JPS6157739B2 - - Google Patents

Info

Publication number
JPS6157739B2
JPS6157739B2 JP56017678A JP1767881A JPS6157739B2 JP S6157739 B2 JPS6157739 B2 JP S6157739B2 JP 56017678 A JP56017678 A JP 56017678A JP 1767881 A JP1767881 A JP 1767881A JP S6157739 B2 JPS6157739 B2 JP S6157739B2
Authority
JP
Japan
Prior art keywords
resistor
josephson junction
resistance
flows
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56017678A
Other languages
Japanese (ja)
Other versions
JPS57132427A (en
Inventor
Koji Takaragawa
Akira Ishida
Takashi Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56017678A priority Critical patent/JPS57132427A/en
Priority to US06/269,874 priority patent/US4482821A/en
Priority to GB8117187A priority patent/GB2078046B/en
Priority to NLAANVRAGE8102758,A priority patent/NL188441C/en
Priority to DE3122986A priority patent/DE3122986C2/en
Priority to CA000379407A priority patent/CA1169498A/en
Priority to FR8111437A priority patent/FR2484173B1/en
Publication of JPS57132427A publication Critical patent/JPS57132427A/en
Publication of JPS6157739B2 publication Critical patent/JPS6157739B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/195Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using superconductive devices
    • H03K19/1954Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using superconductive devices with injection of the control current
    • H03K19/1956Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using superconductive devices with injection of the control current using an inductorless circuit

Description

【発明の詳細な説明】 本発明はジヨセフソン接合を利用した低電力高
速動作が可能で広い動作マージンを有する超伝導
論理ゲートに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a superconducting logic gate that uses Josephson junctions and is capable of low-power, high-speed operation and has a wide operating margin.

従来、超伝導論理ゲートとして各種のものが提
案されている。この中で、発明人等は、さきに特
願昭55−78082においてインダクタンスをループ
に含まないことから、小形であり、かつ高速・低
電力動作が可能、高感度であり出力線数を多くと
れる、さらに外部磁場等の影響を受けず安定動作
が可能等の特長をもつ超伝導論理ゲートを提示し
た。第1図aはその回路構成図、第1図bはその
動作しきい値特性図を示す。
Conventionally, various types of superconducting logic gates have been proposed. Among these, the inventors previously proposed in Japanese Patent Application No. 55-78082 that since no inductance is included in the loop, it is compact, capable of high-speed, low-power operation, has high sensitivity, and has a large number of output lines. Furthermore, we presented a superconducting logic gate that has features such as being able to operate stably without being affected by external magnetic fields. FIG. 1a shows its circuit configuration, and FIG. 1b shows its operating threshold characteristic diagram.

図中、T1,T2は信号入力端子、T0は出力端
子、Gは接地端子、R1,R2,R3,RLは抵抗、
J1,J2,J3はジヨセフソン接合、P1は抵抗R1とジ
ヨセフソン接合J1の交点である。この回路の構造
並びに動作、効果等の詳細は特願昭55−78082を
参照することとし、ここではその概要を示す。
In the figure, T 1 and T 2 are signal input terminals, T 0 is an output terminal, G is a ground terminal, R 1 , R 2 , R 3 , and R L are resistors.
J 1 , J 2 , and J 3 are Josephson junctions, and P 1 is the intersection of resistance R 1 and Josephson junction J 1 . For details of the structure, operation, effects, etc. of this circuit, please refer to Japanese Patent Application No. 55-78082, and an outline thereof will be shown here.

この先に提案したゲートの回路構造は第1図に
示すごとくジヨセフソン接合と抵抗をブリツジ状
に組み込んだものであり、第1図中の実線部がゲ
ート内の必須要素であるが、点線で示すように負
荷抵抗RLを接続し、これに流出する電流を出力
とするのが通常の使用方法である。この論理ゲー
トの動作を第5図をもつて説明する。論理ゲート
がスイツチした後に、負荷抵抗に取り出されるべ
き電流は、入力端子:T1にゲートバイアス電
流:Igとして供給されている。
As shown in Figure 1, the gate circuit structure proposed earlier incorporates Josephson junctions and resistors in a bridge shape. The usual method of use is to connect a load resistor R L to the resistor R L and use the current flowing into it as an output. The operation of this logic gate will be explained with reference to FIG. The current to be drawn into the load resistor after the logic gate switches is supplied to the input terminal T1 as a gate bias current I g .

(ステツプ1) かかる状態においては、Igは一部が実線で示
すように抵抗R1、超伝導(抵抗O)状態の接合
J1、及びJ2を通つて接地に流れ、残りが抵抗
R3及び接合J3を通つて接地に流れる。この場
合、接合J3が超伝導状態であるので、負荷RL
には電流は流出しない。斯る状態で入力端子T2
に制御電流:Icを供給すれば、そのすべては超
伝導状態の接合J2を通つて接地に流れるもので
ある。なぜならば、他の分岐は有限の抵抗を有す
るからそちらへは流れ得ないからである。なお、
電流Ig及びIcを供給する場合に於て抵抗R1,
R2,R3、及びRLの値を夫々R1,R2,R3及び
Lとし、かつ、ジヨセフソン接合J1,J2,J3
それぞれの最大超伝導電流(又は最大ジヨセフソ
ン電流)をI1,I2,I3とする。
(Step 1) In this state, a portion of I g flows to ground through resistor R1, superconducting (resistance O) junction J1, and J2 as shown by the solid line, and the rest flows through resistor R3 and junction J3. flows through the ground to ground. In this case, since the junction J3 is in a superconducting state, the load R L
No current flows. In this state, input terminal T2
If a control current: I c is supplied to , all of it flows to ground through the superconducting junction J2. This is because other branches have finite resistance and cannot flow there. In addition,
When supplying currents I g and I c , resistors R1,
Let the values of R2, R3, and R L be R 1 , R 2 , R 3 , and R L , respectively, and let the maximum superconducting current (or maximum Josephson current) of Josephson junctions J 1 , J 2 , and J 3 be Let I 1 , I 2 , I 3 .

第5図のステツプ1においては矢印の方向に、
各ジヨセフソン接合に電流が流れる。
In step 1 of Fig. 5, in the direction of the arrow,
A current flows through each Josephson junction.

即ち、ジヨセフソン接合J1及びJ3には、Ig
分流分のみが流れる。J1に流れる電流は、電気回
路の理論より、容易にR/R+Rgが流れ、J3
には R/R+Rgが流れることが導かれる。
That is, only a branched portion of I g flows through Josephson junctions J 1 and J 3 . According to the theory of electric circuits, the current flowing through J 1 is easily R 3 /R 1 + R 3 I g , and J 3
It is derived that R 1 /R 1 +R 3 I g flows.

一方、ジヨセフソン接合J2には、上記のIg
分流分とIcの全てが同じ方向に流れる。
On the other hand, in Josephson junction J 2 , the above-mentioned branched portion of I g and I c all flow in the same direction.

従つて、R/R+Rg+IcがJ2に流れる。 Therefore, R 3 /R 1 +R 3 I g +I c flows to J 2 .

従つて、 R/R+Rg+Ic>I2 ………(1) R/R+Rg<I1 ………(2) R/R+Rg<I3 ………(3) の条件式(1)〜(3)を満足するように、各抵抗値R1
〜R3と、供給電流値Ig,Icと、各ジヨセフソン
接合の最大超伝導電流値I1〜I3を設定すればジヨ
セフソン接合J2のみが電圧状態(高抵抗状態)に
スイツチし、J1及びJ3が超伝導状態のままに維持
される状態(ステツプ2参照)を実現できる。
Therefore, R 3 /R 1 +R 3 I g +I c >I 2 (1) R 3 /R 1 +R 3 I g <I 1 (2) R 1 /R 1 +R 3 I g <I 3 .........(3) Each resistance value R 1
~ R3 , the supply current values Ig , Ic , and the maximum superconducting current values I1 to I3 of each Josephson junction, only the Josephson junction J2 switches to the voltage state (high resistance state), A state in which J 1 and J 3 are maintained in a superconducting state (see step 2) can be realized.

なお、上記(1)〜(3)の各式を、第1図bに示すよ
うに縦軸をIg、横軸をIcにとつた図中に図示す
ると、それぞれ,,で示す直線で2分され
る領域のうち、矢印で示す領域となる。
Note that when each of the above equations (1) to (3) is illustrated in a diagram with I g on the vertical axis and I c on the horizontal axis, as shown in Figure 1b, they are represented by straight lines indicated by , respectively. Of the areas divided into two, this is the area indicated by the arrow.

なお、第1図bは、各ジヨセフソン接合が高抵
抗状態にスイツチする閾値を示す直線群からな
り、これらの領域の重複範囲がジヨセフソン論理
ゲートの正常な動作領域を決定する動作領域とな
る。この論理ゲートにおいては、後に詳述するが
斜線を付した領域Aにあるように、IgとIcをそ
れぞれ設定すれば入出力の分離ができた正常な動
作を行なうことができるものである。又、横線を
付した領域Bは、論理ゲートがスイツチされ、負
荷抵抗に電流を取り出すことはできるが、入力I
cとバイアスIgが分離されない状態で、負荷に電
流が取り出される状態を示すものである。
Note that FIG. 1b consists of a group of straight lines indicating the threshold values at which each Josephson junction switches to a high resistance state, and the overlapping range of these regions is the operating region that determines the normal operating region of the Josephson logic gate. In this logic gate, input and output can be separated and normal operation can be performed by setting I g and I c , respectively, as shown in the shaded area A, which will be explained in detail later. . In addition, in region B with horizontal lines, the logic gate is switched and current can be taken out to the load resistor, but the input I
This shows a state in which current is taken out to the load without separation of bias Ig and bias Ig .

なお、上記(1)式を示す第1図b中のの直線の
傾きが大きいこと、及びその傾きが抵抗R1,R3
の比率により、他の条件を無視すれば、いかよう
にも大きくできる。即ち、ゲートの感度を高める
ことができる点が、この論理ゲートの最大の特徴
である。
It should be noted that the slope of the straight line in Fig. 1 b, which shows the above equation (1), is large, and that the slope is the resistance R 1 , R 3
By the ratio of , if other conditions are ignored, it can be made arbitrarily large. That is, the greatest feature of this logic gate is that the sensitivity of the gate can be increased.

(ステツプ2) ジヨセフソン接合J2が高抵抗状態にスイツチす
れば、J2とR2の並列回路:Pの合成抵抗値が変化
する。ここで抵抗R2の値をJ2がスイツチした後の
高抵抗(これは通常サブギヤツプ抵抗となる)に
比べて、十分小さくなるように設定すれば、並列
回路:Pの合成抵抗値(これをR2′とする)はほ
ぼR2となる。即ち、R2′≒R2となる。
(Step 2) When Josephson junction J2 switches to a high resistance state, the combined resistance value of the parallel circuit: P of J2 and R2 changes. If the value of resistor R 2 is set to be sufficiently small compared to the high resistance after J 2 switches (this usually becomes a sub-gap resistance), the combined resistance value of parallel circuit: P (this R 2 ′) is approximately R 2 . That is, R 2 ′≒R 2 .

従つて、以下の動作においては、R2′=R2とし
て説明する。並列回路:Pの合成抵抗値が変化す
ると、Ig及びIcの分流状態が変化する。即ち、
第5図のステツプ2で示すように、Igは(R3
J3)を流れる成分と、{R1とJ1とP:(即ちJ2とR2
の並列回路)}を流れる成分に分けられる。又Ic
は{P}を流れる成分と{J1とR1とR3とJ3}を流
れる成分に分けられる。なお、J3が超伝導状態に
あるので、この段階では負荷RLに電流は流れな
い。
Therefore, in the following operation, R 2 '=R 2 will be explained. Parallel circuit: When the combined resistance value of P changes, the shunt state of I g and I c changes. That is,
As shown in step 2 of Fig. 5, I g is (R 3 and
J 3 ) and {R 1 and J 1 and P: (i.e. J 2 and R 2
parallel circuit)}. Also I c
is divided into a component flowing through {P} and a component flowing through {J 1 , R 1 , R 3 , and J 3 }. Note that since J 3 is in a superconducting state, no current flows through the load R L at this stage.

又、ステツプ2に示す矢印(実線、点線)から
も明らかなように、J3にはIgとIcの分流分が同
じ方向に流れるが、J1には逆向きに流れる。
Furthermore, as is clear from the arrows (solid line, dotted line) shown in step 2, the branched portions of I g and I c flow in the same direction in J 3 , but flow in opposite directions in J 1 .

従つて、J3のほうが先に高抵抗状態になるよう
に設定しやすい。J3が高抵抗状態にスイツチする
ための条件を求めると、 IcはR/R+R+RとR+R/R
+Rに分割されたう ちの前者がJ3に流れ、後者がJ1に流れる。同様に
gはR+R/R+R+RとR/R+R
+Rに分割されたうち の前者がJ2に流れ、後者がJ1に逆向きに流れる。
Therefore, it is easier to set J3 to enter the high resistance state first. When determining the conditions for J 3 to switch to a high resistance state, I c is R 2 /R 1 +R 2 +R 3 and R 1 +R 3 /R 1 +
Of the divided R 2 + R 3 , the former flows to J 3 and the latter flows to J 1 . Similarly, I g is R 1 +R 2 /R 1 +R 2 +R 3 and R 3 /R 1 +R
2
+ R 3 , the former flows to J 2 and the latter flows to J 1 in the opposite direction.

従つて、 R+R/R+R+R・Ig+R/R+R+R・Ic>I3 ………(4) なる関係が得られれば、ジヨセフソン接合J3が高
抵抗状態にスイツチし、ステツプ3に示すように
J1が超伝導状態、J2及びJ3が高抵抗状態になる。
J3が高抵抗状態になると、その抵抗値はほぼJ3
サブギヤツプ抵抗となり、外部に付加した抵抗R
Lよりも大きいのが常である。従つてRLに出力電
流が流出する。
Therefore, if the following relationship is obtained: R 1 +R 2 /R 1 +R 2 +R 3・I g +R 2 /R 1 +R 2 +R 3・I c >I 3 (4), then Josephson junction J 3 Switch to high resistance state and proceed as shown in step 3.
J 1 is in a superconducting state, and J 2 and J 3 are in a high resistance state.
When J 3 becomes a high resistance state, its resistance value becomes approximately the sub-gap resistance of J 3 , and the externally added resistance R
It is usually larger than L. Therefore, the output current flows to R L .

なお、上記の(4)式の閾値は第1図bの直線で
示され、このうち矢印で示す領域がJ3のスイツチ
する領域である。
The threshold value of equation (4) above is shown by the straight line in FIG. 1b, and the area indicated by the arrow is the area where J3 is switched.

(ステツプ3) ジヨセフソン接合J3が高抵抗状態にスイツチす
ると、J3と負荷抵抗RLの並列合成抵抗値も先に
述べたR2とJ2の並列回路Pと同様に変化する。
又、通常ジヨセフソン接合が高抵抗状態にスイツ
チした後の抵抗はサブギヤツプ抵抗程度の極めて
高い抵抗値であるので、負荷抵抗RLの値に比べ
てもその値は極めて高い。従つて、J3とRLとの
並列合成抵抗値をRL′とすればRL′〓RLとな
る。従つて、以下においてはRL′=RLとして説
明する。ステツプ3の図に示したように、J2及び
J3が高抵抗、J1が超伝導状態になると、Ig及び
cはそれぞれ以下のように分流する。
(Step 3) When Josephson junction J 3 switches to a high resistance state, the parallel combined resistance value of J 3 and load resistor R L changes similarly to the parallel circuit P of R 2 and J 2 described above.
Further, since the resistance after the Josephson junction is normally switched to the high resistance state is an extremely high resistance value on the order of sub-gap resistance, its value is also extremely high compared to the value of the load resistance R L . Therefore, if the parallel combined resistance value of J 3 and R L is R L ', then R L '= RL . Therefore, in the following description, it will be assumed that R L '=R L . As shown in the diagram in step 3, J 2 and
When J 3 becomes high resistance and J 1 becomes superconducting, I g and I c are divided as shown below.

即ち、Igは{R3と(RLとJ3の並列回路)}を
経由して接地に流れる成分、(但し、これはほと
んどR3とRLを経由して接地に流れる、ステツプ
3中の実線矢印の流れに等しい)と{R1とJ1
(R2とJ2の並列回路)}を経由して接地に流れる成
分、(但しこれはほとんどR1とJ1とR2を経由して
接地に流れるものに等しい)とに分けられる。
That is, I g is the component that flows to the ground via {R 3 and (parallel circuit of R L and J 3 )} (However, most of this flows to the ground via R 3 and R L , Step 3 (equal to the flow of the solid arrow inside) and {R 1 and J 1
(parallel circuit of R 2 and J 2 )}, and the component that flows to the ground via R 1 , J 1 , and R 2 .

同様にIcは、{J1とR1とR3とRL}を経由して
接地に流れる点線で示す成分と、{R2}を経由し
て接地に流れる同じく点線で示す成分とに分けら
れる。
Similarly, I c is divided into a component shown by the dotted line that flows to the ground via {J 1 , R 1 , R 3 , and R L }, and a component shown by the dotted line that flows to the ground via {R 2 }. Can be divided.

従つて、J1に流れるIg成分は
+R/R+R+R+R・Igであり、こ
れがT1からT2 方向に流れる。
Therefore, the I g component flowing to J 1 is R 3 +R L /R 1 +R 2 +R 3 +R L ·I g , which flows from T 1 to T 2 direction.

一方、J1に流れるIc成分はR/R+R+R
+R・ Icであり、これがT2からT1方向に流れる。
On the other hand, the I c component flowing to J 1 is R 2 /R 1 +R 2 +R 3
+ RLIc , which flows from T2 to T1 direction.

従つて (R+R)/R+R+R+R・Ig−R/R+R+R+R・Ic>I1 ………(5) なる関係が得られればJ1が高抵抗状態にスイツチ
する。
Therefore, if the following relationship is obtained: (R 3 +R L )/R 1 +R 2 +R 3 +R L・I g −R 2 /R 1 +R 2 +R 3 +R L・I c >I 1 ………(5) J 1 switches to high resistance state.

(ステツプ4) J1が高抵抗状態(サブギヤツプ抵抗程度)にス
イツチすればIgとIc入力端子間が高抵抗になる
のでIgとIcは分離されることになる。即ち、第
5図のステツプ4に図示するように、IgはR3
Lを介して接地に流れ、IcはR2を介して接地に
流れる。ゲートの制御入力がIcであり、出力電
流はIgが切り換えられたものがRLに流出するも
のであるので、IgとIcの分離とは、入力と出力
の分離ができることを意味するものである。
(Step 4) If J1 is switched to a high resistance state (approximately sub-gap resistance), high resistance will be created between the Ig and Ic input terminals, so Ig and Ic will be separated. That is, as shown in step 4 of FIG. 5, I g flows to ground via R 3 and R L and I c flows to ground via R 2 . The control input of the gate is I c , and the output current is the one that flows out to R L when I g is switched, so separating I g and I c means that the input and output can be separated. It is something to do.

なお、(5)式において、R1,R2,R3≪RLとすれ
ば、(5)式は Ig>I1 ………(6) とほぼ等しい。
Note that in equation (5), if R 1 , R 2 , R 3 <<R L , equation (5) is approximately equal to I g >I 1 (6).

第1図bの閾値は(6)式を示すものである。 The threshold value shown in FIG. 1b is expressed by equation (6).

以上で、動作が明らかになつたが、第1図bの
閾値特性を整理すると次のようになる。即ち、同
図に於て、領域Aが本発明による論理ゲートが入
出力分離が十分な状態で動作する場合の領域、B
は入出力分離が不十分な状態で動作する場合の領
域を示すことになる。
The operation has been clarified above, and the threshold characteristics shown in FIG. 1b can be summarized as follows. That is, in the figure, region A is the region where the logic gate according to the present invention operates with sufficient input/output separation, and region B is
indicates the area where input/output separation is insufficient.

なお、第1図bの閾値は、I1=I2=I3、R1=R3
の条件の場合であり、この場合は感度は2である
が、R1を大とすればその感度が更に向上できる
ものである。
Note that the threshold values in FIG. 1b are I 1 = I 2 = I 3 , R 1 = R 3
In this case, the sensitivity is 2, but if R 1 is increased, the sensitivity can be further improved.

ところで一般の超伝導回路は製造プロセスの条
件によつては、ジヨセフソン接合の電圧転移後の
抵抗を十分小さくできない、あるいは抵抗に接触
抵抗に寄因する製造偏差が生じる等の問題点が生
じる場合がありうる。
However, depending on the conditions of the manufacturing process, general superconducting circuits may have problems such as not being able to sufficiently reduce the resistance after the voltage transition of the Josephson junction, or manufacturing deviations due to contact resistance. It's possible.

この従来ゲートにおいてこのような問題点が生
じると、正源動作領域は以下の例に示すように狭
くなる。すなわち、スイツチングのシーケンスに
おけるステツプ2の場合に、ジヨセフソン接合J2
が転移してもジヨセフソン接合J2を通し接地に流
れる、もれ電流が大きいため、信号Ig,Icのジ
ヨセフソン接合J3への分流分が減ることになる。
従つて、ジヨセフソン接合J3を転移させるには信
号Ig,Icが大きい必要がある。これはしきい値
を示す直線が図で右上の方向に移動することに
対応しその結果動作領域が狭くなる。信号Ig
cのジヨセフソン接合J3への分流分を増すには
抵抗R1,R3を十分に小さくすればその効果があ
るが、この場合、接触抵抗による抵抗値の偏差が
大きくなる。抵抗R1とR3の他の偏差が大きくな
ると、しきい値を示す直線に直接変動をもたら
すことになる。特願昭55−78082に記した通りこ
のしきい値を示す直線はゲートの感度を決める
重要なしきい値でありこれが変動することは大き
な欠点となる。
When such a problem occurs in this conventional gate, the positive source operation region becomes narrow as shown in the example below. That is, in the case of step 2 in the switching sequence, Josephson junction J 2
Even if transition occurs, a large leakage current flows through the Josephson junction J 2 to the ground, so that the shunt of the signals I g and I c to the Josephson junction J 3 is reduced.
Therefore, the signals I g and I c must be large in order to transfer Josephson junction J 3 . This corresponds to the straight line indicating the threshold moving toward the upper right in the figure, and as a result, the operating region becomes narrower. Signal I g ,
Increasing the shunt of I c to Josephson junction J 3 can be achieved by making resistances R 1 and R 3 sufficiently small, but in this case, the deviation in resistance value due to contact resistance becomes large. Larger other deviations in resistors R 1 and R 3 will lead to direct variations in the threshold line. As described in Japanese Patent Application No. 55-78082, the straight line indicating this threshold value is an important threshold value that determines the sensitivity of the gate, and its fluctuation is a major drawback.

また第1図aの従来例において、大きな出力電
流を取り出すためには負荷抵抗を小さくする必要
がある。一般に負荷抵抗を小さくすると、スイツ
チのシーケンス、ステツプ3において、ジヨセフ
ソン接合J2,J3転移後に、負荷抵抗に電流が流れ
るため、ジヨセフソン接合J1への分流分が減るこ
とになる。この結果ジヨセフソン接合J1が転移し
にくくなり第1図bの直線に示すしきい値が信
号igの大きい領域へ移行し、動作領域が狭くな
るという欠点も有していた。
Further, in the conventional example shown in FIG. 1a, in order to extract a large output current, it is necessary to reduce the load resistance. Generally, when the load resistance is reduced, in step 3 of the switch sequence, a current flows through the load resistance after the Josephson junctions J 2 and J 3 transition, so that the shunt to the Josephson junction J 1 is reduced. As a result, the Josephson junction J 1 becomes difficult to transition, and the threshold value shown by the straight line in FIG. 1b shifts to a region where the signal i g is large, resulting in a disadvantage that the operating region becomes narrower.

本発明はこれらの欠点を除去するため、特願昭
55−78082の回路にバイパス抵抗や過渡的な電流
を阻止するためのインダクタンスを付加する構造
をとることによつて、広い領域で、安定で高速な
動作が可能な超伝導論理ゲートを提供することを
目的とする。
In order to eliminate these drawbacks, the present invention
To provide a superconducting logic gate capable of stable and high-speed operation over a wide range by adopting a structure in which a bypass resistor and an inductance for blocking transient current are added to the circuit of 55-78082. With the goal.

以下図面を参照して、本願の第1の発明の一実
施例について説明する。第2図中R4はバイパス
抵抗でその値は抵抗R1,R2,R3等に比べ十分小
さいものとする抵抗R4の値はR1,R2,R3に比べ
小さければ小さいほどよい。又、従来例同様、抵
抗R2は負荷抵抗RLの値に比べ小さいことが必要
である。しかし、抵抗R1,R3は任意の値でよ
い。この実施例は端子P1,T0の間にバイパス抵
抗を挿入した点を除いて第1図aの先の構造と同
一の構造を有している。
An embodiment of the first invention of the present application will be described below with reference to the drawings. In Figure 2, R 4 is a bypass resistor whose value is sufficiently small compared to resistors R 1 , R 2 , R 3 , etc. The smaller the value of resistor R 4 is compared to R 1 , R 2 , R 3, etc. good. Further, as in the conventional example, the resistance R 2 needs to be smaller than the value of the load resistance R L . However, the resistors R 1 and R 3 may have arbitrary values. This embodiment has the same structure as the previous structure in FIG. 1a, except that a bypass resistor is inserted between terminals P 1 and T 0 .

この実施例におけるスイツチングの動作は第1
図aの構造のものとほぼ同一である。すなわち、
第6図に示すように入力端子T1及びT2から、信
号Ig,Icを同時に印加するとゲートがスイツチ
し、出力端子T0に出力信号が得られることにな
る。そのスイツチングのシーケンスは、以下の通
りである。
The switching operation in this embodiment is the first
The structure is almost the same as that in Figure a. That is,
As shown in FIG. 6, when the signals I g and I c are simultaneously applied from the input terminals T 1 and T 2 , the gate is switched and an output signal is obtained at the output terminal T 0 . The switching sequence is as follows.

(ステツプ1) まず信号Igの抵抗R1とR3の分流分の信号と、
信号Icとによつて、ジヨセフソン接合J2が電圧
に転移する。なおこのためのしきい値はジヨセフ
ソン接合J2が電圧転移しないかぎり端子P1とT0
間に電位差が生じずR4に電流が流れないことか
らも明らかな通り、第1図の例と全く同一とな
る。このためのIg,Icの条件は式(1)と同じにな
る。
(Step 1) First, the signal of the shunt of the signal I g by the resistors R 1 and R 3 ,
The signal I c causes the Josephson junction J 2 to transition to a voltage. Note that the threshold for this is the voltage difference between terminals P 1 and T 0 unless the Josephson junction J 2 undergoes a voltage transition.
As is clear from the fact that no potential difference occurs between them and no current flows through R4 , this is exactly the same as the example shown in FIG. The conditions for I g and I c for this purpose are the same as in equation (1).

即ちJ2の転移の条件は R/R+Rg+Ic>I2 (1)′ 又、この状態で、J1,J3が電圧転移しない条件
として、前述の(2)、(3)式と同じ条件が必要であ
る。即ち、 R/R+Rg<I1………(2)′、 R/R+Rg<I3 ………(3)′ (ステツプ2) ジヨセフソン接合J2が電圧転移すると、大きい
抵抗値をもつことから、信号Icの一部が抵抗
R1,R3及びバイパス抵抗R4を通つてジヨセフソ
ン接合J3に流れ、信号Igのジヨセフソン接合J3
への分流分も大きくなる。(ステツプ2中のB1
R4を介して流れるIc成分を示す。)この結果ジヨ
セフソン接合J3が電圧に転移する。なお、端子
T2への入力信号Icが抵抗R1,R3だけではなく抵
抗R4を通つてジヨセフソン接合J3へ、また抵抗
R1を通つてP1点に流れた信号Igも抵抗R4を通つ
てジヨセフソン接合J3へ流入することも明らかな
通り、(ステツプ2中にIg成分がR4を介して接合
J3に流れる成分をB2で示す)この回路において
は、ジヨセフソン接合J2転移後にジヨセフソン接
合J3へ分流される信号が抵抗R4を流れる分だけ増
加するため、小さい値の入力信号Ig,Icでジヨ
セフソン接合J3が電圧状態に転移することにな
る。このための入力信号Ig,Icの条件は抵抗
R1,R4,R3で形成されるΔ結線をY結線に変形
してJ3への分流分を計算すればよい。この際、バ
イパス抵抗が無い場合で説明したように並列回路
Pの合成抵抗値はR2′となり、これは、R2とジヨ
セフソン接合J2が電圧転移後の高抵抗値との並列
抵抗値となる。計算結果をまとめれば R(R+R′)+R′(R+R)/(R+R)(R+R)+R′Rg +R′(R+R+R)/R′(R+R+R)+R(R+R)Ic>I3 ………(4)′ これは、第1図bのしきい値直線がバイパス
抵抗R4が無い場合に比べて下方向に移動するこ
とに対応することから、より広い動作領域をもつ
という大なる利点を有する。
In other words, the condition for the transition of J 2 is R 3 /R 1 +R 3 I g +I c >I 2 (1)' Also, in this state, the conditions for J 1 and J 3 to not undergo voltage transition are as described in (2) above. The same conditions as in equation (3) are required. That is, R 3 /R 1 +R 3 I g <I 1 ......(2)', R 1 /R 1 +R 3 I g <I 3 ......(3)' (Step 2) Josephson junction J 2 When the voltage transition occurs, a part of the signal I c becomes a resistance because it has a large resistance value.
R 1 , R 3 and the bypass resistor R 4 to the Josephson junction J 3 and the signal I g flows through the Josephson junction J 3
The amount of water diverted to the area will also increase. (B 1 in step 2 is
The I c component flowing through R 4 is shown. ) As a result, Josephson junction J 3 transfers to voltage. In addition, the terminal
The input signal I c to T 2 passes not only through resistors R 1 and R 3 but also through resistor R 4 to Josephson junction J 3 and to resistor
As is clear, the signal I g that has flowed to point P 1 through R 1 also flows into Josephson junction J 3 through resistor R 4 (during step 2, the I g component passes through R 4 and flows into Josephson junction J 3 ).
In this circuit, after the Josephson junction J 2 transfers , the signal shunted to the Josephson junction J 3 increases by the amount flowing through the resistor R 4 , so the input signal I g with a small value , I c , the Josephson junction J 3 transitions to the voltage state. The conditions for the input signals I g and I c for this are resistance
The Δ connection formed by R 1 , R 4 , and R 3 may be transformed into a Y connection to calculate the shunt to J 3 . In this case, as explained in the case where there is no bypass resistor, the combined resistance value of the parallel circuit P is R 2 ', which means that R 2 and Josephson junction J 2 are the parallel resistance value of the high resistance value after voltage transition. Become. To summarize the calculation results, R 1 (R 4 +R 2 ′)+R 2 ′(R 3 +R 4 )/(R 2 +R 4 )(R 1 +R 3 )+R 2 ′R 4 I g +R 2 ′(R 1 +R 3 +R 4 )/R 2 ′(R 1 +R 3 +R 4 )+R 4 (R 1 +R 3 )I c >I 3 ………(4)′ This means that the threshold straight line in Figure 1b is bypassed. Compared to the case without the resistor R 4 , since it corresponds to downward movement, it has the great advantage of having a wider operating range.

(ステツプ3) 上記ステツプ2の結果、ジヨセフソン接合J3
電圧状態に転移し、高抵抗となるので、出力端子
T0に接続される外部負荷抵抗RLとの並列合成値
はほぼRLと等しくなる。この並列合成値をRL
とすれば、最後にJ1が電圧状態に転移する条件は
以下のようになる。
(Step 3) As a result of Step 2 above, the Josephson junction J3 transitions to a voltage state and becomes high resistance, so the output terminal
The parallel combined value with the external load resistance R L connected to T 0 is approximately equal to R L . This parallel composite value is R L
Then, the conditions for J 1 to finally transition to the voltage state are as follows.

(R+R′)+R′(R+R)/(R′+R′)(R+R+R)+R(R+R)I
g −R′(R+R+R)/(R+R+R)(R′+R′)+R(R+R)Ic>I1………(
5)′ この場合にも、T1点への入力信号Igの分流分
の一部を抵抗R4を経由してP1点に流し込むこと
ができるの(第6図ステツプ3中のB3)で、ジヨ
セフソン接合J3の転移のためのしきい値はバイパ
ス抵抗R4が無い場合に比べ入力信号Igの小さい
領域に移行する。
R 4 (R 3 +R L ′)+R L ′(R 1 +R 3 )/(R 2 ′+R L ′)(R 1 +R 3 +R 4 )+R 4 (R 1 +R 3 )I
g −R 2 ′(R 1 +R 3 +R 4 )/(R 1 +R 3 +R 4 )(R 2 ′+R L ′)+R 4 (R 1 +R 3 )I c >I 1 ………(
5)' In this case as well, it is possible to flow part of the shunt of the input signal I g to point T 1 to point P 1 via resistor R 4 (B 3 in step 3 in Figure 6). ), the threshold for transition of Josephson junction J 3 shifts to a region where the input signal I g is smaller than in the case without bypass resistor R 4 .

(ステツプ4) 上記のシーケンスを経て本発明ゲートはスイツ
チを完了し、端子T0を経由して負荷RLに電流を
供給することができる。
(Step 4) Through the above sequence, the gate of the present invention completes the switch and can supply current to the load R L via the terminal T 0 .

ところで本発明において、プロセス上の条件に
より、接触抵抗や転移後の接合の抵抗値がさがる
等の問題点が生じたとしても、比較的精度の出し
やすい大きい値の抵抗R1,R3を用い、抵抗R4
みを小さくすれば、ジヨセフソン接合J2転移後ジ
ヨセフソン接合J3への分流分を増大せしめること
ができる。従つて第1図bの主要なしきい値を示
す直線に影響を及ぼすことなく、しきい値を示
す直線を信号Ig,Icの小さい領域におさめる
即ち広い動作領域を確保することができる。
By the way, in the present invention, even if problems such as a decrease in contact resistance or the resistance value of the bond after transfer occur due to process conditions, large value resistances R 1 and R 3 are used that are relatively easy to achieve accuracy. , by reducing only the resistance R 4 , it is possible to increase the shunt to the Josephson junction J 3 after the Josephson junction J 2 transition. Therefore, the straight line representing the threshold value can be kept within a small region of the signals I g and I c without affecting the straight line representing the main threshold value shown in FIG. 1b, that is, a wide operating range can be secured.

なお、抵抗R4の製造偏差により第1図bのし
きい値を示す直線が若干変動する可能性はある
がこれは、バイパス抵抗が無い場合において感度
を与える主要なしきい値を示す直線が変動した
点と比較すると実用上全く問題とならない。
Note that there is a possibility that the straight line indicating the threshold value in Figure 1b may vary slightly due to manufacturing deviation of the resistor R4 , but this is because the straight line indicating the main threshold value that gives sensitivity will vary in the absence of a bypass resistor. Compared to the points mentioned above, there is no problem at all in practice.

なお、この種の論理ゲートの動作速度は、その
動作点である信号Ig,Icの値がしきい値からは
なれればはなれる程速くなる。逆に言うと、同一
の動作点で動作させる場合、動作領域が広ければ
広い程動作速度は速くなる。この意味から本発明
実施例では、バイパス抵抗が無い場合と比べ高速
動作を行なわしめるという利点も有している。
Note that the operating speed of this type of logic gate increases as the values of the signals I g and I c , which are the operating points thereof, deviate from the threshold values. Conversely, when operating at the same operating point, the wider the operating range, the faster the operating speed. In this sense, the embodiments of the present invention also have the advantage of being able to operate at higher speeds than when there is no bypass resistor.

第3図は本願の第2の発明の一実施例である。
この実施例ではインダクタンスL1を抵抗R2と直
列に挿入した点を除いて第2図と同一の回路構成
をもつている。
FIG. 3 shows an embodiment of the second invention of the present application.
This embodiment has the same circuit configuration as in FIG. 2 except that an inductance L 1 is inserted in series with a resistor R 2 .

ところで、通常、ジヨセフソン接合が電圧転移
したとき立ち上がりのするどい大きい振幅をもつ
過渡的な信号が流れる。この過渡的な信号からイ
ンダクタンスをみると大きな抵抗値にみえる点を
利用して、分流する電流の方向を制御することに
より特性改善をしようとするのが本実施例のねら
いとするところである。従つて、インダクタンス
L1の値はジヨセフソン接合の転移する時間(数
PS)の逆数で決まる周波数をf0とすると2πf0L1
が抵抗R2と同程度となるようにすればよい。こ
の回路の動作原理はほぼ第2図のそれと同じであ
るが、インダクタンスL1が無い場合ではジヨセ
フソン接合J2が電圧に転移した時に生じる過渡的
な信号は小さい抵抗値をもつ抵抗R2によつて制
限されるため有効に利用されていなかつた。とこ
ろがこのような構成をとると過渡的にはジヨセフ
ソン接合J2には抵抗R2が接続されていないように
見える。このため、信号Ig,Icとも、ほとんど
の電流はジヨセフソン接合J3方向に流れることに
なり、ジヨセフソン接合J3が結果的に低いレベル
の信号Ig,Icのもとに動作をすることになる。
このことは第1図bにおけるしきい値を示す直線
を信号Ig,Icの小さい領域に動かすことに対
応する。したがつて動作領域が更に広くとれるこ
とになる。
By the way, normally, when a Josephson junction undergoes a voltage transition, a transient signal with a sharp rise and large amplitude flows. The aim of this embodiment is to utilize the fact that the inductance appears to have a large resistance value when viewed from this transient signal to improve the characteristics by controlling the direction of the shunted current. Therefore, the inductance
The value of L 1 is the transition time (number of
If the frequency determined by the reciprocal of PS) is f 0 , then 2πf 0 L 1
It suffices to make it approximately the same as the resistance R2 . The operating principle of this circuit is almost the same as that shown in Figure 2, but in the absence of inductance L 1 , the transient signal generated when Josephson junction J 2 transitions to voltage is passed through resistor R 2 with a small resistance value. It has not been used effectively due to restrictions on However, with such a configuration, it appears that the resistance R 2 is not connected to the Josephson junction J 2 transiently. Therefore, for both the signals I g and I c , most of the current flows in the Josephson junction J 3 direction, and the Josephson junction J 3 operates under the low level signals I g and I c as a result. It turns out.
This corresponds to moving the straight line representing the threshold value in FIG. 1b to a region where the signals I g and I c are small. Therefore, the operating range can be further expanded.

なお第2図の実施例での説明したと同様の理由
により、動作領域を広くとりうる第3図の実施例
は高速動作という点でも利点がある。
Incidentally, for the same reason as explained in the embodiment of FIG. 2, the embodiment of FIG. 3, which can have a wide operating range, also has an advantage in terms of high-speed operation.

第4図は第2図に示す本願の第1の発明の他の
実施例である。この実施例では、インダクタンス
L2を負荷抵抗R1と直列に挿入した点を除いて、
第2図と同一の回路構成をもつている。この場合
のインダクタンスL2の作用は、第3図のインダ
クタンスと同様である。即ち、第4図の実施例の
動作はほぼ第2図のそれと同一シーケンスに従う
が、この構造では、ジヨセフソン接合J3が電圧転
移したときの過渡的信号がほとんどジヨセフソン
接合J1に流れることになる。このためジヨセフソ
ン接合J1が電圧状態に転移するバイアス信号レベ
ルが低くてもよいことになる。すなわちインダク
タンスL2を入れることによつて、しきい値を示
す直線が信号Igの小さい領域にさがることに
なり、正常動作領域が広くとり得るという利点が
生じることになる。なおこの構造では、出力電流
の立ち上がりが若干なまることになるが、過渡応
答後に最終的に取り出し得る出力電流の大きさは
インダクタンスL2が無い場合と同一の値とな
る。
FIG. 4 shows another embodiment of the first invention of the present application shown in FIG. In this example, the inductance
Except that L 2 is inserted in series with the load resistor R 1 .
It has the same circuit configuration as FIG. 2. The effect of the inductance L 2 in this case is similar to that of the inductance shown in FIG. That is, the operation of the embodiment of FIG. 4 follows approximately the same sequence as that of FIG. 2, but in this structure, most of the transient signal when the Josephson junction J 3 undergoes a voltage transition flows to the Josephson junction J 1. . Therefore, the bias signal level at which the Josephson junction J 1 transitions to the voltage state may be low. That is, by inserting the inductance L 2 , the straight line indicating the threshold value falls into the region where the signal I g is small, and there is an advantage that the normal operation region can be widened. Note that in this structure, the rise of the output current is slightly blunted, but the magnitude of the output current that can be finally extracted after the transient response is the same value as when there is no inductance L2 .

以上述べたように、本発明によると、小形で低
電力・高速動作が可能な電流を直接接合に注入す
る形式の超伝導論理ゲートにおいて、広い動作領
域で動作することからマージンを大きくとれ、か
つ高速な動作を行うことが可能となるという大き
な利点が得られる。
As described above, according to the present invention, in a superconducting logic gate of the type that directly injects current into a junction, which is small and capable of low-power, high-speed operation, it operates in a wide operating range, allowing a large margin. This provides the great advantage of being able to perform high-speed operations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a及び第1図bは、先に提案した超伝導
論理ゲートとその動作しきい値曲線を示す図。第
2図はバイパス抵抗R4により高性能化をはかつ
た本願の第1の発明の実施例を示す結線図。第3
図はインダクタンスにより高性能化をはかつた本
願の第2の発明の実施例を示す線線図。第4図は
インダクタンスにより高性能化をはかつた本願の
第1の発明の他の実施例を示す線線図。第5図は
第1図aに示す、先に提案した超伝導論理ゲート
の動作シーケンス説明図。第6図は第2図に示す
本発明の超伝導論理ゲートの動作シーケンス説明
図。 R1,R2,R3,R4……抵抗、RL……負荷抵抗、
T1,T2……入力端子、T0……出力端子、J1
J2,J3……ジヨセフソン接合、L……インダクタ
ンス。
FIGS. 1a and 1b are diagrams showing the previously proposed superconducting logic gate and its operating threshold curve. FIG. 2 is a wiring diagram showing an embodiment of the first invention of the present application in which performance is improved by a bypass resistor R4 . Third
The figure is a line diagram showing an embodiment of the second invention of the present application, which uses inductance to improve performance. FIG. 4 is a line diagram showing another embodiment of the first invention of the present application in which performance is improved by using inductance. FIG. 5 is an explanatory diagram of the operation sequence of the previously proposed superconducting logic gate shown in FIG. 1a. FIG. 6 is an explanatory diagram of the operation sequence of the superconducting logic gate of the present invention shown in FIG. 2. R 1 , R 2 , R 3 , R 4 ...Resistance, R L ...Load resistance,
T 1 , T 2 ... Input terminal, T 0 ... Output terminal, J 1 ,
J 2 , J 3 ... Josephson junction, L ... inductance.

Claims (1)

【特許請求の範囲】 1 第1の入力端子T1と、第2の入力端子T2
と、出力端子T0と、接地端子Gと、上記第1及
び第2の入力端子間に設けられた、第1のジヨセ
フソン接合J1及び第1の抵抗R1からなり、か
つ上記第1の入力端子T1に第1の抵抗R1が接
続された直列回路S1と、上記第2の入力端子T
2及び上記接地端子G間に設けられた、第2のジ
ヨセフソン接合J2及び第2の抵抗R2からなる
並列回路Pと、上記第1の入力端子T1及び上記
出力端子T0間に設けられた第3の抵抗R3と、
上記出力端子T0及び接地端子G間に設けられた
第3のジヨセフソン接合J3と、上記第1の抵抗
R1と上記第1のジヨセフソン接合J1との接続
点P1と上記出力端子T0との間に設けられた第
4の抵抗R4とからなることを特徴とする超伝導
論理ゲート。 2 第1の入力端子T1と、第2の入力端子T2
と、出力端子T0と、接地端子Gと、上記第1及
び第2の入力端子間に設けられた、第1のジヨセ
フソン接合J1及び第1の抵抗R1からなり、か
つ上記第1の入力端子T1に第1の抵抗R1が接
続された直列回路S1と、上記第2の入力端子T
2及び上記接地端子G間に設けられた、第2のジ
ヨセフソン接合J2及びインダクタンスL1と第
2の抵抗R2の直列回路S2からなる並列回路P
と、上記第1の入力端子T1及び上記出力端子T
0間に設けられた第3の抵抗R3と、上記出力端
子T0及び接地端子G間に設けられた第3のジヨ
セフソン接合J3と、第1の抵抗R1と第1のジ
ヨセフソン接合J1の接続点P1と出力端子T0
との間に設けられた第4の抵抗R4とからなるこ
とを特徴とする超伝導論理ゲート。 3 前記出力端子T0に負荷抵抗RL又は負荷抵
抗RLとインダクタンスL2の直列回路S3を接
続して成ることを特徴とする特許請求の範囲第1
項記載の超伝導論理ゲート。 4 前記出力端子T0に負荷抵抗RL又は負荷抵
抗RLとインダクタンスL2の直列回路S3を接
続して成ることを特徴とする特許請求の範囲第2
項記載の超伝導論理ゲート。
[Claims] 1. A first input terminal T1 and a second input terminal T2.
, an output terminal T0, a ground terminal G, a first Josephson junction J1 and a first resistor R1 provided between the first and second input terminals, and the first input terminal T1 a series circuit S1 in which a first resistor R1 is connected to the second input terminal T;
A parallel circuit P consisting of a second Josephson junction J2 and a second resistor R2 is provided between the first input terminal T1 and the output terminal T0, and a third parallel circuit P is provided between the first input terminal T1 and the output terminal T0. and a resistance R3 of
A third Josephson junction J3 is provided between the output terminal T0 and the ground terminal G, and a connection point P1 between the first resistor R1 and the first Josephson junction J1 is provided between the output terminal T0. A superconducting logic gate comprising a fourth resistor R4. 2 First input terminal T1 and second input terminal T2
, an output terminal T0, a ground terminal G, a first Josephson junction J1 and a first resistor R1 provided between the first and second input terminals, and the first input terminal T1 a series circuit S1 in which a first resistor R1 is connected to the second input terminal T;
2 and the ground terminal G, the parallel circuit P consists of a second Josephson junction J2 and a series circuit S2 of an inductance L1 and a second resistor R2.
and the first input terminal T1 and the output terminal T.
0, the third Josephson junction J3 provided between the output terminal T0 and the ground terminal G, and the connection point P1 between the first resistor R1 and the first Josephson junction J1. and output terminal T0
and a fourth resistor R4 provided between the superconducting logic gate and the fourth resistor R4. 3. Claim 1, characterized in that the output terminal T0 is connected to a load resistor R L or a series circuit S3 of the load resistor R L and an inductance L2.
Superconducting logic gate as described in Section. 4. Claim 2, characterized in that a load resistor R L or a series circuit S3 of the load resistor R L and an inductance L2 is connected to the output terminal T0.
Superconducting logic gate as described in Section.
JP56017678A 1980-06-10 1981-02-09 Superconductive logical gate Granted JPS57132427A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP56017678A JPS57132427A (en) 1981-02-09 1981-02-09 Superconductive logical gate
US06/269,874 US4482821A (en) 1980-06-10 1981-06-03 Superconductive logic circuit
GB8117187A GB2078046B (en) 1980-06-10 1981-06-04 Superconductive logic circuit
NLAANVRAGE8102758,A NL188441C (en) 1980-06-10 1981-06-09 SUPER CONDUCTIVE LOGIC CIRCUIT.
DE3122986A DE3122986C2 (en) 1980-06-10 1981-06-10 Injection current-controlled basic circuit with Josephson elements
CA000379407A CA1169498A (en) 1980-06-10 1981-06-10 Superconductive logic circuit
FR8111437A FR2484173B1 (en) 1980-06-10 1981-06-10 SUPERCONDUCTIVE LOGIC CIRCUIT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56017678A JPS57132427A (en) 1981-02-09 1981-02-09 Superconductive logical gate

Publications (2)

Publication Number Publication Date
JPS57132427A JPS57132427A (en) 1982-08-16
JPS6157739B2 true JPS6157739B2 (en) 1986-12-08

Family

ID=11950505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56017678A Granted JPS57132427A (en) 1980-06-10 1981-02-09 Superconductive logical gate

Country Status (1)

Country Link
JP (1) JPS57132427A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1131259C (en) * 1997-04-18 2003-12-17 帝人株式会社 Process for producing polycarbonate resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1131259C (en) * 1997-04-18 2003-12-17 帝人株式会社 Process for producing polycarbonate resin

Also Published As

Publication number Publication date
JPS57132427A (en) 1982-08-16

Similar Documents

Publication Publication Date Title
US5455519A (en) Josephson logic circuit
JPS6010451B2 (en) Switching circuit using Josephson effect
US4482821A (en) Superconductive logic circuit
US4710651A (en) Josephson-junction logic device
JPS6157739B2 (en)
US4611132A (en) Circuit utilizing Josephson effect
JPS6157738B2 (en)
JPS6053091A (en) Current injection type josephson switch circuit
JPS59110224A (en) Current injection type josephson switch circuit
JPH0257378B2 (en)
JPS6053966B2 (en) josephson logic gate
JPS6367773B2 (en)
JPH023326B2 (en)
JPS6051288B2 (en) Josefson logic circuit
JPS60125018A (en) Superconductive logical gate
Yamada et al. Carry time of magnetically coupled Josephson adder circuits
JPS58147238A (en) Josephson logical circuit
JPH03234121A (en) Current injection type josephson gate
JPS6347286B2 (en)
JPH0425639B2 (en)
JPH0129328B2 (en)
JPS6112416B2 (en)
JPH0342019B2 (en)
JPH0226418B2 (en)
JPH0136274B2 (en)