JPS6156401A - Method of forming heating resistor of thermal head - Google Patents

Method of forming heating resistor of thermal head

Info

Publication number
JPS6156401A
JPS6156401A JP59178677A JP17867784A JPS6156401A JP S6156401 A JPS6156401 A JP S6156401A JP 59178677 A JP59178677 A JP 59178677A JP 17867784 A JP17867784 A JP 17867784A JP S6156401 A JPS6156401 A JP S6156401A
Authority
JP
Japan
Prior art keywords
resistance value
heat generating
resistor
heat
thermal head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59178677A
Other languages
Japanese (ja)
Inventor
賢二 黒木
孝史 金森
沢井 秀夫
進 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP59178677A priority Critical patent/JPS6156401A/en
Publication of JPS6156401A publication Critical patent/JPS6156401A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はサーマルヘッドの発熱抵抗体の形成方法、特
にその抵抗値の設定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of forming a heating resistor of a thermal head, and particularly to a method of setting its resistance value.

(従来の技術) 一般に、サーマルヘッドは、基本的には、基板面の上側
に設けられた発熱抵抗体と、その上側の発熱部を除く部
分に設けられ発熱部を構成する発熱抵抗体領域に給電を
行う給電体とを有していて、これらの組み合わせを多数
平行に並べ、その上側に保護膜を設けた構造となってい
る。この発熱部の発熱量は印字品質に影響を及ぼすので
、各発熱部の発熱量がほぼ等しいことが望まれている。
(Prior Art) In general, a thermal head basically consists of a heat generating resistor provided on the upper side of a substrate surface and a heat generating resistor area provided above the heat generating part excluding the heat generating part and forming the heat generating part. It has a structure in which a large number of combinations of these are arranged in parallel and a protective film is provided on the upper side. Since the amount of heat generated by each heat generating portion affects printing quality, it is desired that the amount of heat generated by each heat generating portion be approximately equal.

従来のサーマルヘッドでは、この発熱部を構成する発熱
抵抗体領域(発熱領域と称する)の発熱量、従って、こ
の発熱領域の抵抗値は、この発熱領域の形状とか寸法を
精確に制御することによって、設定されていた。
In conventional thermal heads, the amount of heat generated by the heat generating resistor region (referred to as the heat generating region) that constitutes this heat generating section, and therefore the resistance value of this heat generating region, can be controlled by precisely controlling the shape and dimensions of this heat generating region. , had been set.

(発明が解決しようとする問題点) しかしながら、この抵抗値の精度は、微細パターンの発
熱抵抗体や給電体を作る工程中に使用されるフォトマス
クの精度をはじめとする1種々のプロセス条件によって
左右され、経験によると所定の抵抗値からのバラツキの
程度は、最大±15%にも達している。このバラツキを
なくすためには、個々の発熱領域の抵抗値を個別的に調
節することが出来れば良いが、従来はそのような個別調
整の方法がなかった。これがため、従来は、発熱部の駆
動方式を工夫するとか或いは別の手段により印字のむら
をなくす努力がなされていたが、これらの方法は複雑で
必ずしも満足する結果が得られていなかった。
(Problem to be solved by the invention) However, the accuracy of this resistance value depends on various process conditions, including the accuracy of the photomask used during the process of making fine pattern heating resistors and power supply bodies. According to experience, the degree of variation from a predetermined resistance value reaches a maximum of ±15%. In order to eliminate this variation, it is only necessary to individually adjust the resistance value of each heat generating region, but conventionally there was no method for such individual adjustment. For this reason, in the past, efforts have been made to eliminate uneven printing by devising the driving method of the heat generating section or by other means, but these methods are complicated and have not always yielded satisfactory results.

(問題点を解決するための手段) このような従来の欠点を回避するため、この出願の発明
者等は、多くの実験の結果、発熱抵抗体を熱処理すると
、その抵抗体の結晶状態が変わって抵抗値が変化すると
いう現象を上手に利用すれば、その抵抗体の抵抗値を設
定出来るという確信を得るに至った。
(Means for Solving the Problems) In order to avoid such conventional drawbacks, the inventors of this application have conducted numerous experiments and found that heat treatment of a heating resistor changes the crystalline state of the resistor. I have come to believe that I can set the resistance value of the resistor by making good use of the phenomenon that the resistance value changes.

例えば、発熱抵抗体材料の一種であるTa2 N皮膜を
基板上に形成し、20℃の雰囲気温度中で5分間の熱処
理を行った時のこの皮膜の抵抗値の変化は第3図に示す
ようであった。同図において、Wll     軸に5
分間の熱処理温度をブロー、トシ、かつ、縦軸に抵抗値
(Ω)をプロットして示す。
For example, when a Ta2N film, which is a type of heating resistor material, is formed on a substrate and heat-treated for 5 minutes at an ambient temperature of 20°C, the change in resistance value of this film is as shown in Figure 3. Met. In the same figure, 5 is on the Wll axis.
The heat treatment temperature per minute is shown in blow and heat, and the resistance value (Ω) is plotted on the vertical axis.

この丁a2 N皮膜の熱特性から、熱処理によりアモル
ファスから結晶化への構造変化が起り、抵抗が減少し、
この変化は不可逆的であることがわかった。
Due to the thermal properties of this D-A2N film, heat treatment causes a structural change from amorphous to crystallized, resulting in a decrease in resistance.
This change turned out to be irreversible.

従って、抵抗体の材料として、熱処理により結晶状態が
変わる材料を利用し、その温度を制御すれば良い。
Therefore, as the material of the resistor, a material whose crystalline state can be changed by heat treatment may be used, and the temperature thereof may be controlled.

従って、この発明の目的は、サーマルヘッドの発熱部の
発熱抵抗体領域の抵抗値を個別に精確に設定出来るよう
にした方法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method that allows the resistance values of the heat generating resistor regions of the heat generating portion of a thermal head to be individually and accurately set.

この目的の達成を図るため、この発明の方法によれば、
基板の上側に所定の抵抗値を有する複数個の、サーマル
ヘッドの発熱抵抗体を形成するに当り、少なくとも発熱
部を構成する発熱抵抗体領域をアモルファス全屈材料又
は微結晶金属材料で形成し、この発熱抵抗体領域に通電
を行ってその時発生するジュール熱で当該発熱抵抗体領
域の抵抗値を変化させて所定の抵抗値i設定することを
     !特徴とする。
In order to achieve this objective, according to the method of the present invention,
When forming a plurality of heat generating resistors of a thermal head having a predetermined resistance value on the upper side of the substrate, at least a heat generating resistor region constituting a heat generating part is formed of an amorphous fully bending material or a microcrystalline metal material, Electricity is applied to this heating resistor region, and the Joule heat generated at that time changes the resistance value of the heating resistor region to set a predetermined resistance value i! Features.

(作用) このように構成すれば、通電により発熱抵抗体領域(発
熱領域)自体が発生するジュール熱により発熱領域自体
の膜質すなわち結晶状態が変化して抵抗値が変化するの
で1発生するジュール熱、従って1発熱領域に供給する
電力及びその供給時間を調整することにより所定の抵抗
値に設定することが出来る。
(Function) With this configuration, the Joule heat generated by the heat generating resistor region (heat generating region) itself when energized changes the film quality, that is, the crystalline state of the heat generating region itself, and the resistance value changes, so the Joule heat generated is reduced by 1 Joule heat. Therefore, a predetermined resistance value can be set by adjusting the power supplied to one heat generating region and the supply time thereof.

このような設定方法によれば、微細なパターンの発熱領
域であっても、簡単で容易に抵抗(+’Jの設定が可能
となり、各発熱領域の抵抗値をそろえることが出来るの
で、印字むらをなくすことが出来る。
According to this setting method, it is possible to easily and easily set the resistance (+'J) even for heat generating areas with minute patterns, and the resistance value of each heat generating area can be made the same, thereby reducing printing unevenness. can be eliminated.

(実施例) 以下、第1図(A)及びCB)と第2図を参照してこの
発明の方法の実施例を説明する。
(Example) Hereinafter, an example of the method of the present invention will be described with reference to FIGS. 1(A) and CB) and FIG. 2.

第1図(A)は抵抗体の材料としてアモルファス金属材
pのうちの例えばTa2 Nを用い、これを基板上に抵
抗体皮膜としてパターン形成し、この皮膜に通電を行っ
てジュール熱により熱処理を行った場合の抵抗値の変化
を示す熱特性曲線図である。同図において、横軸に供給
した電力(W)をプロットし、かつ、縦軸に抵抗値(Ω
)をプロットして示した。
In FIG. 1(A), an amorphous metal material such as Ta2N is used as the material of the resistor, and this is patterned as a resistor film on a substrate, and this film is energized and heat-treated using Joule heat. FIG. 3 is a thermal characteristic curve diagram showing changes in resistance value in the case where the resistance value is changed. In the figure, the horizontal axis plots the supplied power (W), and the vertical axis plots the resistance value (Ω
) are plotted and shown.

この場合の測定は、抵抗体皮膜の幅を80ルlとし、長
さを1mmとし、厚さを約300OAとし、雰囲気温度
を常温とし及び電気パルス幅を2.5oSとして測定し
た。この実験結果からも明らかなように、この抵抗体の
抵抗値は熱処理温度の増加に伴なって低下することが認
められる。これはアモルファス金属であるTa2 N皮
膜の結晶化によるものである。
In this case, the measurement was performed with the resistor film having a width of 80 l, a length of 1 mm, a thickness of about 300 OA, an ambient temperature of room temperature, and an electric pulse width of 2.5 oS. As is clear from the experimental results, it is recognized that the resistance value of this resistor decreases as the heat treatment temperature increases. This is due to crystallization of the Ta2N film, which is an amorphous metal.

第1図(B)は、第1図(A)と同様な実験結果を示す
熱特性曲線図である。この場合、抵抗体材料として例え
ばNi −Pを用い、雰囲気温度を20°Cとし、その
他は第1図(A)と同一の資料条件で測定を行った。こ
の場合にも、抵抗値は、熱処理温度の増加に伴なってア
モルファスから結晶化するため、低下することがわかる
FIG. 1(B) is a thermal characteristic curve diagram showing the same experimental results as FIG. 1(A). In this case, for example, Ni-P was used as the resistor material, the ambient temperature was 20° C., and the other measurements were performed under the same material conditions as in FIG. 1(A). It can be seen that in this case as well, the resistance value decreases because the amorphous state crystallizes as the heat treatment temperature increases.

第2図は抵抗体の抵抗値を設定するために用いる装置の
例を示す線図である。
FIG. 2 is a diagram showing an example of a device used to set the resistance value of a resistor.

第2図において、1は基板、2は基板l上にパターン形
成された発熱抵抗体の発熱領域、3は各発熱領域2と電
気的に接続されている共通給電体、4は各発熱領域2毎
の給電体、5はタングステン製のプローバ、5a、5b
、φ・・5nはブローバ探子、6はプローバ5にta続
された通電制御回路である。この通電制御回路6はブロ
ーバ探子5a〜5nを選択し、発熱抵抗体領域である発
熱領域2の抵抗値をブローバ5を通じて測定し、この測
定値と・、通電制御回路6に予め記憶させである目標値
とを比較して発熱領域2に通電させる電力量を計算し、
よってこの通電制御回路6からプローバ5を経て電気パ
ルスを発熱領域2に流す機能を備えている。この通電に
よってこのJiJlim2にジュール熱が発生し、これ
により発熱領域2自体の抵抗材料を加熱してその結晶化
度を制御すれば良い、従って、この抵抗値の設定に当り
、各発熱領域2を、その抵抗値が設定しようとする所定
の抵抗値よりも誤差分だけ高めになるように、パターン
形成しておき、製造プロセスで生ずる抵抗値のバラツキ
を考慮してその最小抵抗値を目標値として通電制御回路
6に記憶させておき、各発熱領域の抵抗値を通電制御回
路6で°測定しながらそれぞれの通電量を制御すれば、
発熱領域2の抵抗値を所定の抵抗値にバラツキなくかつ
精確に設定することが出来る。
In FIG. 2, 1 is a substrate, 2 is a heating area of a heating resistor patterned on the substrate 1, 3 is a common power supply electrically connected to each heating area 2, and 4 is each heating area 2. 5 is a tungsten prober, 5a, 5b
, φ...5n is a blobber probe, and 6 is an energization control circuit connected to the prober 5. This energization control circuit 6 selects the blowbar probes 5a to 5n, measures the resistance value of the heating region 2, which is a heating resistor region, through the blower 5, and stores this measured value in the energization control circuit 6 in advance. Calculate the amount of electricity to be energized to heat generating area 2 by comparing it with the target value,
Therefore, it has a function of flowing electric pulses from this energization control circuit 6 to the heat generating region 2 via the prober 5. This energization generates Joule heat in JiJlim2, which heats the resistance material of the heat generating region 2 itself to control its crystallinity. Therefore, when setting this resistance value, each heat generating region 2 is heated. , the pattern is formed so that the resistance value is higher than the predetermined resistance value to be set by the error amount, and the minimum resistance value is set as the target value, taking into account the variation in resistance value that occurs during the manufacturing process. If the current is stored in the energization control circuit 6 and the resistance value of each heating area is measured by the energization control circuit 6, the amount of energization of each is controlled.
The resistance value of the heat generating region 2 can be set to a predetermined resistance value without variation and accurately.

さらに、この抵抗値の設定に当り、−回の設定工程に終
らずに、設定工程を繰り返し行−フて抵抗値の高精度な
rlJ整を行うことが出来る。
Furthermore, when setting this resistance value, the setting process can be repeated without completing the setting process twice, thereby allowing highly accurate rlJ adjustment of the resistance value.

この発明の方法によれば、従来の抵抗Jlll定の工程
において、上述したような通電制御回路6を付加するこ
とによって抵抗値の設定を行うことが出来るので、その
設定工程は簡単でかつ容易である。
According to the method of the present invention, the resistance value can be set by adding the above-mentioned energization control circuit 6 to the conventional process of determining the resistance, so the setting process is simple and easy. be.

尚、この抵抗値の設定に当り、通電する電力量、すなわ
ち、発熱領域2のジュール熱は抵抗体自体の材料、寸法
、下地の材料等により変わるので、それぞれに応じた電
力量を設定すれば良    ・:(い。
When setting this resistance value, the amount of power to be applied, that is, the Joule heat in heat generating area 2, varies depending on the material and dimensions of the resistor itself, the material of the base, etc., so if you set the amount of power according to each. good.

また、使用する発熱抵抗体領域の材料は熱処理により結
晶状態が変化する材料であれば、N1−P等のような無
電解Ni系皮膜やTa2 Nのような金属窒化物皮膜等
の材料はもとより、それ以外の材料であっても良いこと
勿論であり、さらに、アモルファス全屈の他に微結晶金
属であっても同様な効果を得ることが出来る。
In addition, the material used for the heating resistor region can be any material whose crystalline state changes through heat treatment, including electroless Ni films such as N1-P and metal nitride films such as Ta2N. Of course, other materials may be used, and the same effect can be obtained even with microcrystalline metal instead of amorphous.

また、発熱部の発熱抵抗体領域のみをアモルファス金j
ヱ又は微結晶金pA″c!形成しても良いし、或いは、
発熱抵抗体全体をこれら金属で形成しても良い。
In addition, only the heating resistor area of the heating part is made of amorphous gold.
ヱOr microcrystalline gold pA″c! may be formed, or,
The entire heating resistor may be made of these metals.

また、基板として、サーマルヘッドに好適な材料の基板
を用いることが出来る。
Further, as the substrate, a substrate made of a material suitable for a thermal head can be used.

(発明の効果) 上述した説明からも明らかなように、この発明によれば
、少なくとも発熱部の発熱抵抗体領域にアモルファス全
屈材料又は微結晶金属材料等のような発熱抵抗体材料を
用い、これに通電を行ってジュール熱を発生させ、この
熱により抵抗値を変えて所定の抵抗値に設定するのであ
るから、発熱部毎に、簡単かつ容易にしかも精確に、抵
抗値の設定を行うことが出来る。
(Effects of the Invention) As is clear from the above description, according to the present invention, a heat generating resistor material such as an amorphous fully bending material or a microcrystalline metal material is used at least in the heat generating resistor region of the heat generating part, Electricity is applied to this to generate Joule heat, and this heat is used to change the resistance value and set it to a predetermined resistance value, so the resistance value can be easily and accurately set for each heat generating part. I can do it.

従って、この発明の方法によれば、各発熱抵抗体領域の
抵抗値のバラツキをなくすことが出来、これがため、こ
の発明の方法によれば、に1.熱部の駆動方法に工夫を
凝らす等の複雑な方法によらずして、印字むらの発生を
抑えることが出来る。
Therefore, according to the method of the present invention, it is possible to eliminate variations in the resistance values of the respective heat generating resistor regions. It is possible to suppress the occurrence of printing unevenness without resorting to complicated methods such as devising a method for driving the heating section.

この方法はハイブリッド用抵抗体の抵抗値の設定に用い
られるレーザトリミングに対抗した技術として利用する
ことが出来る。
This method can be used as a technique to compete with laser trimming used to set the resistance value of a hybrid resistor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)及び(B)はこの発明の説明に供する発熱
抵抗体材料の熱抵抗特性をそれぞれ示す特性曲線図、 第2図はこの発明の方法及びこれを実施するための装置
の説明に供する線図、 第3図はこの発明の詳細な説明に供する発熱抵抗体材料
の熱特性曲線図である。 1・・・基板、      2・・・発熱領域3・・・
共通給電体、   4・・・給電体5・・・プローバ、
    5a〜5n・・・ブローバ探子6・・・通電制
御回路。 (で)1A′’客
Figures 1 (A) and (B) are characteristic curve diagrams showing the thermal resistance characteristics of the heating resistor material used to explain the present invention, and Figure 2 is an explanation of the method of the present invention and the apparatus for carrying out the method. FIG. 3 is a thermal characteristic curve diagram of a heating resistor material used for detailed explanation of the present invention. 1... Board, 2... Heat generating area 3...
common power supply body, 4... power supply body 5... prober,
5a to 5n...Bulover probe 6...Electrification control circuit. (at) 1A'' customer

Claims (1)

【特許請求の範囲】[Claims] 基板の上側に所定の抵抗値を有する複数個の、サーマル
ヘッドの発熱抵抗体を形成するに当り、少なくとも発熱
部を構成する発熱抵抗体領域をアモルファス金属材料又
は微結晶金属材料で形成し、該発熱抵抗体領域に通電を
行ってその時発生するジュール熱で当該発熱抵抗体領域
の抵抗値を変化させて所定の抵抗値に設定することを特
徴とするサーマルヘッドの発熱抵抗体形成方法。
When forming a plurality of heating resistors of a thermal head having a predetermined resistance value on the upper side of the substrate, at least the heating resistor region constituting the heating part is formed of an amorphous metal material or a microcrystalline metal material, and A method for forming a heat generating resistor of a thermal head, characterized in that the resistance value of the heat generating resistor region is changed to a predetermined resistance value by applying electricity to the heat generating resistor region and using the Joule heat generated at that time to set the resistance value to a predetermined resistance value.
JP59178677A 1984-08-28 1984-08-28 Method of forming heating resistor of thermal head Pending JPS6156401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59178677A JPS6156401A (en) 1984-08-28 1984-08-28 Method of forming heating resistor of thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59178677A JPS6156401A (en) 1984-08-28 1984-08-28 Method of forming heating resistor of thermal head

Publications (1)

Publication Number Publication Date
JPS6156401A true JPS6156401A (en) 1986-03-22

Family

ID=16052624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59178677A Pending JPS6156401A (en) 1984-08-28 1984-08-28 Method of forming heating resistor of thermal head

Country Status (1)

Country Link
JP (1) JPS6156401A (en)

Similar Documents

Publication Publication Date Title
JPS6156401A (en) Method of forming heating resistor of thermal head
JPH0326527B2 (en)
JPS62122102A (en) Heat sensitive recording head and manufacture of the same
JP2933235B2 (en) Resistor trimming method for thin film thermal head
JP2947948B2 (en) Resistor trimming method for thin film thermal head
JP2831854B2 (en) Resistor trimming method for thin film thermal head
JPS6156402A (en) Method of setting resistance value
JP2818489B2 (en) Resistor trimming method for thin film thermal head
JP2810243B2 (en) Thermal head resistor trimming method
JP2590916B2 (en) Method of manufacturing thick film type thermal head
JP3621444B2 (en) Trimming method of thin film thermal print head
JP2938222B2 (en) Thermal head resistor trimming device
JP2818527B2 (en) Manufacturing method of thermal head
JP3961038B2 (en) Thermal head trimming method
JPS63157404A (en) Method of trimming thick film resistor array
JPS6292411A (en) Manufacture of thick film thermal head
JPH0533539B2 (en)
SU764898A1 (en) Method of automatic measuring and control of electric heating
JP2955408B2 (en) Image recording device
JPH05258843A (en) Fixing heater and its manufacture
JPS6359549A (en) Manufacture of thermal head
JPH05131666A (en) Method for manufacture of thermal head
JPS63191656A (en) Trimming for resistance value of thermal head heating resistor
JP2930743B2 (en) Manufacturing method of temperature sensor
JPS63252760A (en) Thermal resistor trimming of thermal head