JPS6155696A - Sound wave absorbing body - Google Patents

Sound wave absorbing body

Info

Publication number
JPS6155696A
JPS6155696A JP59177991A JP17799184A JPS6155696A JP S6155696 A JPS6155696 A JP S6155696A JP 59177991 A JP59177991 A JP 59177991A JP 17799184 A JP17799184 A JP 17799184A JP S6155696 A JPS6155696 A JP S6155696A
Authority
JP
Japan
Prior art keywords
acoustic impedance
sound
sound wave
particles
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59177991A
Other languages
Japanese (ja)
Other versions
JPH0449948B2 (en
Inventor
弘幸 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59177991A priority Critical patent/JPS6155696A/en
Publication of JPS6155696A publication Critical patent/JPS6155696A/en
Publication of JPH0449948B2 publication Critical patent/JPH0449948B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明はたとえば超音波流量計が設置される配管内を伝
搬する不要な音波を吸収するだめの音波吸収体に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field to Which the Invention Pertains] The present invention relates to a sound wave absorber for absorbing unnecessary sound waves propagating in a pipe in which an ultrasonic flowmeter is installed, for example.

〔従来技術とその問題点〕[Prior art and its problems]

超音波流量計は第6図に示したように、流体を導く配管
1の外側に流体の進行方向に互に位置をずらせて配置さ
れた一対の超音波送受波器2a、2bから構成され、第
1の送受波器2aから放射された超音波が第2の送受波
器2bに到達する時間と、第2の送受波器2bから放射
された超音波が第1の送受波器2aに到達する時間との
差に基づいて配管1内の流体の速度およびそれに伴なっ
て流量を求める。しかしこの超音波流量計を小口径(直
径100 mm以下)の配管に適用すると、配管1内を
多重反射しながら伝搬する反射波が生じ、この多重反射
波を流体内を直接伝搬する音波と一緒に送受波器が受信
するので、高い精度で夕1j定できないという欠点を生
ずる。そのため配管1内を伝搬するこの不要な多重反射
波を減少させ、流体内を直接伝搬してきた音波が高いS
/N比で送受波器2a、2bに受信されて高い精度で測
定できるようにする必要があり、そのために送受波器2
a、2bの周辺における配管10表面に音波吸と一致す
る音響インピーダンスZ2を有しかつ吸音率が高いこと
が望まれ、一般には第7図に示したように配管(たとえ
ば鉄)1よりも音響インピーダンスが低くて吸−8率の
高いゴム(/ことえば/リコンゴム)4とこのゴム3の
中に一様に混入された前記配管1より高い音響インピー
ダンスの金ワシ粒子(たとえばタングステン)5とから
構成きれる。
As shown in FIG. 6, the ultrasonic flowmeter is composed of a pair of ultrasonic transducers 2a and 2b arranged outside a pipe 1 that guides fluid with their positions shifted from each other in the direction of movement of the fluid. The time for the ultrasonic waves emitted from the first transducer 2a to reach the second transducer 2b, and the time for the ultrasonic waves emitted from the second transducer 2b to reach the first transducer 2a. The velocity of the fluid in the pipe 1 and the corresponding flow rate are determined based on the difference between However, when this ultrasonic flowmeter is applied to a small-diameter pipe (100 mm or less in diameter), a reflected wave propagates through the pipe 1 with multiple reflections, and these multiple reflected waves are combined with the sound waves that directly propagate within the fluid. Since the transducer receives the signal at the same time, there is a drawback that the signal cannot be determined with high accuracy. Therefore, this unnecessary multiple reflected wave propagating inside the pipe 1 is reduced, and the sound wave directly propagating inside the fluid has a high S.
/N ratio, it is necessary to be able to receive the signals at the transducers 2a and 2b and measure with high accuracy.
It is desirable that the surface of the pipe 10 around the pipes 1 and 2b has an acoustic impedance Z2 that corresponds to sound absorption and has a high sound absorption coefficient, and generally, as shown in FIG. Rubber (/Kotoba/Recon rubber) 4 with low impedance and high absorption rate and metal particles (for example, tungsten) 5 with a higher acoustic impedance than the pipe 1 uniformly mixed into the rubber 3. Can be configured.

音響インピーダンスZは次式で表わされる。Acoustic impedance Z is expressed by the following equation.

Z=ρ・C・・・・・・(1) ここでρは媒質の密度、Cけ媒質の音速である。Z=ρ・C・・・・・・(1) Here, ρ is the density of the medium, and C is the sound speed of the medium.

しかしゴム4の中に金属粒子5が一様に混入されて成る
この音波吸収体3は、第8図に示したように吸音特性が
ゴムに比べて悪く、十分に吸音できないか、厚肉にしな
ければならないという欠点を有している。なお第7図に
おいて6は配管1内を伝搬する不要な音波である。
However, this sound wave absorber 3, which is made by uniformly mixing metal particles 5 into rubber 4, has poor sound absorption characteristics compared to rubber, as shown in FIG. It has the disadvantage of being necessary. In addition, in FIG. 7, 6 is an unnecessary sound wave propagating inside the pipe 1.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、吸収すべき音波が伝搬している媒体と
音響インピーダンスの整合がとれかつ吸音特性の良い薄
肉の音波吸収体を提供することにある。
An object of the present invention is to provide a thin sound wave absorber that can match the acoustic impedance of the medium through which the sound waves to be absorbed propagate and has good sound absorption characteristics.

〔発明の要点〕[Key points of the invention]

本発明によればこの目的は、音波が伝搬している媒体の
音響インピーダンスより低い音響インピーダンスの吸音
体とこの吸音体の中に混入された前記媒体より高い音響
インピーダンスの粒子とから成り、前記媒体と接する側
にその音響インピーダンスが前記媒体の音響インピーダ
ンスと実質的に一致するような混合比で前記粒子が混入
された音響インピーダンス接合層が形成され、この音響
インピーダンス整合層から音波伝搬方向に連続的に粒子
の混合比が減少していることを特徴とする音波吸収体に
よって達成される。
According to the invention, this object consists of a sound absorber having an acoustic impedance lower than the acoustic impedance of the medium through which the sound waves are propagating, and particles having an acoustic impedance higher than said medium mixed into this sound absorber; An acoustic impedance bonding layer in which the particles are mixed at a mixing ratio such that the acoustic impedance thereof substantially matches the acoustic impedance of the medium is formed on the side in contact with the acoustic impedance matching layer. This is achieved by a sound absorber characterized by a reduced mixing ratio of particles.

〔発明の実施例〕[Embodiments of the invention]

次に第1図に示す実施例に基づいて本発明の詳細な説明
する。
Next, the present invention will be explained in detail based on the embodiment shown in FIG.

本発明に基づく音波吸収体13は特に、fll  音波
が伝搬する媒体(配管)1と接する側の音響インピーダ
ンスを前記媒体1の音響インピーダンスと実質的匹一致
きせる。具体的には、前者を後者の08〜1.5倍程度
とする。
In particular, the sound wave absorber 13 according to the present invention makes the acoustic impedance of the side in contact with the medium (piping) 1 through which the fll sound waves propagate substantially equal to the acoustic impedance of the medium 1 . Specifically, the former is about 0.8 to 1.5 times the latter.

+21  音波が伝搬する媒体(配管)1から遠い側を
良い吸音率にする、 ということ考慮して、音波伝搬方向にゴム14と金属粒
子15との混合比が減少する混合体で構成されている。
+21 Considering that the side far from the medium (piping) 1 through which the sound waves propagate has a good sound absorption coefficient, it is composed of a mixture of rubber 14 and metal particles 15 whose mixing ratio decreases in the sound wave propagation direction. .

いま−例として配管1が鉄、ゴム14が7リコンゴム、
金属粒子15がタングステンである場合について説明す
ると、これらの材料の音響特注は次の表の通りである。
Now, as an example, pipe 1 is made of iron, rubber 14 is made of 7-recon rubber,
To explain the case where the metal particles 15 are tungsten, the acoustic customization of these materials is as shown in the following table.

表1=鉄、/リコンゴム、タングステンの音響特性金属
粒子15の粒径な音波の一波長より十分小さくすると、
上記条件(11を考慮した配管1と接する音波吸収体1
3の音響インピーダンス整合%161Cおけるゴムト1
と金属粒子15との混合比Xは次の式で決まる。
Table 1 = Acoustic characteristics of iron, silicone rubber, and tungsten When the particle size of metal particles 15 is sufficiently smaller than one wavelength of a sound wave,
Sound wave absorber 1 in contact with piping 1 considering the above conditions (11)
Acoustic impedance matching% of 3 rubber at 161C
The mixing ratio X of the metal particles 15 and 15 is determined by the following formula.

< I  X l l’ 2C2+ X l’ 5C3
=ρ+CI聞・(21ここでρIは配管1の密度、ρ2
はゴム14の密度、ρ3は金属粒子15の密度、clは
配管1の音速、C2はゴム14の音速sC3は金属粒子
15の音速である。
< I X l l' 2C2+ X l' 5C3
= ρ + CI (21 Here, ρI is the density of pipe 1, ρ2
is the density of the rubber 14, ρ3 is the density of the metal particles 15, cl is the sound speed of the pipe 1, C2 is the sound speed of the rubber 14, sC3 is the sound speed of the metal particles 15.

この式(2)に上記表1の数値を当てはめると、金属粒
子15の混合比は224%となる。一方この音波吸収体
13の音速Cは次式で表わされる。
When the values in Table 1 above are applied to this equation (2), the mixing ratio of the metal particles 15 becomes 224%. On the other hand, the sound velocity C of this sound wave absorber 13 is expressed by the following equation.

C= (I  X ) C2+ XC3−□□ f41
この式(4)に同様に上記表1の数値を当てはめると、
音波吸収体13の音速Cは2193m/+となる。
C= (IX) C2+ XC3-□□ f41
Applying the values in Table 1 above to this formula (4), we get
The sound speed C of the sound wave absorber 13 is 2193 m/+.

音波の周波数をI MHzとすると音波の波長は219
3間となシ、金属粒子15の粒径はこの波長より十分小
さく、たとえば50μm程度にしなければならない。
If the frequency of a sound wave is I MHz, the wavelength of a sound wave is 219
However, the particle size of the metal particles 15 must be sufficiently smaller than this wavelength, for example, about 50 μm.

更に上記条件(2ンを満足させるために、音波吸収体1
3の金属粒子15の混合比Xは、音波の伝搬方向におい
て第2図に示したように連続的に低下され、音響インピ
ーダンスの不連続面を作ることなしに音響インピーダン
ス整合層16と反対側はゴム14だけで形成されている
。この音波吸収体13の音波伝搬方向における音響イン
ピーダンスは第3図に示したように連続的に変化し、ま
た吸音特性は第4図に示したようにゴム14の吸音特性
に相応し、このことによって配管1内を伝搬してきた音
波6は音波吸収体13と空気17との界面に到達する短
かい距離の間で十分に吸音され減衰される。なお音響イ
ンピーダンス整合層16は配管1の音響インピーダンス
の0.8〜1.5の音響インピーダンスで配管lと音響
的に良好に整合できる。
Furthermore, in order to satisfy the above condition (2), the sound wave absorber 1
The mixing ratio X of the metal particles 15 of No. 3 is continuously lowered in the propagation direction of the sound wave as shown in FIG. It is formed of only rubber 14. The acoustic impedance of the sound wave absorber 13 in the sound wave propagation direction changes continuously as shown in FIG. 3, and the sound absorption characteristics correspond to the sound absorption characteristics of the rubber 14 as shown in FIG. As a result, the sound waves 6 propagating through the pipe 1 are sufficiently absorbed and attenuated within a short distance reaching the interface between the sound wave absorber 13 and the air 17. Note that the acoustic impedance matching layer 16 has an acoustic impedance of 0.8 to 1.5 of the acoustic impedance of the pipe 1, and can be acoustically well matched to the pipe 1.

また第2図に示したように金属粒子15の混合率が変化
している音波吸収体13は、たとえば第5図に示したよ
うに、容器18内の溶融ゴム14の中に金属粒子15を
混入しく第5図a)、金属粒子15の混合比が一様にな
るように攪拌器19で攪拌しく第5図b)、金属粒子1
5が第2図に示したような混合率となるように沈降時間
を考慮した硬化塩度と硬化11.5間で恒温4Xつ回内
でゴム14を硬化する(m5図C)ことによって製造で
きる。
Further, as shown in FIG. 2, the sound wave absorber 13 in which the mixing ratio of the metal particles 15 is changed is, for example, as shown in FIG. The metal particles 15 should be stirred with a stirrer 19 so that the mixing ratio of the metal particles 15 is uniform (see Fig. 5a), Fig. 5b), and the metal particles 1
Manufactured by curing the rubber 14 at a constant temperature of 4X times between curing salinity and curing 11.5 taking into account settling time so that the mixing ratio is as shown in Fig. 2 (m5 Fig. C). can.

〔発明の効果〕〔Effect of the invention〕

本発明に基づく音波吸収体によれば、音波が伝搬してい
る媒体(配管)と接する側に音響インピーダンス整合層
が形成され工いるので、音波の大部分を音波吸収体に導
くことができ、音響インピーダンスが音波伝搬方向に連
続的に減少しかつ吸音効果が音波伝搬方向に増加してい
るので、音響インピーダンスの差異による音波の反射が
なく短かい距離で音波を吸収できる。従って薄くて吸音
特性の良い音波吸収体が得られる。
According to the sound wave absorber based on the present invention, since the acoustic impedance matching layer is formed on the side in contact with the medium (piping) through which the sound waves are propagating, most of the sound waves can be guided to the sound wave absorber. Since the acoustic impedance continuously decreases in the direction of sound wave propagation and the sound absorption effect increases in the direction of sound wave propagation, there is no reflection of sound waves due to differences in acoustic impedance, and sound waves can be absorbed over a short distance. Therefore, a thin sound wave absorber with good sound absorption properties can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に基づく音波吸収体の断面図、第2図お
よび第3図はそれぞれ第1図における音波吸収体の音波
伝搬方向における金属粒子の混合比および音響インピー
ダンスの変化を示す線図、第4図は第1図における音波
吸収体の吸音特性を示す線図、第5図3、b%Cは本発
明に基づく音波吸収体の製造工程を示す説明図、第6図
は超旨波流量計が設置されその周辺に音波吸収体が設け
られている配管の斜視図、第7図は第6図における従来
の音波吸収体の断面図、第8図は第7図における音波吸
収体の吸音特性を示す線図である。 1・・・配管(音波が伝搬している媒体)、2a、2b
・・・超音波送受波器、3.13・・・音波吸収体、4
.14・・・ゴム(a膏体)、5.15・・金属粒子、
16・・・音響インピーダンス整合層。 (6118)代理人弁理士冨村 b 晃2図 嶌3区 晃4図 第5区 (a、)(b)(c)
FIG. 1 is a cross-sectional view of a sound wave absorber according to the present invention, and FIGS. 2 and 3 are diagrams showing changes in the mixing ratio of metal particles and acoustic impedance in the sound wave propagation direction of the sound wave absorber in FIG. 1, respectively. , FIG. 4 is a diagram showing the sound absorption characteristics of the sound wave absorber in FIG. 1, FIG. 5 is an explanatory diagram showing the manufacturing process of the sound wave absorber based on the present invention, and FIG. A perspective view of a pipe in which a wave flow meter is installed and a sound wave absorber is provided around it, Figure 7 is a sectional view of the conventional sound wave absorber in Figure 6, and Figure 8 is a cross-sectional view of the conventional sound wave absorber in Figure 7. FIG. 3 is a diagram showing the sound absorption characteristics of 1... Piping (medium through which sound waves propagate), 2a, 2b
...Ultrasonic transducer, 3.13...Sound wave absorber, 4
.. 14... Rubber (a plaster), 5.15... Metal particles,
16...Acoustic impedance matching layer. (6118) Agent Patent Attorney Tomimura b Ko 2 Tsushima 3 Ward Ko 4 Fig. 5 Ward (a, ) (b) (c)

Claims (1)

【特許請求の範囲】 1)音波が伝搬している媒体の音響インピーダンスより
低い音響インピーダンスの吸音体とこの吸音体の中に混
入された前記媒体より高い音響インピーダンスの粒子と
から成り、前記媒体と接する側にその音響インピーダン
スが前記媒体の音響インピーダンスと実質的に一致する
ような混合比で前記粒子が混入された音響インピーダン
ス整合層が形成され、この音響インピーダンス整合層か
ら音波伝搬方向に連続的に粒子の混合比が減少している
ことを特徴とする音波吸収体。 2)吸音体がゴム好ましくはシリコンゴムであり、粒子
が金属粒子好ましくはタングステン粒子であることを特
徴とする特許請求の範囲第1項に記載の音波吸収体。 3)音響インピーダンス整合層と反対の側が粒子を全く
含んでいないことを特徴とする特許請求の範囲第1項又
は第2項に記載の音波吸収体。 4)特許請求の範囲第1項ないし第3項のいずれかに記
載の音波吸収体において、金属粒子が溶融ゴムの中に混
入され、攪拌され、金属粒子の沈降時間を考慮した硬化
温度と硬化時間でゴムが硬化されて作られていることを
特徴とする音波吸収体。
[Claims] 1) A sound absorber having an acoustic impedance lower than the acoustic impedance of a medium through which sound waves are propagating, and particles having an acoustic impedance higher than the medium mixed in the sound absorber, An acoustic impedance matching layer in which the particles are mixed at a mixing ratio such that the acoustic impedance thereof substantially matches the acoustic impedance of the medium is formed on the contacting side, and the acoustic impedance matching layer is formed continuously in the sound wave propagation direction from this acoustic impedance matching layer. A sound wave absorber characterized by a reduced mixing ratio of particles. 2) The sound absorber according to claim 1, wherein the sound absorber is rubber, preferably silicone rubber, and the particles are metal particles, preferably tungsten particles. 3) The sound wave absorber according to claim 1 or 2, wherein the side opposite to the acoustic impedance matching layer does not contain any particles. 4) In the sound wave absorber according to any one of claims 1 to 3, metal particles are mixed into molten rubber and stirred, and the curing temperature and curing are determined in consideration of the settling time of the metal particles. A sound wave absorber characterized by being made of rubber that hardens over time.
JP59177991A 1984-08-27 1984-08-27 Sound wave absorbing body Granted JPS6155696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59177991A JPS6155696A (en) 1984-08-27 1984-08-27 Sound wave absorbing body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59177991A JPS6155696A (en) 1984-08-27 1984-08-27 Sound wave absorbing body

Publications (2)

Publication Number Publication Date
JPS6155696A true JPS6155696A (en) 1986-03-20
JPH0449948B2 JPH0449948B2 (en) 1992-08-12

Family

ID=16040626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59177991A Granted JPS6155696A (en) 1984-08-27 1984-08-27 Sound wave absorbing body

Country Status (1)

Country Link
JP (1) JPS6155696A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6075310A (en) * 1998-04-17 2000-06-13 Face International Corp. Acoustic transducer with liquid-immersed, pre-stressed piezoelectric actuator in acoustic impedance matched transducer housing
US6150752A (en) * 1998-04-17 2000-11-21 Face International Corp. Acoustic transducer with liquid-immersed, pre-stressed piezoelectric actuator in acoustic impedance matched transducer housing
WO2014125720A1 (en) * 2013-02-18 2014-08-21 アズビル株式会社 Ultrasonic flow meter and ultrasound absorbing body for ultrasonic flow meter
WO2015008526A1 (en) * 2013-07-17 2015-01-22 アズビル株式会社 Ultrasonic flowmeter and ultrasonic wave absorber for ultrasonic flowmeter
JP2015210252A (en) * 2014-04-30 2015-11-24 アズビル株式会社 Method of sticking ultrasonic absorber and ultrasonic flow meter
WO2016013623A1 (en) * 2014-07-23 2016-01-28 東京電力株式会社 Flow rate measurement device and flow rate measurement method
JP2016109555A (en) * 2014-12-05 2016-06-20 アズビル株式会社 Ultrasonic flowmeter, flow rate measurement method and kit of ultrasonic absorption material of ultrasonic flowmeter
WO2021150652A1 (en) * 2020-01-22 2021-07-29 Becton, Dickinson And Company Apparatus and method to join a coupler and flow tube in an ultrasonic flow meter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005064286A1 (en) * 2003-12-26 2007-07-19 東京電力株式会社 Ultrasonic flow meter
CN108917865B (en) * 2018-07-11 2019-12-03 武汉新烽光电股份有限公司 A kind of Doppler's flow velocity direction recognition device and control method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6150752A (en) * 1998-04-17 2000-11-21 Face International Corp. Acoustic transducer with liquid-immersed, pre-stressed piezoelectric actuator in acoustic impedance matched transducer housing
US6075310A (en) * 1998-04-17 2000-06-13 Face International Corp. Acoustic transducer with liquid-immersed, pre-stressed piezoelectric actuator in acoustic impedance matched transducer housing
WO2014125720A1 (en) * 2013-02-18 2014-08-21 アズビル株式会社 Ultrasonic flow meter and ultrasound absorbing body for ultrasonic flow meter
JP2014157129A (en) * 2013-02-18 2014-08-28 Azbil Corp Ultrasonic flow meter, and ultrasonic wave absorbing material for ultrasonic flow meter
CN105408726A (en) * 2013-07-17 2016-03-16 阿自倍尔株式会社 Ultrasonic flowmeter and ultrasonic wave absorber for ultrasonic flowmeter
WO2015008526A1 (en) * 2013-07-17 2015-01-22 アズビル株式会社 Ultrasonic flowmeter and ultrasonic wave absorber for ultrasonic flowmeter
JP2015021799A (en) * 2013-07-17 2015-02-02 アズビル株式会社 Ultrasonic flow meter and ultrasonic absorber for ultrasonic flow meter
US9671261B2 (en) 2013-07-17 2017-06-06 Azbil Corporation Ultrasonic flowmeter having multilayer ultrasonic wave damper
JP2015210252A (en) * 2014-04-30 2015-11-24 アズビル株式会社 Method of sticking ultrasonic absorber and ultrasonic flow meter
CN106537098A (en) * 2014-07-23 2017-03-22 东京电力控股株式会社 Flow rate measurement device and flow rate measurement method
WO2016013623A1 (en) * 2014-07-23 2016-01-28 東京電力株式会社 Flow rate measurement device and flow rate measurement method
US10151610B2 (en) 2014-07-23 2018-12-11 Tokyo Electric Power Company Holdings, Incorporated Flow rate measurement device and flow rate measurement method
JP2016109555A (en) * 2014-12-05 2016-06-20 アズビル株式会社 Ultrasonic flowmeter, flow rate measurement method and kit of ultrasonic absorption material of ultrasonic flowmeter
WO2021150652A1 (en) * 2020-01-22 2021-07-29 Becton, Dickinson And Company Apparatus and method to join a coupler and flow tube in an ultrasonic flow meter
US11927467B2 (en) 2020-01-22 2024-03-12 Becton, Dickinson And Company Flow sensor sub-assembly in an ultrasonic flow meter including an absorber sleeve engaging a coupler and a flow tube

Also Published As

Publication number Publication date
JPH0449948B2 (en) 1992-08-12

Similar Documents

Publication Publication Date Title
JPS6128821A (en) Ultrasonic flow meter
JPS6155696A (en) Sound wave absorbing body
Schwab et al. Surface waves on multilayered anelastic media
Albert A comparison between wave propagation in water‐saturated and air‐saturated porous materials
JPS6411885B2 (en)
US2912856A (en) Electroacoustic flowmeter
Papadakis Buffer‐Rod System for Ultrasonic Attenuation Measurements
AU3168295A (en) Ultrasonic device with enhanced acoustic properties for measuring a volume amount of fluid
JP2018063970A (en) Electromagnetic wave absorber and method for manufacturing electromagnetic wave absorber
Ingenito et al. Theoretical investigation of the integrated optical effect produced by sound fields radiated from plane piston transducers
JPH06117894A (en) Ultrasonic flowmeter
Rostafinski Acoustic systems containing curved duct sections
JPS61132822A (en) Ultrasonic flowmeter
Achenbach et al. Interference of corner reflected and edge diffracted signals for a surface‐breaking crack
Bjørnø et al. A wide frequency band anechoic water tank
JPS61133821A (en) Ultrasonic flowmeter
JP2855553B2 (en) Transducer for ultrasonic current meter
Heui-Seol et al. Acoustic Characteristics of Sand Sediment Slab with Water-and Air-filled Pore
JP2019039805A (en) Ultrasonic flow meter and ultrasonic flow measurement method
JPS61132824A (en) Ultrasonic flowmeter
JPS58161519A (en) Ultrasonic delay line
Lee et al. Measurement of elastic constants and mass density by acoustic microscopy
JPS599518A (en) Ultrasonic wave current and flow meter
JPS61144512A (en) Ultrasonic flowmeter
Johnson et al. Analysis of Ultrasonic Absorption Measurements in Liquids at High Pressure