JPS6156470A - Manufacture of semiconductor photodetector - Google Patents

Manufacture of semiconductor photodetector

Info

Publication number
JPS6156470A
JPS6156470A JP59178606A JP17860684A JPS6156470A JP S6156470 A JPS6156470 A JP S6156470A JP 59178606 A JP59178606 A JP 59178606A JP 17860684 A JP17860684 A JP 17860684A JP S6156470 A JPS6156470 A JP S6156470A
Authority
JP
Japan
Prior art keywords
type
layer
recess
film
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59178606A
Other languages
Japanese (ja)
Inventor
Tsugunori Takahashi
鷹箸 継典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59178606A priority Critical patent/JPS6156470A/en
Publication of JPS6156470A publication Critical patent/JPS6156470A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To contrive the improvement in sensitivity of the APD and the uniformity of its performance by amethod wherein a recess with a flat bottom is formed in a semiconductor layer of one conductivity type serving as the window layer and filled with a layer of reverse conductivity type by means of epitaxial growth, thus forming the P-N junction contributed to the multiplication of photocurrent. CONSTITUTION:The recess 14 reaching a lower N type window layer 4 is formed in a P<+> type diffused region 12 by selectively etching part of this region 12 via the second resist mask 13 with an etchant with a mixture of Br. After removal of the resist mask 13, an SiO2 film 15 is formed on the surface of the substrate, and the film 15 inside the recess 14 is selectively removed by etching with hydrofluoric acid or the like via the third resist mask 16. Next, the recess 14 is selectively filled with a P<+> type InP layer 17 with the mask of the SiO2 film 15. Thereafter, this film 15 is removed, and an Si3N4 film 18, an electrode contact window, the upper P-electrode 19, and the lower N- electrode 20 are formed as normal; then, an InP-APD completes.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体受光装置の製造方法に係り、特に光電流
の雪崩増倍効果によって感度の大幅な増大を図った雪崩
型光ダイオード(Avalanche Pot。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor photodetector, and in particular to an avalanche photodiode (Avalanche Pot .

diode、以下APDと略称する)における、上記雪
崩増倍効果に寄与するp−n接合の形成方法に関する。
The present invention relates to a method for forming a pn junction that contributes to the avalanche multiplication effect in a diode (hereinafter abbreviated as APD).

半導体受光装置にはPINフォトダイオード。The semiconductor photodetector is a PIN photodiode.

フォトトランジスタ、APD等があるが、APDはp−
n接合における光電流の雪崩増倍効果を利用しているた
めに他に比べて遥かに高怒度が得られるので、光通信の
受光装置として広く用いられている。
There are phototransistors, APDs, etc., but APDs are p-
Since it utilizes the avalanche multiplication effect of the photocurrent in the n-junction, it can obtain a much higher intensity than others, and is therefore widely used as a light receiving device for optical communications.

該光通信において情報の信頼性を高めるため、均一な感
度を有し、且つ雑音の低いAPDの提供が強く要望され
ており、かかる要望に応える製造方法の確立が重要な課
題となっている。
In order to improve the reliability of information in optical communications, there is a strong demand for APDs that have uniform sensitivity and low noise, and establishing a manufacturing method that meets these demands has become an important issue.

〔従来の技術〕[Conventional technology]

通常APDは、光電流の雪崩増倍を生じる階段接合部と
、その周辺部での局部的雪崩効果を防ぐ所謂ガードリン
グ効果を持つ傾斜接合部との複合構造を有する。
A typical APD has a composite structure of a stepped junction that causes avalanche multiplication of photocurrent and a sloped junction that has a so-called guard ring effect that prevents local avalanche effects in the surrounding area.

第2図は、かかるAPDの従来構造を示す模式側断面図
で、図中、1はn型インジウム・燐(InP)基板、2
はn型1nPバッファ層、3はp型インジウム・ガリウ
ム・砒素・l’A (T n Q 3 AsP)光吸収
層、4はn型TnPウィンドウ層、5はp°型拡散領域
、6はp°型ガードリング領域、7は反射防止兼絶縁膜
、8は上部電極、9は下部電極、SJは階段接合部、G
Jは傾斜接合部を示している。
FIG. 2 is a schematic side sectional view showing the conventional structure of such an APD, in which 1 is an n-type indium phosphorus (InP) substrate, 2
is an n-type 1nP buffer layer, 3 is a p-type indium-gallium-arsenic-l'A (T n Q 3 AsP) light absorption layer, 4 is an n-type TnP window layer, 5 is a p°-type diffusion region, and 6 is a p-type ° type guard ring region, 7 is anti-reflection and insulating film, 8 is upper electrode, 9 is lower electrode, SJ is step junction, G
J indicates an inclined joint.

かかる従来構造において、上記階段接合は熱拡散法によ
り、また傾斜接合はイオン注入法により形成されるのが
一般的であり、例えばウィンドウ層がn型のガリウム砒
素(QaAs)やInPである場合、階段接合は亜鉛(
Zn)やカドミウム(Cd)の熱拡11kにより形成さ
れ、傾斜接合はベリリウム(Be)等のイオン注入によ
って形成されていた。
In such a conventional structure, the stepped junction is generally formed by a thermal diffusion method, and the inclined junction is generally formed by an ion implantation method. For example, when the window layer is made of n-type gallium arsenide (QaAs) or InP, Stair joints are made of zinc (
The junction was formed by thermal expansion 11k of Zn) or cadmium (Cd), and the inclined junction was formed by ion implantation of beryllium (Be) or the like.

然しなから上記ドーパントの熱拡散によって階段接合を
形成する場合、接合の深さ、接合面の平坦性、接合の急
峻性を制御するのが必ずしも容易ではなく、また拡散に
よってウィンドウ層表面の結晶性が劣化し易いことが知
られている。
However, when forming a stepped junction by thermal diffusion of the dopant, it is not always easy to control the depth of the junction, the flatness of the junction surface, and the steepness of the junction, and the crystallinity of the window layer surface is affected by the diffusion. It is known that it is easy to deteriorate.

そのため上記従来方法を用いて製造したAPDにおいて
は、キャリア増倍率の不拘−即ち感度の′1     
 不均一や、雑音の増大を生じていた。
Therefore, in the APD manufactured using the above-mentioned conventional method, the carrier multiplication factor is not limited, that is, the sensitivity is
This resulted in non-uniformity and increased noise.

〔発明が解決しようとする問題点〕 本発明が解決しようとする問題点は、上記雪崩増倍効果
を生せしめる階段接合の深さ、平坦性、急峻性の制御の
困難性、及び結晶表面の劣化に関してである。
[Problems to be Solved by the Invention] The problems to be solved by the present invention are the difficulty in controlling the depth, flatness, and steepness of the step junction that causes the avalanche multiplication effect, and the difficulty in controlling the crystal surface. It's about deterioration.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、ウィンドウ居となる一導電型半導
体層に底面が平坦な凹部を形成し、該凹部内にエピタキ
シャル成長手段によって反対導電型層を埋め込むことに
よって、該ウィンドウ層内に光電流増倍に寄与するp−
n接合を形成する工程を有する本発明による半4体受光
装置の製造方法によってなされる。
The solution to the above problem is to increase the photocurrent in the window layer by forming a recess with a flat bottom surface in the semiconductor layer of one conductivity type and burying a layer of the opposite conductivity type in the recess by epitaxial growth. p-, which contributes twice as much
This is accomplished by a method of manufacturing a semi-four-piece light receiving device according to the present invention, which includes a step of forming an n-junction.

〔作用〕[Effect]

即ち本発明の方法においては、−導電型を有するウィン
ドウ層にエツチング手段を用いて底面が平坦な所定の深
さの凹部を形成し、該凹部内にエピタキシャル成長手段
によって反対導電型半導体層を埋め込み、且つ成長温度
で成長と同時に該反対導電型半導体層の底面と前記凹部
内に表出する     でウィンドウ層の表面をアロ1
゛ングせしめることによって、ウィンドウ層内にその表
面から所定の均一な深さを有し、且つ平坦で急峻な、キ
ャリア増倍に寄与するp−n接合を形成するとともに、
該反対導電型半導体層をエピタキシャル成長手段で形成
することによって該半導体層を含むウィンドウ層表面の
結晶性の劣化をなくした。
That is, in the method of the present invention, a recess with a flat bottom surface and a predetermined depth is formed in a window layer having a conductivity type using an etching means, and a semiconductor layer of an opposite conductivity type is buried in the recess by an epitaxial growth means. At the same time as it grows at the growth temperature, the bottom surface of the opposite conductivity type semiconductor layer and the surface of the window layer exposed in the recess are
By dipping, a p-n junction is formed in the window layer, which has a predetermined uniform depth from the surface, is flat and steep, and contributes to carrier multiplication, and
By forming the opposite conductivity type semiconductor layer by epitaxial growth means, deterioration of the crystallinity of the surface of the window layer including the semiconductor layer is eliminated.

〔実施例〕〔Example〕

以下本発明の方法を一実施例について、第1図+a)乃
至(f)に示す工程断面図を参照し具体的に説明する。
Hereinafter, one embodiment of the method of the present invention will be specifically explained with reference to process cross-sectional views shown in FIGS. 1+a) to (f).

第1図(a)参照 通常の液相エピタキシャル成長技術により、例えばキャ
リア濃度1x 101 G cm −3程度のn型In
P基板1上に、ギヤリア濃度1 ×1QlaCffi−
:l、厚さ1μm程度のn型1nPバフファ層2と、キ
ャリア濃度I XIO”Cm−’l厚さ1〜2μm程度
のn型InGaAsP光吸収居3と、キャリア濃度1×
1016 cm −:I、厚ざ3/!m程度のn型1n
Pウィンドウ層4とを順次積層形成する。
Refer to FIG. 1(a) For example, n-type In with a carrier concentration of about 1x 101 G cm -3 is grown by ordinary liquid phase epitaxial growth technology.
On P substrate 1, gearia concentration 1 × 1QlaCffi-
:l, an n-type 1nP buffer layer 2 with a thickness of about 1 μm, a carrier concentration I
1016 cm -: I, thickness 3/! m type n type 1n
P window layer 4 is sequentially laminated.

第1図(bl参照 次いで第1のレジストマスク11を介しn型InPウィ
ンドウN4に、例えば加゛速エネルギー140KeV 
+ 照射密度5X1013(IJI−”程度の条件でベ
リリウム(Be)のイオン注入を行い、レジストマスク
11を除去し、500〜700℃程度の温度で20〜3
0分程度熱処理を施して上記Beを活性化再分布せしめ
て深さ2μm程度のp°型拡散領域12を形成する。こ
の際形成される接合は傾斜接合GJになる。(Be”は
ベリリウム・イオン) 第1図(C1参照 次いで第2のレジストマスク13を介し、例えばメタノ
ールに1%程度の臭素(Br)を混合してなるエツチン
グ液により上記p゛型拡散領域12の一部を選択的にエ
ンチングし、該p゛型拡散領域12内に下部のn型つィ
ンドウ層4に達する凹部14を形成する。このエツチン
グ方法は異方性を持たない。従ってサイドエツチング分
を考慮し且つ凹部底面の周辺にp゛型拡散領域12が残
るようにマスク13の開口寸法を規定しなければならな
い。この周辺部に残るp°型拡散領域12はガードリン
グとして機能する。そしてこの方法によれば底面の平坦
性の優れた凹部が形成される。また深さの制御も容易で
ある。
FIG. 1 (see BL) Then, an acceleration energy of 140 KeV, for example, is applied to the n-type InP window N4 through the first resist mask 11.
+ Beryllium (Be) ion implantation is performed under conditions of an irradiation density of 5×1013 (IJI−), the resist mask 11 is removed, and the ion implantation is performed at a temperature of approximately 500 to 700° C.
A heat treatment is performed for about 0 minutes to activate and redistribute the Be, thereby forming a p° type diffusion region 12 having a depth of about 2 μm. The joint formed at this time is a tilted joint GJ. (Be" is a beryllium ion) FIG. 1 (See C1) Next, the p-type diffusion region 12 is etched with an etching solution of, for example, methanol mixed with about 1% bromine (Br) through the second resist mask 13. A recess 14 reaching the lower n-type window layer 4 is formed in the p-type diffusion region 12 by selectively etching a part of the etching.This etching method has no anisotropy. In consideration of this, the opening dimensions of the mask 13 must be determined so that the p-type diffusion region 12 remains around the bottom of the recess.The p-type diffusion region 12 remaining at the periphery functions as a guard ring. According to this method, a concave portion with excellent flatness of the bottom surface is formed.Furthermore, the depth can be easily controlled.

第1図(d)参照 第2のレジストマスク13を除去した後、化学気相成長
法により該基板の表面に厚さ2000人程度0二酸化シ
リコン(Sing)膜15を形成し、第3のレジストマ
スク16を介し弗酸等でエツチングを行って上記凹部1
4内面のSi○2膜15を選択的に除去する。この際凹
部周辺のp゛型拡散領域12の上面が僅かに表出されて
も支障はない。
After removing the second resist mask 13 (see FIG. 1(d)), a silicon dioxide (Sing) film 15 with a thickness of approximately 2,000 layers is formed on the surface of the substrate by chemical vapor deposition, and a third resist mask 13 is formed on the surface of the substrate by chemical vapor deposition. The recess 1 is etched with hydrofluoric acid or the like through a mask 16.
4. Selectively remove the Si○2 film 15 on the inner surface. At this time, there is no problem even if the upper surface of the p' type diffusion region 12 around the recess is slightly exposed.

第1図(e)参照 次いで通常のスライド式液相成長法により上記S i 
Oz膜15をマスクにし、上記凹部14内に選択的にキ
ャリア濃度I X1018cm−”程度のp゛型InP
層17を埋め込む。
Referring to FIG. 1(e), the above Si
Using the Oz film 15 as a mask, p-type InP with a carrier concentration of about I
Embed layer 17.

上記成長に際しての650℃程度の温度により該p°型
TnP埋込み[17の底面はその下部のn型1    
  ウィンドウ層4とアロイングし、該埋込み層17の
底面には前記凹部の底面に対応して優れた平坦性を有し
、且つ極めて急峻なキャリア濃度勾配を有する階段接合
SJが形成される。また受光面となる該埋込み層17の
表面は、該埋込み層17がエピタギシャル成長で形成さ
れるので欠陥の極めて少ない良質な面になる。
At a temperature of about 650°C during the above growth, the bottom surface of the p° type TnP [17 is
A step junction SJ is formed on the bottom surface of the buried layer 17 which is alloyed with the window layer 4 and has excellent flatness and an extremely steep carrier concentration gradient corresponding to the bottom surface of the recess. Further, the surface of the buried layer 17, which becomes the light-receiving surface, is a high-quality surface with extremely few defects because the buried layer 17 is formed by epitaxial growth.

第1図(f)参照 以後上記SiO□膜15を除去し、通常通り該基板上に
反射防止兼絶縁用の窒化シリコン(Si:+N4)膜1
8を形成し、該Si、N4膜18に電極コンタクト窓を
形成し、蒸着法により該電極コンタクト窓上に金−亜鉛
・合金よりなる上部p電極19を形成し、金−ゲルマニ
ウム・合金よりなる下部n電極20を形成して、同図に
示すようなInP・APDが完成する。図中、21は受
光部を示す。
After referring to FIG. 1(f), the SiO□ film 15 is removed, and a silicon nitride (Si:+N4) film 1 for antireflection and insulation is placed on the substrate as usual.
8, an electrode contact window is formed on the Si, N4 film 18, and an upper p-electrode 19 made of a gold-zinc alloy is formed on the electrode contact window by a vapor deposition method, and an upper p-electrode 19 made of a gold-germanium alloy is formed. A lower n-electrode 20 is formed to complete an InP APD as shown in the figure. In the figure, 21 indicates a light receiving section.

なお本発明の方法は上記実施例に示したInP・APD
に限らず、他の化合物半導体よりなるAPDの製造にも
適用される。
Note that the method of the present invention is applicable to the InP/APD shown in the above example.
The present invention is also applicable to the manufacture of APDs made of other compound semiconductors.

〔発明の効果〕〔Effect of the invention〕

以よ説明。よう20本発明、よゎば、ウィ7.ウ   
   1)層内に優れた平坦度を有し、且つ極めて急峻
なキャリア濃度勾配を有するキャリア増倍用の階段接合
を正確な深さで容易に形成することができ、化合物半導
体による雪崩型光ダイオード(A P D)の感度の向
上及び性能の均一化を図ることが出来る。
Here's the explanation. 20 This invention, Yowaba, Wi7. cormorant
1) Avalanche-type photodiodes made of compound semiconductors that have excellent intralayer flatness and can easily form stepped junctions for carrier multiplication with an extremely steep carrier concentration gradient at accurate depths. (A P D) sensitivity can be improved and performance can be made uniform.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al乃至(f)は本発明の方法における一実施
例の工程断面図で、第2図は従来のAPDの構造を示す
模式側断面図である。 図において、 1はn型1nP基板、 2はn型1nPバッファ層、 3はn型1nGaAsP光吸収層、 4はn型1nPウィンドウ層、 11.13.16はレジストマスク、 12はp゛型ガードリング領域12. 14は凹部、 15は二酸化シリコン1模、 17はp0型1nP埋込み層、 18は窒化シリコン膜、 19は上部p電極、 20は下部nli極形酸形 成1は受光部、 SJは階段接合、 GJは傾斜接合を示す。 鳩I昭 鴫l 酊 竪2唄
Figures 1 (al to f) are process cross-sectional views of one embodiment of the method of the present invention, and Figure 2 is a schematic side cross-sectional view showing the structure of a conventional APD. In the figure, 1 is an n-type 1nP 2 is an n-type 1nP buffer layer, 3 is an n-type 1nGaAsP light absorption layer, 4 is an n-type 1nP window layer, 11.13.16 is a resist mask, 12 is a p-type guard ring region 12. 14 is a recess, 15 is a silicon dioxide 1 model, 17 is a p0 type 1nP buried layer, 18 is a silicon nitride film, 19 is an upper p-electrode, 20 is a lower nli electrode type acid formation 1 is a light receiving part, SJ is a stepped junction, and GJ is a sloped junction. Show.Hato I Shohakul Dokutate 2 songs

Claims (1)

【特許請求の範囲】[Claims] ウィンドウ層となる一導電型半導体層に凹部を形成し、
該凹部内にエピタキシャル成長手段によって反対導電型
層を埋め込むことによって、該ウィンドウ層内に光電流
増倍に寄与する接合を形成する工程を有することを特徴
とする半導体受光装置の製造方法。
A recess is formed in the one-conductivity type semiconductor layer that will become the window layer,
A method for manufacturing a semiconductor light receiving device, comprising the step of forming a junction contributing to photocurrent multiplication in the window layer by embedding a layer of opposite conductivity type in the recess by epitaxial growth means.
JP59178606A 1984-08-28 1984-08-28 Manufacture of semiconductor photodetector Pending JPS6156470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59178606A JPS6156470A (en) 1984-08-28 1984-08-28 Manufacture of semiconductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59178606A JPS6156470A (en) 1984-08-28 1984-08-28 Manufacture of semiconductor photodetector

Publications (1)

Publication Number Publication Date
JPS6156470A true JPS6156470A (en) 1986-03-22

Family

ID=16051390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59178606A Pending JPS6156470A (en) 1984-08-28 1984-08-28 Manufacture of semiconductor photodetector

Country Status (1)

Country Link
JP (1) JPS6156470A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6451674A (en) * 1987-08-24 1989-02-27 Hitachi Ltd Semiconductor photodetector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6451674A (en) * 1987-08-24 1989-02-27 Hitachi Ltd Semiconductor photodetector

Similar Documents

Publication Publication Date Title
US4949144A (en) Semiconductor photo-detector having a two-stepped impurity profile
KR100306414B1 (en) Photodetector
WO1999053547A1 (en) Photodiode arrays having minimized cross-talk between diodes
KR0175173B1 (en) Method of manufacturing semiconductor device
JPH09219534A (en) Manufacture of light receiving element, photo pickup and semiconductor device
JPH09232618A (en) Semiconductor light receiving element and its manufacture
JPH07231113A (en) Semiconductor device and manufacture thereof
JPS6156470A (en) Manufacture of semiconductor photodetector
US3351827A (en) Opto-electronic semiconductor with improved emitter-region
JPS6244432B2 (en)
JPS6032812B2 (en) photodetector
JPH06181334A (en) Manufacture of semiconductor element
JP4401036B2 (en) Photodiode manufacturing method
US5506186A (en) Method of manufacturing an optoelectronic device
JP2658013B2 (en) Manufacturing method of semiconductor light receiving element
JPS6180875A (en) Semiconductor device
JPH0621503A (en) Semiconductor photodetector and manufacture thereof
JPS6244433B2 (en)
JPS6222475B2 (en)
JPH02226777A (en) Semiconductor light receiving element and manufacture thereof
JPS60173882A (en) Semiconductor device
JPH0148665B2 (en)
JPS61220481A (en) Manufacture of semiconductor light receiving device
JPS6138630B2 (en)
JPH02139975A (en) Manufacture of semiconductor photodetector