEI、NH3等
の原料ガスをガス導入口2及びガス噴出孔3を介して導
入させ、基板側電極4と高周波側電極5との間に高周波
電源6により高周波電圧(例えば、13.56MHz)
を印加してプラズマ放電させる。このプラズマ中で原料
ガスを分解・反応させて、基板7上にa−Si膜あるい
は絶縁膜を成膜させるものである。なお、この成膜処理
中は余剰原料ガスを排気口8から除去させ、チャンバー
1内を所定圧力(0,02〜3Torr)に維持させる
。又、基板7はヒータ9によって所定温度(100〜4
00℃)に加熱される。The drawing schematically shows a parallel plate type plasma CVD apparatus. To explain its operation, raw material gases such as SiH4, 5izH6, PH3°B2HEI, NH3, etc. are introduced into the chamber 1 through the gas inlet 2 and the gas ejection hole 3, and the substrate side electrode 4 and the high frequency side electrode 5 are connected to each other. A high frequency voltage (for example, 13.56 MHz) is applied by the high frequency power supply 6 between
is applied to generate plasma discharge. The raw material gas is decomposed and reacted in this plasma to form an a-Si film or an insulating film on the substrate 7. During this film-forming process, excess raw material gas is removed from the exhaust port 8, and the inside of the chamber 1 is maintained at a predetermined pressure (0.02 to 3 Torr). Further, the substrate 7 is heated to a predetermined temperature (100 to 4
00°C).
この際、チャンバー1及び電極4,5に吸着している0
2 、H20,GO2等の吸着ガスがプラズマ中で分解
・反応し、膜中に不純物として取込まれ膜質を劣化させ
ることになる。具体的には、a −S i膜の場合には
、02が混入すると晴導電率σDがあがってしまい、光
導電率σpとの比σP/σ0が悪くなり、σpの光劣化
が促進される。又、Si3N4のような絶縁膜であれば
、絶縁耐圧や耐湿性が低下することになる。At this time, the 0 adsorbed on the chamber 1 and the electrodes 4 and 5
2, H20, GO2, and other adsorbed gases decompose and react in the plasma, and are incorporated into the film as impurities, deteriorating the film quality. Specifically, in the case of an a-Si film, when 02 is mixed, the clear conductivity σD increases, the ratio σP/σ0 with the photoconductivity σp worsens, and the photodegradation of σp is accelerated. . Furthermore, if the insulating film is made of Si3N4, the dielectric strength and moisture resistance will be lowered.
そこで、従来にあっては、この種の吸着ガスを除去する
ため、ドープ前にN2ガスあるいはN2ガスをチャンバ
ー1内に導入して放電させるようにしたものがある。Conventionally, in order to remove this kind of adsorbed gas, N2 gas or N2 gas is introduced into the chamber 1 and discharged before doping.
ところが、N2ガス方式による場合、CO2は除去され
るが、02は還元されてN20となり、このN20の状
態でチャンバー1中に残留することになる。又、N2ガ
ス方式による場合、02はNOxとなって除去されるが
CO2が除去されにくい。又、N2の分解エネルギーが
高く、高い・高周波電力で放電させるため、基板7ない
しは被膜素子をいためることがある。特に、パシベーシ
ゴン用絶縁膜を作成する場合、下地となるa−3i。However, when using the N2 gas method, CO2 is removed, but 02 is reduced to N20, and remains in the chamber 1 in this N20 state. Furthermore, when using the N2 gas method, 02 is removed as NOx, but CO2 is difficult to remove. Furthermore, since the decomposition energy of N2 is high and the discharge is performed with high high frequency power, the substrate 7 or the coated element may be damaged. In particular, when creating an insulating film for passibasigon, a-3i serves as the base.
J Aflffi極等が衝撃を受けて特
性が劣化する。J Aflffi poles etc. are subjected to impact and their characteristics deteriorate.
目的
本発明は、このような点に鑑みなされたもので、チャン
バー、電極等に吸着している02等の不純物を確実に除
去し、良質の成膜を行なうことができる薄膜製造方法を
提供することを目的とする。Purpose The present invention was made in view of the above points, and provides a thin film manufacturing method that can reliably remove impurities such as 02 adsorbed to chambers, electrodes, etc., and can form a high-quality film. The purpose is to
構成
本発明は、ドープ前にN H3ガスをチャンバー内に導
入して放電させることにより、吸着ガス02 、N20
.C’02等を除去するようにしたことを特徴とするも
のである。Structure The present invention introduces N H3 gas into the chamber before doping and discharges the adsorbed gases 02 and N20.
.. The feature is that C'02 etc. are removed.
ここで、本実施例では、図面に示したプラズマCVD装
置をそのまま用いるものとする。Here, in this embodiment, the plasma CVD apparatus shown in the drawings is used as is.
本実施例の如< N H3ガスを使用することにより、
まず、NH3の分解によりNNイオン、Nイオン、Nイ
オン等ができ、02.N20はN Oxとなり、CO2
はCY HXとなって、02.N20、CO2とも効率
よく除去できるものである。As in this example, by using N H3 gas,
First, NH3 is decomposed to produce NN ions, N ions, N ions, etc., and 02. N20 becomes NOx and CO2
becomes CY HX, 02. Both N20 and CO2 can be removed efficiently.
又、N2ガスに比べ、N H3ガスの方が分解エネルギ
ーが低く、低パワーで反応するため、N2ガスの場合に
みられるような下地に対する衝撃等がなく、デバイス特
性を劣化させることもない。このようにドープ前にNH
3ガスを用いて不純物を除去することにより、製造され
るデバイスの性能、信頼性を向上させることができるも
のである。Furthermore, compared to N2 gas, NH3 gas has lower decomposition energy and reacts with lower power, so there is no impact on the substrate as seen in the case of N2 gas, and there is no deterioration of device characteristics. In this way, before doping, NH
By removing impurities using three gases, the performance and reliability of manufactured devices can be improved.
このN H3ガスの放電条件としては、NH3ガス流量
が10〜11005CC、チャンバー内圧力が0.02
〜2Torr 、高周波電力が1O−300Wとした場
合比較的良好となったものである。The discharge conditions for this NH3 gas include a NH3 gas flow rate of 10 to 11005 CC, and a chamber pressure of 0.02.
~2 Torr, which was relatively good when the high frequency power was 10-300W.
これらの条件は、更に望ましくは、前述の順で各々22
5−60sec 、0.1−ITorr 、2O−10
0Wである。又、NH3ガスを使用する場合、a−8i
:N:H(a−8’iのNドープの意味である)あるい
はSi3N4及びN5:rNxOv膜の成膜に特に有利
である。これらの場合、ドープ時の原料ガスとしてもN
H3ガスを使用するため、ガスの切換操作も簡単になる
というメリットもある。More preferably, these conditions are set to 22, respectively, in the above-mentioned order.
5-60sec, 0.1-ITorr, 2O-10
It is 0W. Also, when using NH3 gas, a-8i
:N:H (meaning a-8'i N-doped) or Si3N4 and N5:rNxOv films are particularly advantageous. In these cases, N is also used as the raw material gas during doping.
Since H3 gas is used, there is also the advantage that the gas switching operation is easy.
ちなみに、a−8i:N:H膜の成膜につき、吸着ガス
除去用放電ガス種として従来のN2ガス方式と本発明に
よるNH3ガス方式とで比較したところ、膜特性におけ
る光導電率σPが従来方式では1.5Xto−4(0口
)−1であったのに対し2.0XIO−3(Ωam)−
” となったものである。又、暗導電率σDは従来方式
では5.0XIO−s(0cm)−’であったのに対し
2.0X10−&(0cm)−’ となったものである
。なお、σPの測定にはコプレナー型セルを用い、10
0mW/cu(AMI)照射下で行なったものである。Incidentally, when forming the a-8i:N:H film, we compared the conventional N2 gas method and the NH3 gas method according to the present invention as discharge gas species for removing adsorbed gas, and found that the photoconductivity σP of the film properties was lower than that of the conventional N2 gas method and the NH3 gas method according to the present invention. In the method, it was 1.5Xto-4 (0 ports)-1, but 2.0XIO-3 (Ωam)-
”.Also, the dark conductivity σD was 5.0XIO-s(0cm)-' in the conventional method, but it became 2.0X10-&(0cm)-'. In addition, a coplanar cell was used to measure σP, and 10
This was carried out under 0 mW/cu (AMI) irradiation.
効果
本発明は、上述したように吸着ガス除去用の放電ガス種
としてN H3ガスを用いたので、02゜N20.CO
2等の吸着ガスをすべて効率よく除去することができ、
膜に対する不純物の混入が少なくなって膜特性を向上さ
せることができ、又。Effects As described above, the present invention uses NH3 gas as the discharge gas species for removing adsorbed gas, so 02°N20. C.O.
All secondary adsorbed gases can be removed efficiently.
It is possible to reduce the amount of impurities mixed into the film and improve the film properties.
N H3ガスは低パワーで反応するため、下地に対する
プラズマダメージも少なくでき、この点でも膜の特性、
信頼性を向上させることができるものである。Since NH3 gas reacts with low power, plasma damage to the underlying layer can be reduced, and in this respect, the properties of the film and
This can improve reliability.
図面はプラズマCVD装置を示す概略側面図である。 The drawing is a schematic side view showing a plasma CVD apparatus.
Claims (1)
によるプラズマ中で分解・反応させて基板上に薄膜を形
成するプラズマCVD法による薄膜製造方法において、
原料ガスのドープ前にNH_3ガスをチャンバー内に導
入して放電させることを特徴とする薄膜製造方法。In a thin film manufacturing method using a plasma CVD method in which a raw material gas is introduced into a chamber and decomposed and reacted in plasma generated by high-frequency glow discharge to form a thin film on a substrate,
A thin film manufacturing method characterized by introducing NH_3 gas into a chamber and causing discharge before doping the source gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12319384A JPS61579A (en) | 1984-06-14 | 1984-06-14 | Manufacture of thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12319384A JPS61579A (en) | 1984-06-14 | 1984-06-14 | Manufacture of thin film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61579A true JPS61579A (en) | 1986-01-06 |
Family
ID=14854492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12319384A Pending JPS61579A (en) | 1984-06-14 | 1984-06-14 | Manufacture of thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61579A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63246829A (en) * | 1986-12-19 | 1988-10-13 | アプライド マテリアルズインコーポレーテッド | Application and on-site multistage planaring process for hot cvd/pecvd reactor and thermochemically evaporation of silicon oxide |
WO2000029642A1 (en) * | 1998-11-17 | 2000-05-25 | Applied Materials, Inc. | Removing oxides or other reducible contaminants from a substrate by plasma treatment |
US6355571B1 (en) | 1998-11-17 | 2002-03-12 | Applied Materials, Inc. | Method and apparatus for reducing copper oxidation and contamination in a semiconductor device |
WO2006086300A2 (en) * | 2005-02-10 | 2006-08-17 | Ropintassco Holdings, L.P. | Control of process gases in specimen surface treatment system using plasma |
DE10335341B4 (en) | 2002-08-02 | 2019-06-13 | Jnc Corporation | Metallocene compounds, processes for making olefin polymers using catalysts containing the compounds, and olefin polymers produced by the processes |
-
1984
- 1984-06-14 JP JP12319384A patent/JPS61579A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63246829A (en) * | 1986-12-19 | 1988-10-13 | アプライド マテリアルズインコーポレーテッド | Application and on-site multistage planaring process for hot cvd/pecvd reactor and thermochemically evaporation of silicon oxide |
JPH0612771B2 (en) * | 1986-12-19 | 1994-02-16 | アプライド マテリアルズインコーポレーテッド | TEOS plasma CVD method |
US6167834B1 (en) | 1986-12-19 | 2001-01-02 | Applied Materials, Inc. | Thermal CVD/PECVD reactor and use for thermal chemical vapor deposition of silicon dioxide and in-situ multi-step planarized process |
WO2000029642A1 (en) * | 1998-11-17 | 2000-05-25 | Applied Materials, Inc. | Removing oxides or other reducible contaminants from a substrate by plasma treatment |
US6355571B1 (en) | 1998-11-17 | 2002-03-12 | Applied Materials, Inc. | Method and apparatus for reducing copper oxidation and contamination in a semiconductor device |
US6700202B2 (en) | 1998-11-17 | 2004-03-02 | Applied Materials, Inc. | Semiconductor device having reduced oxidation interface |
US6946401B2 (en) | 1998-11-17 | 2005-09-20 | Applied Materials, Inc. | Plasma treatment for copper oxide reduction |
US8183150B2 (en) | 1998-11-17 | 2012-05-22 | Applied Materials, Inc. | Semiconductor device having silicon carbide and conductive pathway interface |
DE10335341B4 (en) | 2002-08-02 | 2019-06-13 | Jnc Corporation | Metallocene compounds, processes for making olefin polymers using catalysts containing the compounds, and olefin polymers produced by the processes |
WO2006086300A2 (en) * | 2005-02-10 | 2006-08-17 | Ropintassco Holdings, L.P. | Control of process gases in specimen surface treatment system using plasma |
WO2006086300A3 (en) * | 2005-02-10 | 2006-12-21 | Ropintassco Holdings L P | Control of process gases in specimen surface treatment system using plasma |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2596214B2 (en) | Method of forming high-purity thin film | |
US8173554B2 (en) | Method of depositing dielectric film having Si-N bonds by modified peald method | |
US8415259B2 (en) | Method of depositing dielectric film by modified PEALD method | |
US8440268B2 (en) | Method and apparatus for growing plasma atomic layer | |
US5567476A (en) | Multi-step chemical vapor deposition method for thin film transistors | |
US20060035035A1 (en) | Film forming method and film forming apparatus | |
Hsieh et al. | Characteristics of low‐temperature and low‐energy plasma‐enhanced chemical vapor deposited SiO2 | |
JPS61579A (en) | Manufacture of thin film | |
JPH0351094B2 (en) | ||
JP2022094904A (en) | Thin film formation method and device | |
JP3029434B2 (en) | Method of manufacturing insulating film and method of manufacturing semiconductor device using this insulating film | |
JP3420960B2 (en) | Electronic device manufacturing apparatus and electronic device manufacturing method | |
JP3119988B2 (en) | Method for manufacturing semiconductor device | |
JPH0697078A (en) | Manufacture of amorphous silicon thin film | |
JP3340407B2 (en) | Insulating coating and semiconductor device | |
JP3272681B2 (en) | Solar cell manufacturing method | |
KR100434704B1 (en) | Capacitor of semiconductor device and Method for fabricating the same | |
JPS60258914A (en) | Plasma cvd equipment | |
JPH10317150A (en) | Formation of coating and coating forming device | |
JP3340429B2 (en) | Semiconductor device | |
KR0160543B1 (en) | Method for depositing high quality silicon nitride films | |
JP3564505B2 (en) | Method for manufacturing semiconductor device | |
JP3120079B2 (en) | Insulating coating and semiconductor device | |
JP3340406B2 (en) | Method for manufacturing semiconductor device | |
KR100261560B1 (en) | Capacitor and manufacturing method thereof |