JPS6157016A - Magnetic head - Google Patents

Magnetic head

Info

Publication number
JPS6157016A
JPS6157016A JP59176856A JP17685684A JPS6157016A JP S6157016 A JPS6157016 A JP S6157016A JP 59176856 A JP59176856 A JP 59176856A JP 17685684 A JP17685684 A JP 17685684A JP S6157016 A JPS6157016 A JP S6157016A
Authority
JP
Japan
Prior art keywords
magnetic
film
iron
magnetic head
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59176856A
Other languages
Japanese (ja)
Other versions
JPH0664695B2 (en
Inventor
Moichi Otomo
茂一 大友
Takayuki Kumasaka
登行 熊坂
Akira Imura
亮 井村
Makoto Suzuki
良 鈴木
Ken Sugita
杉田 愃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59176856A priority Critical patent/JPH0664695B2/en
Priority to KR1019850006028A priority patent/KR940004986B1/en
Priority to DE8585306013T priority patent/DE3584747D1/en
Priority to US06/768,965 priority patent/US4772976A/en
Priority to EP85306013A priority patent/EP0174144B1/en
Publication of JPS6157016A publication Critical patent/JPS6157016A/en
Priority to US07/225,368 priority patent/US4894098A/en
Publication of JPH0664695B2 publication Critical patent/JPH0664695B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/1278Structure or manufacture of heads, e.g. inductive specially adapted for magnetisations perpendicular to the surface of the record carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To provide an excellent recording characteristic by forming a declined area containing one of the elements among nitrogen, carbon, and boron in near part abutting on one of magnetic recording media of a magnetic pole by using the ion implantation method to a part of ferro-alloy or ferro-base alloy film. CONSTITUTION:Iron thin film 2 is coated as a master magnetic pole film on a non-magnetic board 1. A pattern forming is performed for the head geometry which is so narrowed that the width of the magnetic pole tip part is equal to the specified track width. Nitrogen ion is ion-implanted on the iron thin film 2 to create the master magnetic pole film 2 with a high saturation magnetic flux density. In addition, a film 3 to reduce the magnetic resistance of the master magnetic pole film 2 is formed on that film, and then patterning is performed to remove permalloy film 3 near the tip of the master magnetic pole film 2. If carbon or boron ion is implanted in the master magnetic pole consisting of ferro-alloy or ferro-base magnetic alloy instead of nitrogen ion, the recording density can be also improved as in the case of nitrogen ion. In such a way, the saturated magnetic flux density of the ferro-alloy or ferro-base alloy is improved, and a magnetic head considerably excellent in recording characteristic is obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は磁気ヘッドに係り、扁に飽和磁束密度の極めて
高い磁性材料を磁極の一部に用いた磁気ヘッドおよびそ
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a magnetic head, and more particularly to a magnetic head using a magnetic material with an extremely high saturation magnetic flux density as part of a magnetic pole, and a method for manufacturing the same.

〔発明の背景〕[Background of the invention]

近年、磁気記録技術は高保磁力テープおよび〒テープ用
の高性能磁気ヘッド材料の開発により著る・しい進展を
とげつつある。特に高保磁力のメタルテープを用いた場
合には、記録波長数11mから1−以下の高記録密度の
領域において、従来に比して著るしい出力の増加、 C
/N (出力−ノイズ比)の増加が達成され、VTRな
2の高記録密度が必要とされる分野において大幅な記録
密度の向上が達成あゎっつあ、ン、ヵ15、従来VTR
な2.、用いられてきたフェライトを用いた磁気ヘッド
では、フェライトの飽和磁束密度が約5000ガウス以
下であるために、記録磁界の大きさが十分でなく、高保
磁1カメタルテープを使用するためには飽和磁束密度の
大きい金属磁性材料を用いた磁気ヘッドが必要になって
きた。このような金属磁性材料としては、Fe−Al1
−8i系合金(飽和磁束密度約10kG)、Fe−Ni
系合金(飽和磁束密度約8kG)、Fe−8i系合金(
飽和磁束密度約1akG)、あるいは、Fe、Go、N
iの少なくとも一種にB、C,N、八〇、、SL、Pな
どを含有させた金属−非金属系非晶質合金、もしくは、
Fe、Co、Niの少なくとも一種にY、Ti、Zr、
Hf、Nb、Taなどを含有させた金属−金属系非晶質
合金などがある。これらのうち最大の飽和磁束密度をも
つ材料は、Si含有量約6重量%のFe−8i合金で。
In recent years, magnetic recording technology has made significant progress with the development of high coercivity tapes and high performance magnetic head materials for tapes. In particular, when using a metal tape with high coercive force, there is a significant increase in output compared to the conventional technology in the area of high recording densities from recording wavelengths of 11 m to less than 1.
/N (output-noise ratio) has been achieved, and a significant improvement in recording density has been achieved in fields where high recording density is required, such as VTR.
2. In magnetic heads using ferrite that have been used, the saturation magnetic flux density of ferrite is about 5000 Gauss or less, so the recording magnetic field is not large enough, and it is difficult to use a high coercivity monochrome metal tape. A magnetic head using a metallic magnetic material with a high saturation magnetic flux density has become necessary. As such a metal magnetic material, Fe-Al1
-8i alloy (saturation magnetic flux density approximately 10kG), Fe-Ni
system alloy (saturation magnetic flux density approximately 8kG), Fe-8i system alloy (
saturation magnetic flux density approximately 1akG), or Fe, Go, N
A metal-nonmetal amorphous alloy containing B, C, N, 80, SL, P, etc. in at least one of i, or
Y, Ti, Zr, at least one of Fe, Co, and Ni
There are metal-metal amorphous alloys containing Hf, Nb, Ta, etc. Among these materials, the material with the highest saturation magnetic flux density is an Fe-8i alloy with a Si content of approximately 6% by weight.

その飽和磁束密度は約18kGである。Its saturation magnetic flux density is about 18 kG.

一方、近年のVTR用磁気ヘッドのギャップ長〒 は高密度磁気記録を実現するために狭小化が進み、従来
0.5pmであったギャップ長が、近年は0.3陣とな
り、さらに将来゛には0.1〜0.2AIIn(7)ギ
ャップ長とすることが要求されている。このように、ギ
ャップ長が狭小化した場合には、ヘッドからの漏洩磁場
の強さが著るしく減少する。また、近年、高密度磁気記
録を実現するために、磁気記録媒体の保磁力は増加の一
途をたどり、従来の酸化物系の磁気テープの約3000
eの保磁力は約7000 eまで増加し、近年の金属磁
性粉を用いた磁気テープの出現により約15000eの
保磁力を持つものまで製造されるようになった。このよ
うに極めて高い保磁力を持つ磁気テープに対して、上述
のように、ギャップ長の小さい磁気ヘッドを用いる場合
には、特に長波長領域の記録能力の不足が問題となるた
め、出来る限り飽和磁束密度の高い磁気ヘッド材料が必
要となる。将来、磁気記録媒体の保磁力はさらに増加し
、磁気ヘッドのギャップ長はさらに狭小化する趨勢にあ
るため磁気ヘッド材料の高飽和磁束密度化の要求はます
ます強まってくる。
On the other hand, the gap length of recent VTR magnetic heads has become narrower in order to realize high-density magnetic recording, and the gap length, which used to be 0.5 pm, has decreased to 0.3 pm in recent years, and even further in the future. is required to have a gap length of 0.1 to 0.2 AIIn(7). As described above, when the gap length is narrowed, the strength of the leakage magnetic field from the head is significantly reduced. In addition, in recent years, in order to realize high-density magnetic recording, the coercive force of magnetic recording media has continued to increase, and the coercive force of conventional oxide-based magnetic tapes has increased to about 3,000.
The coercive force of e has increased to about 7,000 e, and with the advent of magnetic tapes using metal magnetic powder in recent years, magnetic tapes with a coercive force of about 15,000 e have been manufactured. As mentioned above, when using a magnetic head with a small gap length on a magnetic tape with extremely high coercive force, the problem is the lack of recording ability, especially in the long wavelength region. A magnetic head material with high magnetic flux density is required. In the future, there is a trend that the coercive force of magnetic recording media will further increase and the gap length of magnetic heads will become even narrower, so the demand for higher saturation magnetic flux density of magnetic head materials will become stronger.

さらに、近年、研究の進みつつある垂直磁気記録用磁気
ヘッドにおいては、記録密度を向上するために、垂直磁
気記録媒体に記録・再生を行゛なう=4− 主磁極の厚さを極めて薄くしなければならない。
Furthermore, in recent years, in magnetic heads for perpendicular magnetic recording, research has been progressing, in order to improve the recording density, recording and reproduction are performed on perpendicular magnetic recording media = 4- The thickness of the main pole is made extremely thin. Must.

このように、主磁極が極めて薄い場合には、記録時に磁
極先端の磁気飽和を生じやすく、磁気飽和を生じた場合
には垂直磁気記録媒体への記録が困難になるという問題
がある。こうした問題を解決するためには主磁極に用い
る磁性材料の飽和磁束密度を出来る限り増加させること
が必要となってくる。
As described above, when the main magnetic pole is extremely thin, magnetic saturation at the tip of the magnetic pole tends to occur during recording, and when magnetic saturation occurs, it becomes difficult to record on a perpendicular magnetic recording medium. In order to solve these problems, it is necessary to increase the saturation magnetic flux density of the magnetic material used for the main pole as much as possible.

同様の問題は計算機用記憶装置等に用いられる従来の面
内記録用薄膜ヘッドの場合にも存在する。
Similar problems also exist in the case of conventional thin film heads for longitudinal recording used in computer storage devices and the like.

すなわち、薄膜ヘッドはバルク型ヘッドに比較して作動
ギャップ近傍部の磁極の断面積が小さいため磁気飽和が
起りやすい。したがって、薄膜ヘッドにおいても高い飽
和磁束密度を有する磁気ヘッド材料への要求が強い。
That is, in a thin film head, magnetic saturation is more likely to occur because the cross-sectional area of the magnetic pole near the working gap is smaller than that in a bulk type head. Therefore, there is a strong demand for magnetic head materials having high saturation magnetic flux density even in thin film heads.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記従来技術の難点を解消し、磁気ヘ
ッドの磁極を従来よりもさらに高い飽和磁束密度を有す
る磁性材料で構成することにより、従来よりもさらに優
れた記録特性を有する磁気へラドおよびその製造方法を
提供することにある。
An object of the present invention is to solve the above-mentioned problems of the conventional technology, and to create a magnetic head with even better recording characteristics than before by constructing the magnetic pole of the magnetic head with a magnetic material having a higher saturation magnetic flux density than before. An object of the present invention is to provide RAD and a method for producing the same.

〔発明の概要〕[Summary of the invention]

本発明は、上記の目的を達成するために、磁気ヘッドの
磁極の少なくとも一方の磁気記録媒体に接する近傍部分
を鉄もしくは鉄基磁性合金膜で構成し、該鉄もしくは鉄
基磁性合金膜の少なくとも一部にイオン打込み法により
窒素、炭素およびホウ素のうちの少なくとも一種の元素
を含有する領域を形成し、該元素含有領域の飽和磁束密
度を従来の高飽和磁束密度磁性材料のそれよりも高くす
ることによって、従来よりも記録特性の優れた磁気ヘッ
ドを得るようにしたものである。
In order to achieve the above object, the present invention comprises an iron or iron-based magnetic alloy film in the vicinity of at least one of the magnetic poles of a magnetic head in contact with a magnetic recording medium, and at least one of the iron or iron-based magnetic alloy films. A region containing at least one element among nitrogen, carbon, and boron is formed in a part by an ion implantation method, and the saturation magnetic flux density of the element-containing region is made higher than that of conventional high saturation magnetic flux density magnetic materials. By doing so, it is possible to obtain a magnetic head with better recording characteristics than the conventional one.

窒素を含有する雰囲気中で、蒸着あるいはスパッタリン
グ法により鉄の薄膜を作製すると、適当な条件の下で、
鉄より高い飽和磁束密度をもった膜が得られることが知
られている(固体物理。
When a thin iron film is made by vapor deposition or sputtering in a nitrogen-containing atmosphere, under appropriate conditions,
It is known that films with higher saturation magnetic flux density than iron can be obtained (Solid State Physics).

Vol、 7 、 No、 9 (1972) p 、
 ’483〜495) 。しかし、この方法により高飽
和磁束密度の膜を作製するためには、雰囲気における窒
素の分圧および試料の温度を正確に制御するという面倒
な操作が必要であり、この条件から外れると、飽和磁束
密度が急激に低下してしまうという問題がある。
Vol. 7, No. 9 (1972) p.
'483-495). However, in order to fabricate a film with high saturation magnetic flux density using this method, it is necessary to perform troublesome operations such as accurately controlling the partial pressure of nitrogen in the atmosphere and the temperature of the sample. There is a problem that the density decreases rapidly.

本発明は、鉄もしくは鉄基磁性合金膜にイオン打込み法
により窒素を注入、含有させることにより上記の問題点
を解消したもので、イオン打込み法を用いれば、前記膜
の単位面積当りの窒素の含有量を容易に制御することが
できるという利点があり、したがって、高飽和磁束密度
を有する磁性膜を容易に作製することができる。同様な
結果は窒素のほかに炭素またはホウ素によっても得られ
る。
The present invention solves the above problems by implanting and incorporating nitrogen into an iron or iron-based magnetic alloy film using an ion implantation method. It has the advantage that the content can be easily controlled, and therefore a magnetic film having a high saturation magnetic flux density can be easily produced. Similar results can be obtained with carbon or boron in addition to nitrogen.

なお、鉄あるいは鉄基合金にイオン打込みにより窒素を
浸入させる例が、P hys、 S tatusSol
ids、 80(1) (1983) p 、 211
〜222に述べられているが、得られた試料の磁気特性
には何ら言及していない。   ?・ さらに詳細に述べれば、本発明の垂直磁気記録用磁気ヘ
ッドにおいては、主磁極を鉄もしくは鉄基磁性合金の薄
膜を用いて形成した後、主磁極の少なくとも磁気記録媒
体摺動面の近傍部分にイオン打込み法により窒素、炭素
およびホウ素のうちの少なくとも一種の元素を注入、含
有させることにより打込み部分の鉄もしくは鉄基合金の
飽和磁束密度を増大させて、記録特性の極めて優れた垂
直磁気記録用磁気ヘッドを得るようにしたものである。
Examples of infiltrating nitrogen into iron or iron-based alloys by ion implantation are Phys and StatusSol.
ids, 80(1) (1983) p, 211
222, but there is no mention of the magnetic properties of the obtained sample. ? - More specifically, in the magnetic head for perpendicular magnetic recording of the present invention, after the main pole is formed using a thin film of iron or an iron-based magnetic alloy, at least a portion of the main pole near the sliding surface of the magnetic recording medium is formed. Perpendicular magnetic recording with extremely excellent recording characteristics is achieved by implanting at least one element of nitrogen, carbon, and boron into the iron or iron-based alloy by ion implantation to increase the saturation magnetic flux density of the iron or iron-based alloy in the implanted area. The present invention is designed to obtain a magnetic head for use.

また、本発明の面内磁気記録用磁気ヘッドにおいては、
磁気ヘッドの少なくとも作動ギャップ形成面近傍部分を
鉄もしくは鉄基磁性合金膜で構成し、磁気ヘッドの作動
ギャップ形成面の鉄もしくは鉄基磁性合金膜にイオン打
込み法により窒素、炭素およびホウ素のうちの一種の元
素を注入、含有させることにより、打込み部分の鉄もし
くは鉄基磁性合金の飽和磁束密度を増大させて、記録特
性の優れた面内記録用磁気ヘッドを得るようにしたもの
である。
Furthermore, in the magnetic head for longitudinal magnetic recording of the present invention,
At least a portion near the working gap forming surface of the magnetic head is made of iron or an iron-based magnetic alloy film, and nitrogen, carbon, and boron are added to the iron or iron-based magnetic alloy film on the working gap forming surface of the magnetic head by ion implantation. By implanting and containing one type of element, the saturation magnetic flux density of iron or iron-based magnetic alloy in the implanted portion is increased, thereby obtaining a longitudinal recording magnetic head with excellent recording characteristics.

本発明の面内磁気記録用磁気ヘッドにおけるもう一つの
利点は以下のようである。すなわち、磁気ヘッドの作動
ギャップ形成面に、蒸着あるいはスパッタ法により高飽
和磁束密度の磁性膜を被着した場合には、磁性基板とそ
の上に形成した高飽和磁束密度の磁性膜の界面が、ギャ
ップ面と平行になるため、コンタ−効果を生ずるが、本
発明のように、イオン打込み法により作動ギャップ形成
面に高飽和磁束密度の磁性膜を形成した場合には、打込
まれた元素の濃度が深さ方向に徐々に変化するため、飽
和磁束密度も深さ方向に徐々に変化し、したがって、コ
ンタ−効果を生じにくいという利点がある。
Another advantage of the magnetic head for longitudinal magnetic recording of the present invention is as follows. That is, when a magnetic film with a high saturation magnetic flux density is deposited on the working gap forming surface of the magnetic head by vapor deposition or sputtering, the interface between the magnetic substrate and the magnetic film with a high saturation magnetic flux density formed thereon is Since it is parallel to the gap surface, a contour effect occurs, but when a magnetic film with a high saturation magnetic flux density is formed on the working gap forming surface by the ion implantation method as in the present invention, the implanted element Since the concentration changes gradually in the depth direction, the saturation magnetic flux density also changes gradually in the depth direction, which has the advantage that contour effects are less likely to occur.

前述のことは、リング型垂直磁気記録用磁気へ・ラドに
ついても適用することができる。
The foregoing can also be applied to magnetic fields for ring-type perpendicular magnetic recording.

以上のようにして、本発明は記録特性の極めて優れた磁
気ヘッドを提供するものである。
As described above, the present invention provides a magnetic head with extremely excellent recording characteristics.

本発明の磁気ヘッドは、その製造工程におけるイオン打
込み後に、試料を500℃以下、70℃以上の温度に加
熱した場合に、飽和磁束密度の高い磁性膜が安定して得
やすい場合がある。ただし、加熱温度を500℃以上に
した場合には、高飽和磁束密度を有する、相が分解して
、飽和磁束密度が低下してしまうことがあるた・め好ま
しくない。
In the magnetic head of the present invention, when the sample is heated to a temperature of 500° C. or lower and 70° C. or higher after ion implantation in the manufacturing process, a magnetic film with a high saturation magnetic flux density may be stably obtained. However, if the heating temperature is set to 500° C. or higher, the phase having a high saturation magnetic flux density may decompose and the saturation magnetic flux density may decrease, which is not preferable.

一般に、鉄および鉄基磁性合金に窒素、炭素、ホウ素な
どの浸入型元素を含んだ磁性合金は、磁場中熱処理によ
り誘起される磁気異方性を有することが知られている。
Generally, magnetic alloys containing interstitial elements such as nitrogen, carbon, and boron in iron and iron-based magnetic alloys are known to have magnetic anisotropy induced by heat treatment in a magnetic field.

これは鉄ないし鉄基磁性合金中の浸入型元素が、磁化の
方向に対してエネルギーを小さくする位置に移動し、磁
化の方向を安定化するためである。このような誘導磁気
異方性が大きくなると透磁率が低下するため、磁気ヘッ
ドとして好ましくない場合がある。また、適当な大きさ
の磁気異方性を一定の方向に付与することは磁気ヘッド
の特性にとって有効である場合がある。
This is because the interstitial elements in the iron or iron-based magnetic alloy move to a position where their energy is reduced relative to the direction of magnetization, thereby stabilizing the direction of magnetization. If such induced magnetic anisotropy increases, magnetic permeability decreases, which may be undesirable as a magnetic head. Furthermore, imparting an appropriate amount of magnetic anisotropy in a certain direction may be effective for improving the characteristics of the magnetic head.

以上述べたように、誘導磁気異方性の大きさと方向を制
御することは特性の優れた磁気ヘッドを得る上で必要で
ある。上記のような誘導磁気異方性の制御は試料を加熱
しながら磁場を印加することにより行なうことができる
。また、本発明にお、!     いては、イオン打込
み工程中に試料の面内に一方向磁場あるいは回転磁場を
印加することにより誘導磁気異方性を制御することがで
きる。
As described above, it is necessary to control the magnitude and direction of induced magnetic anisotropy in order to obtain a magnetic head with excellent characteristics. The induced magnetic anisotropy as described above can be controlled by applying a magnetic field while heating the sample. Also, in the present invention! In this case, the induced magnetic anisotropy can be controlled by applying a unidirectional magnetic field or a rotating magnetic field within the plane of the sample during the ion implantation process.

本発明に用いるイオン打込み法により形成されるイオン
打込み層の厚さはイオンの加速電圧によって変化するが
、イオン打込み層の厚さを約1声以上にすることは困難
である。したがって、約1−以上のイオン打込み層を得
るためには、IIIrn以下の鉄もしくは鉄基磁性合金
の薄膜を形成する工程とこの膜にイオン打込みを行なっ
てイオン打込み層を形成する工程を複数回繰返し、イオ
ン打込み層を積層することによって得ることができる。
The thickness of the ion implantation layer formed by the ion implantation method used in the present invention varies depending on the ion acceleration voltage, but it is difficult to make the thickness of the ion implantation layer more than about one tone. Therefore, in order to obtain an ion-implanted layer of about 1- or more, the process of forming a thin film of iron or iron-based magnetic alloy of IIIrn or less and the process of implanting ions into this film to form an ion-implanted layer are performed multiple times. It can be obtained by repeatedly stacking ion implantation layers.

また、これらの各々のイオン打込み層の間、または、複
数のイオン打込み層を一つのイオン打込み層ブロックと
して、各イオン打込み層ブロックの間に強磁性または非
磁性の中間層を入れることにより保磁力あるいは透磁率
などの磁気特性を改善することもできる。
In addition, the coercive force can be increased by inserting a ferromagnetic or nonmagnetic intermediate layer between each of these ion implantation layers or between each ion implantation layer block when multiple ion implantation layers are combined into one ion implantation layer block. Alternatively, magnetic properties such as magnetic permeability can also be improved.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.

実施例 1                    
 !ガラス基板上に厚さ0.15IIInの鉄薄膜をス
パッタリング法により作製し、その後、前記鉄薄膜に窒
素イオンを打込みし、さらに基板を350℃で30分間
熱処理した。この鉄膜中の窒素の平均含有量とその飽和
磁束密度の変化を第1図に示した。図から明らかなよう
に、窒素イオン打込み量の増加とともに鉄膜中の平均窒
素濃度は徐々に増加し、これに伴なって飽和磁束密度は
窒素イオン打込み量的5X10”イオン/d、すなわち
平均窒素濃度約12 at%で最大約15%増加する。
Example 1
! An iron thin film having a thickness of 0.15IIIn was formed on a glass substrate by sputtering, and then nitrogen ions were implanted into the iron thin film, and the substrate was further heat-treated at 350° C. for 30 minutes. Figure 1 shows the average content of nitrogen in this iron film and the changes in its saturation magnetic flux density. As is clear from the figure, as the amount of nitrogen ions implanted increases, the average nitrogen concentration in the iron film gradually increases. The maximum increase is about 15% at a concentration of about 12 at%.

平均窒素濃度がこれを越えると飽和磁束密度は急激に減
少し、平均窒素濃度20 at%で、鉄膜と同等になる
。以上の結果から、飽和磁束密度は平均窒素濃度Oat
%越え、20 at%未満、より好ましくは、5at%
〜18 at%の範囲で増加させる効果があることがわ
かる。
When the average nitrogen concentration exceeds this, the saturation magnetic flux density decreases rapidly, and at an average nitrogen concentration of 20 at%, it becomes equivalent to that of an iron film. From the above results, the saturation magnetic flux density is the average nitrogen concentration Oat
%, less than 20 at%, more preferably 5 at%
It can be seen that there is an effect of increasing the content in the range of ~18 at%.

つぎに、上記の高飽和磁束密度を有する磁性膜を主磁極
として用いた垂直磁気記録用ヘッドの製造方法の概略を
第2図に示した(特願昭57−179854号明細書参
照)。第2図(イ)に示すように、フオトセラム(米国
コーニングガラス社製結晶化ガラスの商品名)からなる
非磁性基板1上に=13− 主磁極膜として、スパッタリング法により膜厚0.15
1mの鉄薄膜2を被着し、磁極先端部の幅が所定のトラ
ック幅となるように狭めたヘッドの形状にパターン形成
を行なった。その後、鉄薄膜2上に窒素イオンを5X1
0”個/alの密度でイオン打込みを・行ない、ついで
350℃で30分間加熱してイオン打込みによる歪を除
去すると同時に高飽和磁束密度を示す相の安定化を行な
い、高飽和磁束密度の主磁極膜2を作製した。さらに、
第2図(ロ)に示すように、主磁極膜2の磁気抵抗を低
減するための膜3を主磁極膜2上にパーマロイ膜を用い
て形成した後、パターニングを行ない、主磁極膜2の先
端近傍上のパーマロイ膜3を2〜5−程度の長さに除去
する。ついで、全体上にS io、からなる絶縁層4を
スパッタ法により厚さ約3−に形成し、さらにその上に
^艶膜をマスク蒸着法により蒸着し、幅61M、高さ4
.0#I++で、所定の巻数をもったスパイラル型A1
巻線5を形成し、ついで、巻線間のすきまを埋めると同
時に上面を被覆するように樹脂層6を塗布、硬化し、さ
らにその上に□Co−W−Zr系非晶質磁性合金膜から
なる補助磁極7を形成した。このようにして製造した垂
直磁気ヘッドの平面図を第3図に示した。この図におい
て、1は非磁性基板、7は補助磁極、5は巻線、8は巻
線5のリード線部分、9は記録媒体摺動面である。
Next, a method for manufacturing a perpendicular magnetic recording head using the above-mentioned magnetic film having a high saturation magnetic flux density as the main pole is shown schematically in FIG. 2 (see Japanese Patent Application No. 179854/1982). As shown in FIG. 2(A), a film with a thickness of 0.15 mm was formed by sputtering as a main magnetic pole film on a non-magnetic substrate 1 made of Photoceram (trade name of crystallized glass manufactured by Corning Glass Co., USA).
A 1 m thick iron thin film 2 was deposited and patterned into a head shape in which the width of the tip of the magnetic pole was narrowed to a predetermined track width. After that, nitrogen ions were added 5×1 on the iron thin film 2.
Ion implantation was performed at a density of 0'' ions/al, and then heated at 350°C for 30 minutes to remove the distortion caused by ion implantation and at the same time stabilize the phase exhibiting high saturation magnetic flux density. A magnetic pole film 2 was produced.Furthermore,
As shown in FIG. 2(b), after forming a film 3 on the main pole film 2 using a permalloy film to reduce the magnetic resistance of the main pole film 2, patterning is performed to reduce the magnetic resistance of the main pole film 2. The permalloy film 3 near the tip is removed to a length of about 2 to 5 inches. Next, an insulating layer 4 made of Sio is formed on the entire surface by sputtering to a thickness of approximately 3 mm, and a glossy film is further deposited thereon by a mask evaporation method to form a layer with a width of 61 M and a height of 4 mm.
.. 0#I++, spiral type A1 with a predetermined number of turns
After forming the windings 5, a resin layer 6 is applied and cured so as to fill the gaps between the windings and at the same time cover the upper surface, and then a □Co-W-Zr based amorphous magnetic alloy film is applied on top of the resin layer 6. An auxiliary magnetic pole 7 was formed. A plan view of the perpendicular magnetic head manufactured in this manner is shown in FIG. In this figure, 1 is a nonmagnetic substrate, 7 is an auxiliary magnetic pole, 5 is a winding, 8 is a lead wire portion of the winding 5, and 9 is a recording medium sliding surface.

本実施例の磁気ヘッドを用いて、He 10000eの
Go−Cr垂直磁気記録媒体に記録した場合に、主磁極
にイオン打込みしない磁気ヘッドに比較して、記録密度
Dso(記録再生出力が低記録密度における出力の半分
になる記録密度)が約30%増加した。以上のよ全に、
本発明の磁気ヘッドにおいては、主磁極にイオン打込み
して高い飽和磁束密度を付与することにより、記録密度
を向上できることが確認できた。窒素イオンの代りに、
炭素あるいはホウ素イオンを鉄もしくは鉄基磁性合金か
らなる主磁極に打込んだ場合にも、窒素イオンの((場
合と同様に記録密度を向上させる効果があることが認め
られた。
When recording on a He 10000e Go-Cr perpendicular magnetic recording medium using the magnetic head of this example, compared to a magnetic head that does not implant ions into the main pole, the recording density Dso (recording/reproducing output is lower than the recording density The recording density, which is half the output of All the above,
In the magnetic head of the present invention, it was confirmed that the recording density could be improved by implanting ions into the main pole to impart a high saturation magnetic flux density. Instead of nitrogen ions,
It was also found that when carbon or boron ions were implanted into the main pole made of iron or iron-based magnetic alloys, they had the same effect of improving the recording density as in the case of nitrogen ions (().

実施例 2 実施例1で述べたような磁性薄膜を用いた磁気ヘッドで
は、磁性薄膜の磁気異方性を制御することが重要である
。一般に、磁性薄膜では磁化容易方向と直角方向の透磁
率が磁化容易方向より太きいという傾向があり、したが
って、磁気ヘッドの中で磁束を流す方向と直角方向が磁
性薄膜の磁化容易方向と一致するように構成するのが良
い。本発明の磁気ヘッドでは、イオン打込みを磁場を加
えながら行なうことにより、主磁極の磁気異方性を制御
することができる。本実施例では、主磁極膜のトラック
幅方向、すなわち、第3図のA方向に500eの磁場を
加えながらイオン打込みを行なった。磁場印加以外のイ
オン打込みにおける条件は実施例1と同じとした。その
後、実施例1と同様の方法で垂直磁気記録用磁気ヘッド
を製造し、実施例1と同様のCo−Cr垂直磁気記録媒
体に記録した。この時の記録・再生牛刀は、イオン打込
み工程時に主磁極膜に磁場を印加しない磁気ヘラ   
   イドに比較して、約2dB大きかった。以上のよ
うに、イオン打込み工程において磁場を印加し、主磁極
膜の磁気異方性を制御すれば効果があることが確認でき
た。
Example 2 In a magnetic head using a magnetic thin film as described in Example 1, it is important to control the magnetic anisotropy of the magnetic thin film. Generally, in a magnetic thin film, the magnetic permeability in the direction perpendicular to the direction of easy magnetization tends to be greater than the direction of easy magnetization, and therefore, the direction perpendicular to the direction in which magnetic flux flows in the magnetic head coincides with the direction of easy magnetization of the magnetic thin film. It is better to configure it like this. In the magnetic head of the present invention, the magnetic anisotropy of the main pole can be controlled by performing ion implantation while applying a magnetic field. In this example, ion implantation was performed while applying a magnetic field of 500 e in the track width direction of the main pole film, that is, in the direction A in FIG. The conditions for ion implantation other than the application of a magnetic field were the same as in Example 1. Thereafter, a magnetic head for perpendicular magnetic recording was manufactured in the same manner as in Example 1, and recording was performed on the same Co--Cr perpendicular magnetic recording medium as in Example 1. The recording/reproducing gyuto used at this time is a magnetic spatula that does not apply a magnetic field to the main pole film during the ion implantation process.
It was about 2 dB larger than the id. As described above, it was confirmed that it is effective to control the magnetic anisotropy of the main pole film by applying a magnetic field during the ion implantation process.

実施例 3 面内磁気記録用磁気ヘッドとして、Mn−Znフェライ
トと鉄基磁性合金のスパッタ膜とからなる本発明による
磁気ヘッドの製造方法の概略を第4図に示した。本実施
例の磁気ヘッドは特開昭58−15513号公報に記載
されている構造を有する。
Example 3 FIG. 4 schematically shows a method for manufacturing a magnetic head for longitudinal magnetic recording according to the present invention, which is made of a sputtered film of Mn--Zn ferrite and an iron-based magnetic alloy. The magnetic head of this embodiment has a structure described in Japanese Patent Application Laid-Open No. 58-15513.

第4図(イ)に示すように、Mn−Znフェライトから
なる基板11を2枚用意し、それらのギャップ対向面と
するべき一つの面12に所定間隔で平坦部13を残して
、該平坦部I3の間に隣接する一対の7字状溝14を研
削等により形成する。この場合隣接する一対の7字状溝
14に挟まれた基板11の逆V字状突起15の頂部は平
坦部23より所定長さだけ低くなるようにする。
As shown in FIG. 4(a), two substrates 11 made of Mn-Zn ferrite are prepared, and flat portions 13 are left at a predetermined interval on one surface 12 that should be the gap-opposing surface. A pair of adjacent 7-shaped grooves 14 are formed between the portions I3 by grinding or the like. In this case, the top of the inverted V-shaped protrusion 15 of the substrate 11 sandwiched between a pair of adjacent 7-shaped grooves 14 is made to be lower than the flat part 23 by a predetermined length.

第4図(ロ)に示すように、溝加工を終った基板11の
面12側に鉄膜16を厚さ約10/ll11にスパッタ
リング法により形成する。
As shown in FIG. 4(b), an iron film 16 having a thickness of about 10/111 is formed by sputtering on the surface 12 side of the substrate 11 after groove processing.

第4図(ハ)に示すように、鉄膜16を被着した−16
= 基板11の鉄膜16上の7字状溝14が少なくとも埋ま
るように低融点ガラス層17を溶融、形成した。
As shown in FIG. 4 (c), -16 coated with iron film 16
= The low melting point glass layer 17 was melted and formed so as to at least fill the 7-shaped groove 14 on the iron film 16 of the substrate 11.

第4図(ニ)に示すように、ガラス層15を形成した基
板11のガラス層側を平坦部13まで研削、研摩する。
As shown in FIG. 4(d), the glass layer side of the substrate 11 on which the glass layer 15 is formed is ground and polished to the flat portion 13.

この時、基板11の逆V字状突起15の先端部上の鉄膜
16は一部が研摩、除去されて平坦となり、所定のトラ
ック幅を有する作動ギャップ形成面18が得られる。
At this time, a portion of the iron film 16 on the tip of the inverted V-shaped protrusion 15 of the substrate 11 is polished and removed to make it flat, and an operating gap forming surface 18 having a predetermined track width is obtained.

第4図(ホ)に示すように、図(ニ)の工程を終った基
板11の一方の鉄膜16のある側の面にV′!状溝14
に直角に巻線窓用溝19を研削等により形成し、磁気へ
ラドコア半休ブロック20を作製する。
As shown in FIG. 4(e), V'! shaped groove 14
A groove 19 for the winding window is formed by grinding or the like at right angles to the magnetic helix core half-dead block 20.

図(ニ)で得られた基板11を磁気ヘッドコア半休ブロ
ック20’とする。ついで、磁気へラドコア半休ブロッ
ク20の作動ギャップ形成面18の作動ギャップ近傍側
の鉄膜部分21と磁気ヘッドコア半年ブロック20′の
これと対応する鉄膜部分に窒素イオンを5X101s個
/dの密度でイオン打込み、その後、磁気へラドコア半
休ブロック20.20′の作動ギャップ形成面にギャッ
プ形成層となるSio2膜−18= を厚さ0.15pスパツタリングにより被着する。
The substrate 11 obtained in Figure (D) is used as a magnetic head core half-dead block 20'. Next, nitrogen ions are applied to the iron film portion 21 of the working gap forming surface 18 of the magnetic head core semi-annual block 20 near the working gap and the corresponding iron film portion of the magnetic head core semi-annual block 20' at a density of 5×101s/d. After the ion implantation, an Sio2 film-18=, which will become a gap forming layer, is deposited by sputtering to a thickness of 0.15p on the working gap forming surface of the magnetic heald core half-dead block 20, 20'.

第4図(へ)に示すように、図(ホ)の工程を終った磁
気ヘッドコア半休ブロック20.20′をその鉄膜のイ
オン打込み部分を対向させ、ギャップ形成層を介して突
き合せた上、380℃で30分間加熱してガラス層17
同志を溶融、固着して、磁気へラドコア半休ブロック2
0.20′同志を結合、一体化した。また、この加熱に
より鉄膜中に打込まれた窒素と鉄との結合を強化し、高
飽和磁束密度を有する磁性膜の安定化を行なった。つい
で、一体化された磁気へラドコア半休ブロック20.2
0′を一点鎖線部で切断すれば、第4図(ト)に示すよ
うな磁気ヘッド22が得られる。23は作動ギャップで
ある。
As shown in FIG. 4(F), the magnetic head core half-dead blocks 20 and 20' that have undergone the process shown in FIG. , heated at 380°C for 30 minutes to form glass layer 17
Melt and fix the comrades to magnetically rad core half-dead block 2
0.20' comrades were combined and integrated. Furthermore, this heating strengthened the bond between nitrogen and iron implanted into the iron film, thereby stabilizing the magnetic film with a high saturation magnetic flux density. Next, the integrated magnetic herad core half-break block 20.2
By cutting 0' along the dashed line, a magnetic head 22 as shown in FIG. 4(G) can be obtained. 23 is an operating gap.

つぎに、比較のために第4図(ホ)に示した巻線窓用溝
17を形成した磁気へラドコア半休ブロック20および
巻線窓用溝を形成゛しない磁気ヘッドコニj     
 ア半体ブロック20′において、イオン打込みを行わ
ず、その他の形状は第4図(チ)に示したものと同じ磁
気ヘッドを作製した。これらの磁気ヘッドを用いて、保
磁力Hc = 1.5000 eのメタルテープに波長
5.81Mの信号を記録し、従来のフェライト磁気ヘッ
ドを用いて信号を再生した場合、前記のイオン打込みを
行なった磁気ヘッドは、イオン打込みを行なわなかった
磁気ヘッドに比較して、約1.5 d13の出力増加が
認められた。このような記録特性の向」二の効果は窒素
イオンの代りに炭素あるいはホウ素イオンを打込むこと
によっても得られた。
Next, for comparison, the magnetic head core half-dead block 20 shown in FIG.
A magnetic head having the same shape as that shown in FIG. 4(H) was fabricated in the half block 20' without ion implantation. When these magnetic heads are used to record a signal with a wavelength of 5.81 M on a metal tape with a coercive force Hc = 1.5000 e, and the signal is reproduced using a conventional ferrite magnetic head, the ion implantation described above is performed. An increase in output of about 1.5 d13 was observed in the magnetic head that underwent ion implantation compared to the magnetic head that did not undergo ion implantation. This improvement in recording characteristics was also achieved by implanting carbon or boron ions instead of nitrogen ions.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、垂直磁気記録用磁気ヘッドにおいて
は主磁極膜の磁気記録媒体摺動面近傍に、面内磁気記録
用ヘッドにおいては作動ギャップ形成面側に用いる鉄あ
るいは鉄基合金の少なくとも作動ギャップ近傍部分に窒
素、炭素およびホウ素のうちの少なくとも一種の元素を
イオン打込みにより導入することにより、鉄あるいは鉄
基合金の飽和磁束密度を向上させ、記録特性の極めて優
れた磁気ヘッドを得ることができた。
As mentioned above, in magnetic heads for perpendicular magnetic recording, iron or iron-based alloys are used near the sliding surface of the magnetic recording medium of the main pole film, and in heads for longitudinal magnetic recording, on the side where the working gap is formed. By introducing at least one element among nitrogen, carbon, and boron into the vicinity of the gap by ion implantation, it is possible to improve the saturation magnetic flux density of iron or iron-based alloy and obtain a magnetic head with extremely excellent recording characteristics. did it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鉄膜中への窒素イオン打込み量に対する鉄膜中
の平均窒素濃度および飽和磁束密度の変化を示す線図、
第2図は本発明の一実施例である氷面磁気記録用磁気ヘ
ッドの製造方法を説明するための概略図、第3図は第2
図によって得た事故磁気記録用磁気ベッドの平面図、i
4図は本発明の他の一実施例である面内磁気記録用磁気
ヘッドの製造方法の概略説明図である1 図において、 1・・・非磁性基板    2・・・主磁極膜3・・・
パーマロイ7   4・・・絶縁層5・・・巻線   
    6・・・樹脂層7・・・補助磁極     8
.8′・・・リード線9・・・磁気記録媒体摺動面 11・・・Mn−Znフェライト基板 □12・・・基
板11のギャップ対向とす□るべき一つの面13・・・
平坦部      14・・・7字状溝15・・・基板
11の逆V字状突起部 16・・・鉄膜       17・・・ガラス層18
・・・鉄膜16のギャップ構成面 一21= 19・・・巻線窓用溝 20.20′・・・磁気へラドコア半休ブロックz1・
・・鉄膜16の窒素イオン打込み部分22・・・磁気ヘ
ッド
Figure 1 is a diagram showing changes in the average nitrogen concentration and saturation magnetic flux density in the iron film with respect to the amount of nitrogen ions implanted into the iron film.
FIG. 2 is a schematic diagram for explaining a method of manufacturing a magnetic head for ice surface magnetic recording, which is an embodiment of the present invention, and FIG.
Plan view of the magnetic bed for accidental magnetic recording obtained from the figure, i
FIG. 4 is a schematic explanatory diagram of a method for manufacturing a magnetic head for longitudinal magnetic recording, which is another embodiment of the present invention.・
Permalloy 7 4... Insulating layer 5... Winding wire
6...Resin layer 7...Auxiliary magnetic pole 8
.. 8'...Lead wire 9...Magnetic recording medium sliding surface 11...Mn-Zn ferrite substrate □12...One surface 13 of the substrate 11 that should be opposite to the gap □...
Flat part 14... Seven-shaped groove 15... Inverted V-shaped projection part 16 of substrate 11... Iron film 17... Glass layer 18
... Gap configuration surface of iron film 16 21 = 19 ... Winding window groove 20.20' ... Magnetic rad core half-closed block z1.
...Nitrogen ion implantation portion 22 of iron film 16...Magnetic head

Claims (6)

【特許請求の範囲】[Claims] (1)磁気ヘッドにおいて、該磁気ヘッドの磁極の少な
くとも一方の磁気記録媒体に接する近傍部分を鉄もしく
は鉄基磁性合金膜で構成し、該鉄もしくは鉄基磁性合金
膜の少なくとも一部にイオン打込みにより窒素、炭素お
よびホウ素のうちの少なくとも一種の元素を含有する領
域を形成してなることを特徴とする磁気ヘッド。
(1) In a magnetic head, the vicinity of at least one of the magnetic poles of the magnetic head in contact with the magnetic recording medium is composed of an iron or iron-based magnetic alloy film, and ions are implanted into at least a part of the iron or iron-based magnetic alloy film. 1. A magnetic head comprising a region containing at least one element selected from nitrogen, carbon, and boron.
(2)特許請求の範囲第1項記載の磁気ヘッドにおいて
、前記窒素、炭素およびホウ素のうちの一種の元素を含
有する領域中の該元素の平均含有濃度が0at%越え、
20at%未満であることを特徴とする磁気ヘッド。
(2) In the magnetic head according to claim 1, the average concentration of the element in the region containing one of nitrogen, carbon, and boron exceeds 0 at%;
A magnetic head characterized in that it is less than 20 at%.
(3)特許請求の範囲第1項記載の磁気ヘッドにおいて
、前記窒素、炭素およびホウ素のうちの少なくとも一種
の元素を含有する領域中の該元素の平均含有濃度が5a
t%ないし18at%であることを特徴とする磁気ヘッ
ド。
(3) In the magnetic head according to claim 1, the average concentration of the element in the region containing at least one element among nitrogen, carbon, and boron is 5a.
A magnetic head characterized in that the magnetic head is t% to 18 at%.
(4)特許請求の範囲第1項、第2項または第3項記載
の磁気ヘッドにおいて、前記イオン打込みにより窒素、
炭素およびホウ素のうちの少なくとも一種の元素を含有
する領域を形成された鉄もしくは鉄基磁性合金膜は前記
イオン打込み後に500℃以下の温度で熱処理したもの
であることを特徴とする磁気ヘッド。
(4) In the magnetic head according to claim 1, 2, or 3, nitrogen is
A magnetic head characterized in that the iron or iron-based magnetic alloy film in which the region containing at least one of carbon and boron is formed is heat-treated at a temperature of 500° C. or less after the ion implantation.
(5)特許請求の範囲第1項、第2項または第3項記載
の磁気ヘッドにおいて、前記イオン打込みにより窒素、
炭素およびホウ素のうちの少なくとも一種の元素を含有
する領域を形成された鉄もしくは鉄基磁性合金膜は該膜
面内の一方向のまたは該膜面内で該膜面と相対的に回転
する磁場を印加しながらイオン打込みを行なったもので
あることを特徴とする磁気ヘッド。
(5) In the magnetic head according to claim 1, 2, or 3, nitrogen is
An iron or iron-based magnetic alloy film in which a region containing at least one of carbon and boron is formed is exposed to a magnetic field that rotates in one direction within the film surface or within the film surface relative to the film surface. A magnetic head characterized in that ion implantation is performed while applying .
(6)特許請求の範囲第1項、第2項または第3項記載
の磁気ヘッドにおいて、前記イオン打込みにより窒素、
炭素およびホウ素のうちの少なくとも一種の元素を含有
する領域を形成された鉄または鉄基磁性合金膜は該膜面
内の一方向のまたは該膜面内で該膜面と相対的に回転す
る磁場を印加しながら500℃以下の温度で熱処理した
ものであることを特徴とする磁気ヘッド。
(6) In the magnetic head according to claim 1, 2, or 3, nitrogen is
An iron or iron-based magnetic alloy film in which a region containing at least one element among carbon and boron is formed is exposed to a magnetic field that rotates in one direction within the film surface or within the film surface relative to the film surface. 1. A magnetic head characterized in that it is heat-treated at a temperature of 500° C. or less while applying .
JP59176856A 1984-08-27 1984-08-27 Method of manufacturing magnetic head Expired - Fee Related JPH0664695B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59176856A JPH0664695B2 (en) 1984-08-27 1984-08-27 Method of manufacturing magnetic head
KR1019850006028A KR940004986B1 (en) 1984-08-27 1985-08-21 Manufacturing method of magnetic substance and magnetic head using it
DE8585306013T DE3584747D1 (en) 1984-08-27 1985-08-23 METHOD FOR PRODUCING A MAGNETIC LAYER AND ITS APPLICATION IN THE PRODUCTION OF A MAGNETIC HEAD.
US06/768,965 US4772976A (en) 1984-08-27 1985-08-23 Process for preparing magnetic layer and magnetic head prepared using the same
EP85306013A EP0174144B1 (en) 1984-08-27 1985-08-23 Process for preparing magnetic layer and magnetic head prepared using the same
US07/225,368 US4894098A (en) 1984-08-27 1988-07-28 Process for preparing magnetic layer and magnetic head prepared using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59176856A JPH0664695B2 (en) 1984-08-27 1984-08-27 Method of manufacturing magnetic head

Publications (2)

Publication Number Publication Date
JPS6157016A true JPS6157016A (en) 1986-03-22
JPH0664695B2 JPH0664695B2 (en) 1994-08-22

Family

ID=16021019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59176856A Expired - Fee Related JPH0664695B2 (en) 1984-08-27 1984-08-27 Method of manufacturing magnetic head

Country Status (1)

Country Link
JP (1) JPH0664695B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288121A (en) * 1985-10-14 1987-04-22 Sony Corp Thin film magnetic head
US7120988B2 (en) 2003-09-26 2006-10-17 Hitachi Global Storage Technologies Netherlands B.V. Method for forming a write head having air bearing surface (ABS)
US7139153B2 (en) 2004-02-23 2006-11-21 Hitachi Global Storage Technologies Netherlands B.V. Magnetic pole tip for perpendicular magnetic recording
US7588884B2 (en) 2004-05-28 2009-09-15 Hitachi Global Storage Technologies Netherlands B.V. Method for enhancing wafer alignment marks

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524805A (en) * 1975-07-01 1977-01-14 Fuji Photo Film Co Ltd Production method of magnetic recording media
JPS56159820A (en) * 1980-05-13 1981-12-09 Hitachi Metals Ltd Magnetic head for video tape recorder
JPS58105422A (en) * 1981-12-17 1983-06-23 Sony Corp Magnetic head
JPS58189816A (en) * 1982-04-30 1983-11-05 Tohoku Metal Ind Ltd Magnetic head

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524805A (en) * 1975-07-01 1977-01-14 Fuji Photo Film Co Ltd Production method of magnetic recording media
JPS56159820A (en) * 1980-05-13 1981-12-09 Hitachi Metals Ltd Magnetic head for video tape recorder
JPS58105422A (en) * 1981-12-17 1983-06-23 Sony Corp Magnetic head
JPS58189816A (en) * 1982-04-30 1983-11-05 Tohoku Metal Ind Ltd Magnetic head

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288121A (en) * 1985-10-14 1987-04-22 Sony Corp Thin film magnetic head
US7120988B2 (en) 2003-09-26 2006-10-17 Hitachi Global Storage Technologies Netherlands B.V. Method for forming a write head having air bearing surface (ABS)
US7139153B2 (en) 2004-02-23 2006-11-21 Hitachi Global Storage Technologies Netherlands B.V. Magnetic pole tip for perpendicular magnetic recording
US7588884B2 (en) 2004-05-28 2009-09-15 Hitachi Global Storage Technologies Netherlands B.V. Method for enhancing wafer alignment marks

Also Published As

Publication number Publication date
JPH0664695B2 (en) 1994-08-22

Similar Documents

Publication Publication Date Title
KR940004986B1 (en) Manufacturing method of magnetic substance and magnetic head using it
US5264981A (en) Multilayered ferromagnetic film and magnetic head employing the same
EP0342227B1 (en) Laminated sendust metal-in-gap video head
JPS6218966B2 (en)
JPS6157016A (en) Magnetic head
US5862023A (en) Metal in gap magnetic head having metal magnetic film including precious metal layer
JPH0827908B2 (en) Magnetic head
KR19980081856A (en) Magnetic thin film and magnetic head
KR950011126B1 (en) Thin film structure for magnetic head
JP2508462B2 (en) Soft magnetic thin film
JPS6220606B2 (en)
JP3036891B2 (en) Thin film magnetic head
JPH07249519A (en) Soft magnetic alloy film, magnetic head, and method for adjusting coefficient of thermal expansion of soft magnetic alloy film
JP2979557B2 (en) Soft magnetic film
JPH03144907A (en) Thin-film magnetic head and production thereof
JPS63285715A (en) Magnetic head
JPH04134603A (en) Perpendicular magnetic head
JPH0513223A (en) Magnetic head
JPH025206A (en) Production of magnetic head
JPS63279403A (en) Production of magnetic head
JPH1012438A (en) Alloy magnetic film with substrate for magnetic head, its manufacture and magnetic head
JPH0935935A (en) Manufacture of soft magnet film
JPH11259810A (en) Thin film magnetic head and its formation
JPH0376102A (en) Multilayer magnetic thin film and magnetic head using the same
JPH03152705A (en) Magnetic head

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees