JPS61579A - Manufacture of thin film - Google Patents

Manufacture of thin film

Info

Publication number
JPS61579A
JPS61579A JP12319384A JP12319384A JPS61579A JP S61579 A JPS61579 A JP S61579A JP 12319384 A JP12319384 A JP 12319384A JP 12319384 A JP12319384 A JP 12319384A JP S61579 A JPS61579 A JP S61579A
Authority
JP
Japan
Prior art keywords
substrate
gas
chamber
thin film
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12319384A
Other languages
Japanese (ja)
Inventor
Hidekazu Oota
英一 太田
Koji Mori
孝二 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP12319384A priority Critical patent/JPS61579A/en
Publication of JPS61579A publication Critical patent/JPS61579A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus

Abstract

PURPOSE:To form an amorphous semiconductor thin film having good quality on a substrate by removing previously the adsorbed gas in a reaction chamber by discharge of gaseous NH3 when said film is formed on the substrate surface by plasma CVD method while introducing raw material gas into the reaction chamber in which the substrate is arranged. CONSTITUTION:The substrate 7 is mounted on an electrode 4 of the substrate side in a chamber 1, and an electrode 5 of raw material introducing side having a gas jetting hole 3 is arranged at the position opposing thereof. Next, the gaseous NH3 is allowed to flow into the chamber 1, 13.56MHz high frequency voltage is impressed between both electrodes 4, 5 by an electric source 6, and glow discharging is performed. Gases such as O2, H2O, CO2 adsorbed to the inner wall of the chamber, respective electrodes 4, 5, the substrate 7, etc. are removed as NOx, hydrocarbon from inside of the chamber 1. Thereafter, SiH4, Si2H6, PH3, B2H6, NH3, etc. as raw material gas is introduced from the hole 3 of the electrode 5 to glow discharge it, and the amorphous semiconductor thin film of high purity amorphous, Si, etc. is formed on the surface of the substrate 7.

Description

【発明の詳細な説明】 技術分野 本発明は、プラズマCVD法による半導体膜等の薄膜の
薄膜製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method for manufacturing thin films such as semiconductor films by plasma CVD.

従来技術 近年、非晶質半導体、具体的にはアモルファスシリコン
a −S Sが注目されており、このアモルファスシリ
コンa−3iを用いた等倍センサ、太陽電池、薄膜トラ
ンジスタ等がある。この製造には、一般にプラズマCV
D (化学気相成長)法が用いられる。
BACKGROUND OF THE INVENTION In recent years, amorphous semiconductors, specifically amorphous silicon a-SS, have been attracting attention, and there are life-size sensors, solar cells, thin film transistors, etc. that use this amorphous silicon a-3i. For this production, plasma CVD is generally used.
D (chemical vapor deposition) method is used.

図面は、平行平板型のプラズマCVD装置の概略を示す
ものである。その作用を説明すると、チャンバー1内に
SiH4,5izH6,PH3゜B2HEI、NH3等
の原料ガスをガス導入口2及びガス噴出孔3を介して導
入させ、基板側電極4と高周波側電極5との間に高周波
電源6により高周波電圧(例えば、13.56MHz)
を印加してプラズマ放電させる。このプラズマ中で原料
ガスを分解・反応させて、基板7上にa−Si膜あるい
は絶縁膜を成膜させるものである。なお、この成膜処理
中は余剰原料ガスを排気口8から除去させ、チャンバー
1内を所定圧力(0,02〜3Torr)に維持させる
。又、基板7はヒータ9によって所定温度(100〜4
00℃)に加熱される。
The drawing schematically shows a parallel plate type plasma CVD apparatus. To explain its operation, raw material gases such as SiH4, 5izH6, PH3°B2HEI, NH3, etc. are introduced into the chamber 1 through the gas inlet 2 and the gas ejection hole 3, and the substrate side electrode 4 and the high frequency side electrode 5 are connected to each other. A high frequency voltage (for example, 13.56 MHz) is applied by the high frequency power supply 6 between
is applied to generate plasma discharge. The raw material gas is decomposed and reacted in this plasma to form an a-Si film or an insulating film on the substrate 7. During this film-forming process, excess raw material gas is removed from the exhaust port 8, and the inside of the chamber 1 is maintained at a predetermined pressure (0.02 to 3 Torr). Further, the substrate 7 is heated to a predetermined temperature (100 to 4
00°C).

この際、チャンバー1及び電極4,5に吸着している0
2 、H20,GO2等の吸着ガスがプラズマ中で分解
・反応し、膜中に不純物として取込まれ膜質を劣化させ
ることになる。具体的には、a −S i膜の場合には
、02が混入すると晴導電率σDがあがってしまい、光
導電率σpとの比σP/σ0が悪くなり、σpの光劣化
が促進される。又、Si3N4のような絶縁膜であれば
、絶縁耐圧や耐湿性が低下することになる。
At this time, the 0 adsorbed on the chamber 1 and the electrodes 4 and 5
2, H20, GO2, and other adsorbed gases decompose and react in the plasma, and are incorporated into the film as impurities, deteriorating the film quality. Specifically, in the case of an a-Si film, when 02 is mixed, the clear conductivity σD increases, the ratio σP/σ0 with the photoconductivity σp worsens, and the photodegradation of σp is accelerated. . Furthermore, if the insulating film is made of Si3N4, the dielectric strength and moisture resistance will be lowered.

そこで、従来にあっては、この種の吸着ガスを除去する
ため、ドープ前にN2ガスあるいはN2ガスをチャンバ
ー1内に導入して放電させるようにしたものがある。
Conventionally, in order to remove this kind of adsorbed gas, N2 gas or N2 gas is introduced into the chamber 1 and discharged before doping.

ところが、N2ガス方式による場合、CO2は除去され
るが、02は還元されてN20となり、このN20の状
態でチャンバー1中に残留することになる。又、N2ガ
ス方式による場合、02はNOxとなって除去されるが
CO2が除去されにくい。又、N2の分解エネルギーが
高く、高い・高周波電力で放電させるため、基板7ない
しは被膜素子をいためることがある。特に、パシベーシ
ゴン用絶縁膜を作成する場合、下地となるa−3i。
However, when using the N2 gas method, CO2 is removed, but 02 is reduced to N20, and remains in the chamber 1 in this N20 state. Furthermore, when using the N2 gas method, 02 is removed as NOx, but CO2 is difficult to remove. Furthermore, since the decomposition energy of N2 is high and the discharge is performed with high high frequency power, the substrate 7 or the coated element may be damaged. In particular, when creating an insulating film for passibasigon, a-3i serves as the base.

J        Aflffi極等が衝撃を受けて特
性が劣化する。
J Aflffi poles etc. are subjected to impact and their characteristics deteriorate.

目的 本発明は、このような点に鑑みなされたもので、チャン
バー、電極等に吸着している02等の不純物を確実に除
去し、良質の成膜を行なうことができる薄膜製造方法を
提供することを目的とする。
Purpose The present invention was made in view of the above points, and provides a thin film manufacturing method that can reliably remove impurities such as 02 adsorbed to chambers, electrodes, etc., and can form a high-quality film. The purpose is to

構成 本発明は、ドープ前にN H3ガスをチャンバー内に導
入して放電させることにより、吸着ガス02 、N20
.C’02等を除去するようにしたことを特徴とするも
のである。
Structure The present invention introduces N H3 gas into the chamber before doping and discharges the adsorbed gases 02 and N20.
.. The feature is that C'02 etc. are removed.

ここで、本実施例では、図面に示したプラズマCVD装
置をそのまま用いるものとする。
Here, in this embodiment, the plasma CVD apparatus shown in the drawings is used as is.

本実施例の如< N H3ガスを使用することにより、
まず、NH3の分解によりNNイオン、Nイオン、Nイ
オン等ができ、02.N20はN Oxとなり、CO2
はCY HXとなって、02.N20、CO2とも効率
よく除去できるものである。
As in this example, by using N H3 gas,
First, NH3 is decomposed to produce NN ions, N ions, N ions, etc., and 02. N20 becomes NOx and CO2
becomes CY HX, 02. Both N20 and CO2 can be removed efficiently.

又、N2ガスに比べ、N H3ガスの方が分解エネルギ
ーが低く、低パワーで反応するため、N2ガスの場合に
みられるような下地に対する衝撃等がなく、デバイス特
性を劣化させることもない。このようにドープ前にNH
3ガスを用いて不純物を除去することにより、製造され
るデバイスの性能、信頼性を向上させることができるも
のである。
Furthermore, compared to N2 gas, NH3 gas has lower decomposition energy and reacts with lower power, so there is no impact on the substrate as seen in the case of N2 gas, and there is no deterioration of device characteristics. In this way, before doping, NH
By removing impurities using three gases, the performance and reliability of manufactured devices can be improved.

このN H3ガスの放電条件としては、NH3ガス流量
が10〜11005CC、チャンバー内圧力が0.02
〜2Torr 、高周波電力が1O−300Wとした場
合比較的良好となったものである。
The discharge conditions for this NH3 gas include a NH3 gas flow rate of 10 to 11005 CC, and a chamber pressure of 0.02.
~2 Torr, which was relatively good when the high frequency power was 10-300W.

これらの条件は、更に望ましくは、前述の順で各々22
5−60sec 、0.1−ITorr 、2O−10
0Wである。又、NH3ガスを使用する場合、a−8i
:N:H(a−8’iのNドープの意味である)あるい
はSi3N4及びN5:rNxOv膜の成膜に特に有利
である。これらの場合、ドープ時の原料ガスとしてもN
H3ガスを使用するため、ガスの切換操作も簡単になる
というメリットもある。
More preferably, these conditions are set to 22, respectively, in the above-mentioned order.
5-60sec, 0.1-ITorr, 2O-10
It is 0W. Also, when using NH3 gas, a-8i
:N:H (meaning a-8'i N-doped) or Si3N4 and N5:rNxOv films are particularly advantageous. In these cases, N is also used as the raw material gas during doping.
Since H3 gas is used, there is also the advantage that the gas switching operation is easy.

ちなみに、a−8i:N:H膜の成膜につき、吸着ガス
除去用放電ガス種として従来のN2ガス方式と本発明に
よるNH3ガス方式とで比較したところ、膜特性におけ
る光導電率σPが従来方式では1.5Xto−4(0口
)−1であったのに対し2.0XIO−3(Ωam)−
” となったものである。又、暗導電率σDは従来方式
では5.0XIO−s(0cm)−’であったのに対し
2.0X10−&(0cm)−’ となったものである
。なお、σPの測定にはコプレナー型セルを用い、10
0mW/cu(AMI)照射下で行なったものである。
Incidentally, when forming the a-8i:N:H film, we compared the conventional N2 gas method and the NH3 gas method according to the present invention as discharge gas species for removing adsorbed gas, and found that the photoconductivity σP of the film properties was lower than that of the conventional N2 gas method and the NH3 gas method according to the present invention. In the method, it was 1.5Xto-4 (0 ports)-1, but 2.0XIO-3 (Ωam)-
”.Also, the dark conductivity σD was 5.0XIO-s(0cm)-' in the conventional method, but it became 2.0X10-&(0cm)-'. In addition, a coplanar cell was used to measure σP, and 10
This was carried out under 0 mW/cu (AMI) irradiation.

効果 本発明は、上述したように吸着ガス除去用の放電ガス種
としてN H3ガスを用いたので、02゜N20.CO
2等の吸着ガスをすべて効率よく除去することができ、
膜に対する不純物の混入が少なくなって膜特性を向上さ
せることができ、又。
Effects As described above, the present invention uses NH3 gas as the discharge gas species for removing adsorbed gas, so 02°N20. C.O.
All secondary adsorbed gases can be removed efficiently.
It is possible to reduce the amount of impurities mixed into the film and improve the film properties.

N H3ガスは低パワーで反応するため、下地に対する
プラズマダメージも少なくでき、この点でも膜の特性、
信頼性を向上させることができるものである。
Since NH3 gas reacts with low power, plasma damage to the underlying layer can be reduced, and in this respect, the properties of the film and
This can improve reliability.

【図面の簡単な説明】[Brief explanation of drawings]

図面はプラズマCVD装置を示す概略側面図である。 The drawing is a schematic side view showing a plasma CVD apparatus.

Claims (1)

【特許請求の範囲】[Claims]  チャンバー内に原料ガスを導入して高周波グロー放電
によるプラズマ中で分解・反応させて基板上に薄膜を形
成するプラズマCVD法による薄膜製造方法において、
原料ガスのドープ前にNH_3ガスをチャンバー内に導
入して放電させることを特徴とする薄膜製造方法。
In a thin film manufacturing method using a plasma CVD method in which a raw material gas is introduced into a chamber and decomposed and reacted in plasma generated by high-frequency glow discharge to form a thin film on a substrate,
A thin film manufacturing method characterized by introducing NH_3 gas into a chamber and causing discharge before doping the source gas.
JP12319384A 1984-06-14 1984-06-14 Manufacture of thin film Pending JPS61579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12319384A JPS61579A (en) 1984-06-14 1984-06-14 Manufacture of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12319384A JPS61579A (en) 1984-06-14 1984-06-14 Manufacture of thin film

Publications (1)

Publication Number Publication Date
JPS61579A true JPS61579A (en) 1986-01-06

Family

ID=14854492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12319384A Pending JPS61579A (en) 1984-06-14 1984-06-14 Manufacture of thin film

Country Status (1)

Country Link
JP (1) JPS61579A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63246829A (en) * 1986-12-19 1988-10-13 アプライド マテリアルズインコーポレーテッド Application and on-site multistage planaring process for hot cvd/pecvd reactor and thermochemically evaporation of silicon oxide
WO2000029642A1 (en) * 1998-11-17 2000-05-25 Applied Materials, Inc. Removing oxides or other reducible contaminants from a substrate by plasma treatment
US6355571B1 (en) 1998-11-17 2002-03-12 Applied Materials, Inc. Method and apparatus for reducing copper oxidation and contamination in a semiconductor device
WO2006086300A2 (en) * 2005-02-10 2006-08-17 Ropintassco Holdings, L.P. Control of process gases in specimen surface treatment system using plasma
DE10335341B4 (en) 2002-08-02 2019-06-13 Jnc Corporation Metallocene compounds, processes for making olefin polymers using catalysts containing the compounds, and olefin polymers produced by the processes

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63246829A (en) * 1986-12-19 1988-10-13 アプライド マテリアルズインコーポレーテッド Application and on-site multistage planaring process for hot cvd/pecvd reactor and thermochemically evaporation of silicon oxide
JPH0612771B2 (en) * 1986-12-19 1994-02-16 アプライド マテリアルズインコーポレーテッド TEOS plasma CVD method
US6167834B1 (en) 1986-12-19 2001-01-02 Applied Materials, Inc. Thermal CVD/PECVD reactor and use for thermal chemical vapor deposition of silicon dioxide and in-situ multi-step planarized process
WO2000029642A1 (en) * 1998-11-17 2000-05-25 Applied Materials, Inc. Removing oxides or other reducible contaminants from a substrate by plasma treatment
US6355571B1 (en) 1998-11-17 2002-03-12 Applied Materials, Inc. Method and apparatus for reducing copper oxidation and contamination in a semiconductor device
US6700202B2 (en) 1998-11-17 2004-03-02 Applied Materials, Inc. Semiconductor device having reduced oxidation interface
US6946401B2 (en) 1998-11-17 2005-09-20 Applied Materials, Inc. Plasma treatment for copper oxide reduction
US8183150B2 (en) 1998-11-17 2012-05-22 Applied Materials, Inc. Semiconductor device having silicon carbide and conductive pathway interface
DE10335341B4 (en) 2002-08-02 2019-06-13 Jnc Corporation Metallocene compounds, processes for making olefin polymers using catalysts containing the compounds, and olefin polymers produced by the processes
WO2006086300A2 (en) * 2005-02-10 2006-08-17 Ropintassco Holdings, L.P. Control of process gases in specimen surface treatment system using plasma
WO2006086300A3 (en) * 2005-02-10 2006-12-21 Ropintassco Holdings L P Control of process gases in specimen surface treatment system using plasma

Similar Documents

Publication Publication Date Title
JP2596214B2 (en) Method of forming high-purity thin film
US8173554B2 (en) Method of depositing dielectric film having Si-N bonds by modified peald method
US8415259B2 (en) Method of depositing dielectric film by modified PEALD method
US5589233A (en) Single chamber CVD process for thin film transistors
US8440268B2 (en) Method and apparatus for growing plasma atomic layer
US5567476A (en) Multi-step chemical vapor deposition method for thin film transistors
US20060035035A1 (en) Film forming method and film forming apparatus
Hsieh et al. Characteristics of low‐temperature and low‐energy plasma‐enhanced chemical vapor deposited SiO2
JPS61579A (en) Manufacture of thin film
JPH08264462A (en) Film formation apparatus
JPH0351094B2 (en)
JP2022094904A (en) Thin film formation method and device
US20020056415A1 (en) Apparatus and method for production of solar cells
JP3029434B2 (en) Method of manufacturing insulating film and method of manufacturing semiconductor device using this insulating film
JP3420960B2 (en) Electronic device manufacturing apparatus and electronic device manufacturing method
JP3119988B2 (en) Method for manufacturing semiconductor device
JPH0697078A (en) Manufacture of amorphous silicon thin film
JP3340407B2 (en) Insulating coating and semiconductor device
JP3272681B2 (en) Solar cell manufacturing method
JPS60258914A (en) Plasma cvd equipment
KR0160543B1 (en) Method for depositing high quality silicon nitride films
JP3564505B2 (en) Method for manufacturing semiconductor device
JP3120079B2 (en) Insulating coating and semiconductor device
JP3340406B2 (en) Method for manufacturing semiconductor device
KR100261560B1 (en) Capacitor and manufacturing method thereof