WO2005064286A1 - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter Download PDF

Info

Publication number
WO2005064286A1
WO2005064286A1 PCT/JP2004/019431 JP2004019431W WO2005064286A1 WO 2005064286 A1 WO2005064286 A1 WO 2005064286A1 JP 2004019431 W JP2004019431 W JP 2004019431W WO 2005064286 A1 WO2005064286 A1 WO 2005064286A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
ultrasonic
pipe
measured
absorbing material
Prior art date
Application number
PCT/JP2004/019431
Other languages
French (fr)
Japanese (ja)
Inventor
Michitsugu Mori
Kenichi Tezuka
Hideaki Tezuka
Original Assignee
The Tokyo Electric Power Company, Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Tokyo Electric Power Company, Incorporated filed Critical The Tokyo Electric Power Company, Incorporated
Priority to JP2005516671A priority Critical patent/JPWO2005064286A1/en
Publication of WO2005064286A1 publication Critical patent/WO2005064286A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters

Definitions

  • the present invention relates to an ultrasonic flowmeter capable of instantaneously measuring the flow rate of a fluid to be measured from a flow velocity distribution in a measurement region in a time-dependent manner, and a technique related thereto.
  • Patent Document 1 JP-A-2000-97742
  • the Doppler type ultrasonic flow meter disclosed in the above-mentioned document causes an ultrasonic pulse of a required frequency to be incident on a fluid to be measured in a fluid (for example, water) pipe along an ultrasonic transducer force measurement line.
  • An ultrasonic transmitting means, and a fluid velocity distribution for receiving an ultrasonic echo reflected from the measurement area among the ultrasonic pulses incident on the measurement fluid, and measuring a flow velocity distribution of the fluid to be measured in the measurement area.
  • the flow rate of the fluid to be measured is measured by providing a measuring means and a flow rate calculating means for calculating the flow rate of the fluid to be measured in the measurement area based on the flow velocity distribution of the fluid to be measured.
  • This technique measures the flow velocity distribution of a fluid to be measured flowing in a pipe, and has excellent responsiveness to a transient flow rate that varies with time. Also, where the fluid flow is not sufficiently developed or the flow becomes three-dimensional! /, It may be damaged even immediately after a bent pipe such as an elbow pipe or a U-shaped inverted pipe.
  • the flow rate of the measurement fluid can be measured efficiently, accurately and instantaneously. Compared with the ultrasonic flowmeters provided before that, accurate measurement is possible without the ⁇ flow rate correction coefficient '' calculated from experimental or empirical values. , Has been greatly appreciated.
  • pipes are likely to corrode! /
  • fluid for example, seawater or various kinds of wastewater
  • pipes made of a corrosion-resistant material are used.
  • a technique called “lining” is used to weld a pipe made of a corrosion-resistant material such as glass flake to the inner wall of a steel pipe.
  • the thickness of the lining depends on the type of piping, fluid, and speed. The force varies depending on the conditions. Generally, 7 to 10 mm is large.
  • the ultrasonic wave transmitted by the ultrasonic wave transmitting means it is desirable to use only the reflected wave that has been reflected normally to bubbles in the fluid to be measured (“reflected wave A” shown in FIGS. 5 and 6). As shown in Fig. 5, the transmitted ultrasonic wave reaches the fluid pipe 10, and the reflected wave from the fluid pipe 10 ("reflected wave B” in Fig. 5) hits another bubble and is reflected. By following the same path as A, the ultrasonic transmission / reception means 20 received the signal, which proved to be a cause of measurement error.
  • the measurement result should theoretically draw a parabola. However, in the actual measurement result, a flat linear part is drawn near the top of the parabola.
  • the problem to be solved by the present invention is to provide a technique for reducing the measurement error caused by the reflected wave from the pipe and measuring the flow rate more accurately.
  • An object of the invention described in claims 1 to 3 is to provide an ultrasonic flowmeter for measuring a flow rate more accurately by reducing a measurement error caused by a reflected wave of piping force.
  • the invention according to claim 1 is an ultrasonic transmission means for injecting an ultrasonic pulse of a required frequency from an ultrasonic transducer into a measured fluid (11) in a fluid pipe (10) along a measurement line (20) Of the ultrasonic pulse incident on the fluid under measurement (11), receives the ultrasonic echo (reflected wave A) reflected from the measurement area, and measures the flow velocity distribution of the fluid under measurement (11) in the measurement area A fluid velocity distribution measuring means (20); and a flow rate calculating means for calculating a flow rate of the fluid to be measured in the measurement area based on a flow velocity distribution of the fluid to be measured (11). To an ultrasonic flowmeter.
  • the acoustic impedance of the fluid pipe (10) is approximated. It is characterized by including a high-density sound absorbing material (40) having an acoustic impedance of a value.
  • the above ultrasonic flowmeter includes a general Dobler ultrasonic flowmeter and an ultrasonic flowmeter using a correlation method.
  • the ultrasonic flow meter using the correlation method is, for example, an ultrasonic flow meter disclosed in JP-A-2003-344131.
  • the ultrasonic transmitting means for injecting the ultrasonic pulse of the required frequency along the measuring line into the fluid to be measured in the fluid pipe, and the ultrasonic wave transmitted to the fluid to be measured
  • a fluid velocity distribution measuring means for receiving the reflected ultrasonic echo of the measurement area force of the sound wave pulse and measuring the flow velocity distribution of the fluid to be measured in the measurement area; based on the flow velocity distribution of the fluid to be measured, And a flow rate calculating means for calculating a flow rate of the fluid to be measured in the measurement area.
  • Flow rate calculation means is, when the flow rate is m (t),
  • V (x ⁇ t) Means for calculating the velocity component (X direction) at time t.
  • the flow of the fluid to be measured flowing in the pipe is a flow in the pipe axis direction, which is radial or angular.
  • one is the super The angle of incidence of the sound wave, that is, the angle made with respect to the perpendicular to the tube wall.
  • variable position is defined by variable conditions such as the angle of incidence of the ultrasonic wave transmitted from the ultrasonic transducer (20), the material of the pipe, the inner or outer diameter or wall thickness of the pipe, and the type of the fluid to be measured. Specified by being specified. For example, in the case of the inner wall of the pipe on the opposite side across the fluid to be measured (11) (for example, Fig. 1), the case of the inner wall of the pipe on the incident side of the ultrasonic transducer (20) where ultrasonic force is also transmitted (for example, Fig. 2) and so on.
  • the inner wall of all the fluid pipes (10) in which the variable condition force can be derived may be covered with a sound absorbing material (40) in advance.
  • a high-density material that approximates the acoustic impedance of the fluid pipe is used because otherwise, an ultrasonic wave would be generated at the interface between the sound-absorbing material and the pipe. Is reflected.
  • a specific material it is formed by mixing a high-density metal powder (for example, fine tungsten powder) with a synthetic resin (for example, epoxy resin).
  • a high-density metal powder for example, fine tungsten powder
  • a synthetic resin for example, epoxy resin
  • the “acoustic impedance and approximate value of the fluid piping” is, for example, about ⁇ 15%, preferably about ⁇ 10%, and more preferably about ⁇ 5%.
  • the lining is performed as follows.
  • the work procedure involves cutting a portion where the sound absorbing material (40) is required, embedding the sound absorbing material (40), and performing a process of smoothing the surface (the inner wall surface of the pipe for the fluid).
  • an ultrasonic pulse of a required frequency is incident on the fluid to be measured (11) in the fluid pipe (10) along the ultrasonic transducer (20) force measurement line.
  • those that also reflected the force in the measurement area (“reflected wave A” in Fig. 1) became the measurement target, and the reflected ultrasonic waves Part of the pulse (“ultrasonic wave C” in FIG. 1) reaches the fluid pipe (10) of the fluid to be measured (11).
  • the sound absorbing material (40) is fixed to the pipe outer wall at the arrival position, and the acoustic impedance of the sound absorbing material (40) is high enough to approximate the acoustic impedance of the fluid pipe (10). Most of the material is absorbed. Therefore, it is possible to prevent the reflected wave from the fluid pipe (10) from becoming a measurement target and causing a measurement error.
  • Fluid velocity distribution measuring means receives the ultrasonic echo and measures the flow velocity distribution of the fluid to be measured (11) in the measurement area.
  • the flow rate calculating means calculates the flow rate of the fluid to be measured (11) in the measurement area based on the distribution.
  • the invention according to claim 2 relates to an ultrasonic flowmeter provided with a flange and a pipe connected to a fluid pipe related to a fluid to be measured and fixed between the fluid pipes related to the fluid to be measured.
  • the inner wall of the partial pipe (15), to which the ultrasonic wave incident by the ultrasonic wave transmitting means (20) reaches, has an acoustic impedance that approximates the acoustic impedance of the fluid pipe (10). Equipped with high-density sound absorbing material (40).
  • the ultrasonic transmitting means (20) receives the ultrasonic echo reflected from the measurement region force among the ultrasonic pulses incident on the fluid to be measured (11), and detects the velocity of the fluid to be measured in the measurement region.
  • Fluid velocity distribution measuring means for measuring the distribution
  • flow rate calculating means for calculating the flow rate of the fluid to be measured in the measurement area based on the flow rate distribution of the fluid to be measured. .
  • the ultrasonic flowmeter according to the present invention is mounted in the middle of the fluid pipe (10) of the fluid to be measured whose flow rate is to be measured, using the flanges (16, 16). Since the installed ultrasonic flowmeter has the same partial pipe (15) as the inside diameter of the fluid pipe (10) to be measured, the inner wall is continuous, and it is not possible to change the flow of the fluid (11) to be measured. Absent.
  • An ultrasonic pulse of a required frequency is injected along the ultrasonic transducer (20) force measurement line into the fluid to be measured (11) in the fluid pipe (10). Then, of the ultrasonic pulses incident on the fluid to be measured (11), those reflected from the measurement area (reflected wave A) are to be measured, and a part of the ultrasonic pulse is the fluid of the fluid to be measured (11). It reaches the pipe (10) and reflects inside the fluid pipe (10) without reaching the fluid to be measured (11).
  • a sound-absorbing material (40) is fixed to the inner wall of the pipe at the arrival position, and the acoustic impedance of the sound-absorbing material (40) is high-density so as to approximate the acoustic impedance of the fluid pipe (10). Usually absorbed because of the material. Therefore, it is possible to prevent the reflected wave from the fluid pipe (10) from being a measurement target and causing a measurement error.
  • the ultrasonic transducer (20) receives the ultrasonic echo, and the fluid velocity distribution measuring means connected to the ultrasonic transducer (20) measures the flow velocity distribution of the fluid to be measured (11) in the measurement area. I do. Then, based on the flow velocity distribution of the fluid to be measured (11), the measurement area Is calculated by the flow rate calculating means.
  • the invention according to claim 3 limits the ultrasonic flowmeter according to claim 1 or 2.
  • the sound absorbing material (40) is provided integrally with a liner provided inside the pipe (10).
  • the following method is used.
  • the part where the sound absorbing material (40) is required is cut, and the sound absorbing material (40) is installed integrally with the lining at the cut part.
  • the inner surface formed by the sound absorbing (40) is flush with the inner wall surface in the liner portion. Therefore, the flow velocity of the fluid to be measured does not change due to the presence of the sound absorbing material (40).
  • the acoustic impedance of the sound absorbing material (40) is a high-density material that approximates the acoustic impedance of the fluid pipe (10).
  • Acoustic impedance and approximate value of fluid piping is, for example, about ⁇ 15%, preferably about ⁇ 10%, and more preferably about ⁇ 5%.
  • it is formed of a material formed by mixing a high-density metal powder with a synthetic resin. This allows most reflected waves to be absorbed even if the thickness is about 5-15 mm. Due to this thickness dimension, the inner wall of the pipe can be made flush even when adopted for lining pipes.
  • an ultrasonic flowmeter for reducing a measurement error caused by a reflected wave from a pipe and measuring a more accurate flow rate.
  • FIG. 1 shows an ultrasonic flowmeter for measuring a flow rate of a fluid pipe 10 through which a fluid 11 to be measured flows, and an ultrasonic echo reflected from a measurement area of an ultrasonic pulse incident on the fluid 11 to be measured.
  • An ultrasonic transmission / reception means (transducer 20) also serving as a receiver for receiving the signal.
  • the transducer 20 is fixed to a predetermined portion of the pipe 10 with a resin wedge 30.
  • the material of the wedge 30 is, for example, epoxy resin.
  • Transducer 20 includes an ultrasonic transmission unit that transmits an ultrasonic pulse of a required frequency (fundamental frequency) to measurement target fluid 11 along a measurement line, and an ultrasonic pulse incident on measurement target fluid.
  • Measurement area force Receives the reflected ultrasonic echo and also serves as a fluid velocity distribution measuring means for measuring the flow velocity distribution of the fluid to be measured in the measurement area!
  • a computer such as a microcomputer, CPU, or MPU, serving as a flow rate calculating means for obtaining the flow rate of the fluid to be measured in a time-dependent manner based on the flow velocity distribution, and a display device capable of displaying the output from the computer in a time-series manner And connected to.
  • the transducer 20 is provided with a vibrating amplifier as a signal generator for vibrating the transducer 20, and a pulse electric signal of a required fundamental frequency is generated by the vibrating amplifier.
  • the signal is input to a sound wave transducer.
  • an ultrasonic pulse of the fundamental frequency is transmitted along the measurement line by application of the pulse electric signal.
  • the ultrasonic pulse is a straight beam with a pulse width of about 5 mm and almost no spread!
  • the transducer 20 is configured to receive an ultrasonic echo (reflected wave A) transmitted and reflected by the reflector 12 in the fluid 11.
  • the reflector 12 is a gas bubble uniformly contained in the fluid 11 to be measured.
  • the fluid to be measured 11 must be a foreign substance having a different acoustic impedance.
  • the ultrasonic echo received by the transducer 20 is received by a reflected wave receiver (not shown), and is converted into an echo electric signal by the reflected wave receiver. This The echo electric signal is amplified by an amplifier and then digitally converted through an AD converter. Then, the digitized digital echo signal is input to a flow velocity calculator provided with a flow velocity distribution measuring circuit.
  • An electric signal of the fundamental frequency from the transmitting amplifier is digitized and input to the flow velocity calculator, and the flow velocity is measured using the change in the flow velocity based on the Doppler shift of the two signals or the cross-correlation value of the two signals. Then, the flow velocity distribution in the measurement area along the measurement line is calculated. By calibrating the flow velocity distribution in the measurement area with the incident angle ⁇ of the ultrasonic wave, the flow velocity distribution in the cross section of the fluid pipe can be measured.
  • the incident angle ⁇ of the sound wave can be specified.
  • the wedge 30 can be omitted to obtain a “wetted type”.
  • the sound absorption The position of the inner wall in the fluid pipe 10 where the material 40 is to be provided is determined.
  • the sound absorbing material supporter 41 arranges and fixes the sound absorbing material 40 so that the sound absorbing material 40 is located at that position.
  • the thickness of the sound absorbing material 40 is 7 to 15 mm. Also, since the ultrasonic pulse is a straight beam with a pulse width of about 5 mm and almost no spread, if the variable conditions are specified, the sound absorbing material 40 has a diameter of about 10 to 20 mm. If it is enough.
  • the inner surface formed by the sound absorbing material 40 and the sound absorbing material supporter 41 is formed so as to be flush with the inner wall surface of the fluid pipe 10 where they do not exist, so that the flow velocity does not change.
  • the material of the above-mentioned "sound absorbing material supporter 41" is a case where the liquid flowing through the pipe 10 is a liquid (for example, seawater or various kinds of wastewater) that corrodes steel pipes, and employs a lining.
  • the material used for the lining polyethylene, glass flake
  • the material of the “sound absorbing material supporter 41” is desirably a material that does not corrode with the liquid.
  • the acoustic impedance of the above-described sound absorbing material 40 is a high-density material having a similar value to the acoustic impedance of the fluid pipe 10. More specifically, it is a material formed by mixing a high-density metal powder (tungsten powder) with a synthetic resin (epoxy resin). Due to the presence of the sound absorbing material 40, it is possible to suppress the reflected waves generated by the ultrasonic waves C not reflected by the bubbles 12 in the fluid reflected on the inner wall of the fluid pipe 10. Therefore, it is possible to suppress the reflected wave from the fluid pipe 10 from becoming a measurement target and causing a measurement error.
  • the material of the sound absorbing material is not limited to a material formed by mixing tungsten powder with epoxy resin, but may be any material having a high density that approximates the acoustic impedance of the fluid pipe 10, such as tungsten. Alternatively, lead or molybdenum can be used.
  • the reflected wave received by the receiver of the trans- ducer 20 is amplified by an amplifier (not shown) and then digitally converted through an AD converter. Then, the sound speed calculation device calculates the sound speed using the digital echo signal that has been digitally converted. The calculated sound speed is output to the ultrasonic flow meter and used to calculate the flow rate, flow velocity distribution, and the like in real time.
  • the embodiment shown in FIG. 2 includes a fluid distribution among the ultrasonic waves transmitted from the transducer 20.
  • the reflected wave E generated by being reflected on the inner wall of the fluid pipe 10 without being transmitted to the inside of the non-measuring fluid 11 through the pipe 10 does not enter the inside of the non-measuring fluid 11 so that the reflected wave E
  • the sound absorbing material 40 is arranged at the reaching position.
  • the inner surface force formed by the sound absorbing material 40 and the sound absorbing material supporter 41 is formed so as to be flush with the inner wall surface of the fluid pipe 10 where they do not exist, and the flow velocity does not change. This is the same as the embodiment shown in FIG.
  • the third embodiment shown in FIG. 3 is an ultrasonic flowmeter with a flange formed so as to be mountable using flanges 16 and 16 in the middle of a fluid pipe 10 for a fluid to be measured whose flow rate is to be measured.
  • a partial pipe 15 having the same inner diameter as the fluid pipe 10 of the fluid to be measured whose flow rate is to be measured, and flanges 16 for fixing the partial pipe 15 to the fluid pipe 10 of the fluid to be measured 11
  • an ultrasonic transmission means 20 fixed to the partial pipe 15 and for causing an ultrasonic pulse of a required frequency to be incident on the fluid to be measured in the fluid pipe along the ultrasonic transducer force measurement line.
  • the inner surface formed by the sound absorbing material 40 and the sound absorbing material supporter 41 in the partial pipe 15 needs to be formed so as to be flush with the inner wall surface of the fluid pipe 10 related to the fluid to be measured whose flow rate is to be measured. is there.
  • the partial pipe 15 has the same inner diameter as the fluid pipe 10 to be measured, so that the inner wall is continuous and the flow of the fluid to be measured 11 does not change.
  • the transducers 20 are fixed with wedges 30 as shown in the figure, and the variable conditions such as the pipe material, the pipe inner diameter and outer diameter or wall thickness, and the type of the fluid to be measured can be specified. In such a case, it may be provided as a wetted type.
  • FIG. 4 [0042]
  • the embodiment shown in FIG. 4 is a combination of the embodiments shown in FIGS. 1 and 2. That is, the sound absorbing material 40 for the ultrasonic waves C reaching the inner wall surface of the fluid pipe 10 on the opposite side to the transducer 20 and the sound absorbing material E for the reflected wave E generated by reflecting on the inner wall of the fluid pipe 10 Material 40 is provided. Thus, the sound absorbing material 40 is arranged in combination. It is reasonable to place them.
  • the ultrasonic flowmeter in which the ultrasonic transmitting means and the ultrasonic echo receiving means are integrally formed.
  • the ultrasonic flowmeter can be fixed to the outer wall of the pipe at the position where the ultrasonic pulse arrives in the fluid pipe of the fluid to be measured.
  • the position of the sound absorbing material 40 is not appropriate.
  • the angle of incidence of the ultrasonic wave by the transducer 20 is changed. That is, by changing the type of the wedge 30, the fixed angle of the transducer 20 is changed, and the incident angle of the ultrasonic wave by the transducer 20 is changed. This is the same in any of the embodiments shown in FIGS.
  • the present invention is not limited to the Doppler type ultrasonic flow meter, but can also be applied to a flow meter belonging to a general ultrasonic flow meter.
  • FIG. 1 is a conceptual diagram showing a first embodiment.
  • FIG. 2 is a conceptual diagram showing a second embodiment.
  • FIG. 3 is a conceptual diagram showing a third embodiment.
  • FIG. 4 is a conceptual diagram showing a fourth embodiment.
  • FIG. 5 is a conceptual diagram showing a problem of a conventional technique.
  • FIG. 6 is a conceptual diagram showing a problem of a conventional technique.

Abstract

[OBJECT] To accurately measure a flow by reducing a measurement error resulting from reflected wave from a pipe. [CONSTITUTION] This ultrasonic flow meter comprises an ultrasonic transmission means (20) letting ultrasonic pulses of a specified frequency from an ultrasonic transducer into a measured flow (11) in a fluid pipe (10) along a measurement line, a fluid velocity distribution measurement means (20) receiving ultrasonic echo (reflected wave A) reflected from a measurement area among the ultrasonic pulses let in the measured fluid (11) and measuring the flow velocity distribution of the measured fluid (11) in the measurement area, and a flow calculation means calculating the flow of the measured fluid in the measurement area based on the flow velocity distribution of the measured fluid (11). A sound absorbing material (40) is installed on the inner wall of the fluid pipe (10) for the measured fluid (11), and the material of the sound absorbing material is a highly dense material such that the acoustic impedance of the sound absorbing material (40) is approximate to the acoustic impedance of the fluid pipe (10). The inner wall of the fluid pipe (10) including the sound absorbing material (40) is formed to be uniformized.

Description

明 細 書  Specification
超音波流量計  Ultrasonic flow meter
技術分野  Technical field
[0001] 本発明は、 本発明は、測定領域の流速分布から被測定流体の流量を時間依存 で瞬時に測定することが可能な超音波流量計およびそれに関連する技術に関する。 背景技術  The present invention relates to an ultrasonic flowmeter capable of instantaneously measuring the flow rate of a fluid to be measured from a flow velocity distribution in a measurement region in a time-dependent manner, and a technique related thereto. Background art
[0002] 非接触で流量を測定可能であるドッブラ式超音波流量計につ!、ては、さまざまな技 術が提供されている。(例えば、特開 2000-97742号)  [0002] Various technologies are provided for a Doppler ultrasonic flowmeter capable of measuring a flow rate without contact. (For example, JP-A-2000-97742)
[0003] 特許文献 1 :特開 2000— 97742号 [0003] Patent Document 1: JP-A-2000-97742
[0004] 上記の技術を具体的に説明する。上記文献に開示されているドッブラ式超音波流 量計は、所要周波数の超音波パルスを超音波トランスジユーサ力 測定線に沿って 流体 (たとえば水)の配管内の被測定流体中へ入射させる超音波送信手段と、被測 定流体に入射された超音波パルスのうち測定領域カゝら反射された超音波エコーを受 信し、測定領域における被測定流体の流速分布を測定する流体速度分布測定手段 と、前記被測定流体の流速分布に基づいて、前記測定領域における被測定流体の 流量を演算する流量演算手段とを備えて被測定流体の流量を測定するものである。  [0004] The above technique will be specifically described. The Doppler type ultrasonic flow meter disclosed in the above-mentioned document causes an ultrasonic pulse of a required frequency to be incident on a fluid to be measured in a fluid (for example, water) pipe along an ultrasonic transducer force measurement line. An ultrasonic transmitting means, and a fluid velocity distribution for receiving an ultrasonic echo reflected from the measurement area among the ultrasonic pulses incident on the measurement fluid, and measuring a flow velocity distribution of the fluid to be measured in the measurement area. The flow rate of the fluid to be measured is measured by providing a measuring means and a flow rate calculating means for calculating the flow rate of the fluid to be measured in the measurement area based on the flow velocity distribution of the fluid to be measured.
[0005] この技術は、配管内を流れる被測定流体の流速分布を測定し、時間的に変動する 過渡時の流量を応答性に優れている。また、流体の流れが充分に発達していない箇 所や流れが三次元になって!/、る場所、例えばエルボ配管や U字状の反転配管のよう に曲げられた配管の直後でも、被測定流体の流量を効率的に精度よく瞬時に測定 できる。それ以前に提供されていた超音波流量計と比較した場合、実験値や経験値 などから割り出された「流量補正係数」がなくても正確な測定が可能であると ヽぅ特徴 力 Sあり、大きく評価されている。  [0005] This technique measures the flow velocity distribution of a fluid to be measured flowing in a pipe, and has excellent responsiveness to a transient flow rate that varies with time. Also, where the fluid flow is not sufficiently developed or the flow becomes three-dimensional! /, It may be damaged even immediately after a bent pipe such as an elbow pipe or a U-shaped inverted pipe. The flow rate of the measurement fluid can be measured efficiently, accurately and instantaneously. Compared with the ultrasonic flowmeters provided before that, accurate measurement is possible without the `` flow rate correction coefficient '' calculated from experimental or empirical values. , Has been greatly appreciated.
[0006] ところで、配管を腐蝕させやす!/、流体 (例えば海水や各種の排水)を流す場合、腐 食防止のためには、耐腐食性の材質の配管を採用する場合の他、ポリエチレンゃガ ラスフレークなどの耐食性材料のパイプを鋼製の配管内壁に溶着させる「ライニング」 と呼ばれる技術が用いられている。ライニングの肉厚は、配管、流体の種類や速度な どの条件によって異なる力 一般には 7— 10mmが多い。 [0006] By the way, pipes are likely to corrode! / When flowing fluid (for example, seawater or various kinds of wastewater), in order to prevent corrosion, pipes made of a corrosion-resistant material are used. A technique called “lining” is used to weld a pipe made of a corrosion-resistant material such as glass flake to the inner wall of a steel pipe. The thickness of the lining depends on the type of piping, fluid, and speed. The force varies depending on the conditions. Generally, 7 to 10 mm is large.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] さて、上述のドッブラ式超音波流量計につき、更なる測定精度の向上を目指してい たところ、以下のような問題点が浮上した。  [0007] Now, with the aim of further improving the measurement accuracy of the above-mentioned Dobler ultrasonic flowmeter, the following problems have surfaced.
図 5および図 6を用いて説明する。超音波送信手段が送信する超音波は、被測定 流体中の気泡などに対して正常に反射した反射波のみ(図 5および図 6中に示す「反 射波 A」)を用いたい。し力 図 5に示すように、送信した超音波が流体配管 10に到 達し、その流体配管 10からの反射波(図 5中の「反射波 B」)が別の気泡にぶっかつ て反射波 Aと同一経路をたどることによって超音波送受信手段 20が受信してしまい、 測定誤差の原因となっていることが判明した。  This will be described with reference to FIGS. As the ultrasonic wave transmitted by the ultrasonic wave transmitting means, it is desirable to use only the reflected wave that has been reflected normally to bubbles in the fluid to be measured (“reflected wave A” shown in FIGS. 5 and 6). As shown in Fig. 5, the transmitted ultrasonic wave reaches the fluid pipe 10, and the reflected wave from the fluid pipe 10 ("reflected wave B" in Fig. 5) hits another bubble and is reflected. By following the same path as A, the ultrasonic transmission / reception means 20 received the signal, which proved to be a cause of measurement error.
[0008] また、図 6に示すように、流体配管 10内へ超音波を入射した場合に非測定流体 11 へ入射されずに流体配管 10内を反射波が伝わった後に被測定流体 11へ入り、その 後に気泡へぶつ力つて反射し、その反射波 Bを超音波送受信手段 20が受信して測 定してしまうことによる測定誤差も生じていることが把握された。  [0008] Further, as shown in FIG. 6, when an ultrasonic wave enters the fluid pipe 10, the reflected wave propagates through the fluid pipe 10 without entering the non-measurement fluid 11 and then enters the fluid 11 to be measured. Thereafter, it was found that a measurement error was caused by the ultrasonic wave transmitting and receiving means 20 receiving and measuring the reflected wave B after being hit against the air bubble and reflected.
[0009] 図示は省略するが、被測定流体中の気泡などに反射した反射波のみで被測定流 体の流速分布を測定できたとすれば、その測定結果は理論的には放物線を描くは ずであるが、実際の測定結果は放物線の頂上付近に平らな直線上の部位が描かれ てしまうのである。  Although not shown, if the flow velocity distribution of the measured fluid can be measured only by the reflected waves reflected by bubbles or the like in the measured fluid, the measurement result should theoretically draw a parabola. However, in the actual measurement result, a flat linear part is drawn near the top of the parabola.
[0010] 上述した問題は、ライニングを施した配管においても、同様に発生していた。ポリエ チレンやガラスフレークなどの材質では、反射波 Bのような存在を吸収したりはできな いからである。  [0010] The above-described problem has similarly occurred in lining pipes. This is because materials such as polyethylene and glass flake cannot absorb the presence of reflected wave B.
[0011] 本発明が解決しょうとする課題は、配管からの反射波を原因とする測定誤差を低減 して、より正確な流量を計測する技術を提供することである。  [0011] The problem to be solved by the present invention is to provide a technique for reducing the measurement error caused by the reflected wave from the pipe and measuring the flow rate more accurately.
請求項 1から請求項 3記載の発明の目的は、配管力 の反射波を原因とする測定 誤差を低減して、より正確な流量を計測する超音波流量計を提供することにある。 課題を解決するための手段  An object of the invention described in claims 1 to 3 is to provide an ultrasonic flowmeter for measuring a flow rate more accurately by reducing a measurement error caused by a reflected wave of piping force. Means for solving the problem
[0012] (請求項 1) 請求項 1記載の発明は、所要周波数の超音波パルスを超音波トランスジユーザから 測定線に沿って流体配管 (10)内の被測定流体 (11)中へ入射させる超音波送信手段 (20)と、 被測定流体 (11)に入射された超音波パルスのうち測定領域力 反射された 超音波エコー (反射波 A)を受信し、測定領域における被測定流体 (11)の流速分布を 測定する流体速度分布測定手段 (20)と、 前記被測定流体 (11)の流速分布に基づい て、前記測定領域における被測定流体の流量を演算する流量演算手段とを備えて 被測定流体の流量を測定する超音波流量計に係る。 [0012] (Claim 1) The invention according to claim 1 is an ultrasonic transmission means for injecting an ultrasonic pulse of a required frequency from an ultrasonic transducer into a measured fluid (11) in a fluid pipe (10) along a measurement line (20) Of the ultrasonic pulse incident on the fluid under measurement (11), receives the ultrasonic echo (reflected wave A) reflected from the measurement area, and measures the flow velocity distribution of the fluid under measurement (11) in the measurement area A fluid velocity distribution measuring means (20); and a flow rate calculating means for calculating a flow rate of the fluid to be measured in the measurement area based on a flow velocity distribution of the fluid to be measured (11). To an ultrasonic flowmeter.
そして、被測定流体 (11)の流体配管 (10)に対して前記超音波送信手段 (20)を固定 する付近の流体配管 (11)の内壁には、流体配管 (10)の音響インピーダンスと近似値と なるような音響インピーダンスである高密度な材質の吸音材 (40)を備えたことを特徴と する。  Then, on the inner wall of the fluid pipe (11) near where the ultrasonic transmission means (20) is fixed to the fluid pipe (10) of the fluid to be measured (11), the acoustic impedance of the fluid pipe (10) is approximated. It is characterized by including a high-density sound absorbing material (40) having an acoustic impedance of a value.
[0013] 上記の超音波流量計には、一般のドッブラ式超音波流量計と、相関法を用いた超 音波流量計とを含む。相関法を用いた超音波流量計とは、例えば、特開 2003— 344 131号に開示されているような超音波流量計である。  [0013] The above ultrasonic flowmeter includes a general Dobler ultrasonic flowmeter and an ultrasonic flowmeter using a correlation method. The ultrasonic flow meter using the correlation method is, for example, an ultrasonic flow meter disclosed in JP-A-2003-344131.
両者とも、所要周波数の超音波パルスを超音波トランスジユーサカゝら測定線に沿つ て流体配管内の被測定流体中へ入射させる超音波送信手段と、 被測定流体に入 射された超音波パルスのうち測定領域力 反射された超音波エコーを受信し、測定 領域における被測定流体の流速分布を測定する流体速度分布測定手段と、 前記 被測定流体の流速分布に基づ!、て、前記測定領域における被測定流体の流量を演 算する流量演算手段とを備えて被測定流体の流量を測定する。  In both cases, the ultrasonic transmitting means for injecting the ultrasonic pulse of the required frequency along the measuring line into the fluid to be measured in the fluid pipe, and the ultrasonic wave transmitted to the fluid to be measured A fluid velocity distribution measuring means for receiving the reflected ultrasonic echo of the measurement area force of the sound wave pulse and measuring the flow velocity distribution of the fluid to be measured in the measurement area; based on the flow velocity distribution of the fluid to be measured, And a flow rate calculating means for calculating a flow rate of the fluid to be measured in the measurement area.
[0014] (用語説明)  [0014] (Glossary)
「流量演算手段」は、流量を m (t)とするとき、  "Flow rate calculation means" is, when the flow rate is m (t),
[数 1]  [Number 1]
m(t) = p Cv(x - t)- dA ( 1 ) 但し、 /O :被測定流量の密度  m (t) = p Cv (x-t)-dA (1) where / O is the density of the measured flow rate
V ( x · t ) : 時間 tにおける速度成分 (X方向) の演算を行う手段である。 [0015] また、上記の式(1)から、流体配管を流れる時間 tの流量 m (t)は、次式に書き換え ることがでさる。 V (x · t): Means for calculating the velocity component (X direction) at time t. [0015] From the above equation (1), the flow rate m (t) at the time t flowing through the fluid pipe can be rewritten as the following equation.
[数 2] m(t) = pjjvx(r · θ · ή· r · dr · ίΐθ …… ( 2 ) 但し、 v x ( r . 0 · t ) : 時間 t における配管横断面上の中心から距離 r , 角度 0の管軸方向の速度成分  [Equation 2] m (t) = pjjvx (r · θ · ή · r · dr · ίΐθ …… (2) where vx (r. 0 · t) is the distance r from the center on the pipe cross section at time t , Velocity component in the direction of the tube axis at angle 0
[0016] なお、配管内を流れる被測定流体の流れが、管軸方向の流れで半径方向や角度  [0016] The flow of the fluid to be measured flowing in the pipe is a flow in the pipe axis direction, which is radial or angular.
Θの流れ vr, V Θを無視できるとすると、 vx> >vr=v Θとなり、流量計測は簡素化さ れ、次式で表わされる。  Assuming that the flow Θ of Θ, vr, V 無視 can be ignored, vx>> vr = v 、, and the flow measurement is simplified and expressed by the following equation.
[数 3] m{t) = · 一 J {vx(r · θΐ ·り/ sin ce}' r - dr …… ( 3 ) ここで、 ひとは、超音波トランスジユーサカも発信される超音波の入射角度、すなわ ち管壁への垂線に対してなす角度である。  [Equation 3] m {t) = · one J {vx (r · θΐ · r / sin ce} 'r-dr …… (3) Here, one is the super The angle of incidence of the sound wave, that is, the angle made with respect to the perpendicular to the tube wall.
[0017] 「吸音材 (40)が備えられる「被測定流体 (11)の流体配管 (10)に対して前記超音波送 信手段 (20)を固定する付近の流体配管 (10)の内壁」の位置とは、超音波トランスジュ ーサ (20)から発信される超音波の入射角度、配管の材質、配管の内径および外径ま たは肉厚、被測定流体の種類などの可変条件が特定されることによって特定される。 例えば、被測定流体 (11)を挟んだ反対側の配管内壁の場合 (例えば図 1)、超音波ト ランスジユーサ (20)力も発信される超音波の入射側における配管内壁の場合 (例えば 図 2)などがある。 [0017] "The inner wall of the fluid pipe (10) in the vicinity of fixing the ultrasonic transmission means (20) to the fluid pipe (10) of the fluid to be measured (11) provided with the sound absorbing material (40)" The variable position is defined by variable conditions such as the angle of incidence of the ultrasonic wave transmitted from the ultrasonic transducer (20), the material of the pipe, the inner or outer diameter or wall thickness of the pipe, and the type of the fluid to be measured. Specified by being specified. For example, in the case of the inner wall of the pipe on the opposite side across the fluid to be measured (11) (for example, Fig. 1), the case of the inner wall of the pipe on the incident side of the ultrasonic transducer (20) where ultrasonic force is also transmitted (for example, Fig. 2) and so on.
なお、前記の可変条件力 導き出せる最大領域すベての流体配管 (10)の内壁を、 吸音材 (40)にて予め覆っておくこととしても良い。  Note that the inner wall of all the fluid pipes (10) in which the variable condition force can be derived may be covered with a sound absorbing material (40) in advance.
[0018] 吸音材の音響インピーダンスにっき、「流体配管の音響インピーダンスと近似値とな るような高密度な材質」としたのは、そのようにしないと吸音材と配管との界面におい て超音波が反射してしまうからである。具体的な材質としては、合成樹脂 (たとえばェ ポキシ榭脂)に高密度金属粉 (たとえばタングステンの微粉末)を配合して成形したも のが好適であった。高密度金属としては、他にクロム、モリブデンなども採用可能であ る。 According to the acoustic impedance of the sound-absorbing material, “a high-density material that approximates the acoustic impedance of the fluid pipe” is used because otherwise, an ultrasonic wave would be generated at the interface between the sound-absorbing material and the pipe. Is reflected. As a specific material, it is formed by mixing a high-density metal powder (for example, fine tungsten powder) with a synthetic resin (for example, epoxy resin). Was preferred. As the high-density metal, chromium, molybdenum, and the like can also be used.
「流体配管の音響インピーダンスと近似値」とは、例えばプラスマイナス約 15%程度 、好ましくはプラスマイナス約 10%程度、より好ましくはプラスマイナス約 5%程度であ る。  The “acoustic impedance and approximate value of the fluid piping” is, for example, about ± 15%, preferably about ± 10%, and more preferably about ± 5%.
[0019] なお、既存の配管設備に対して本請求項に係る発明を適用する場合において、予 めライニングが施されている場合には、以下のようにして行う。すなわち、吸音材 (40) が必要とされる箇所を切削し、吸音材 (40)を埋め込み、表面 (流体にとっての配管内 壁面)を円滑にする処理を行う、という作業手順となる。  [0019] When the invention according to the present claim is applied to existing piping equipment, if lining has been applied in advance, the lining is performed as follows. In other words, the work procedure involves cutting a portion where the sound absorbing material (40) is required, embedding the sound absorbing material (40), and performing a process of smoothing the surface (the inner wall surface of the pipe for the fluid).
[0020] (作用)  [0020] (Action)
まず、所要周波数の超音波パルスを超音波トランスジユーサ (20)力 測定線に沿って 流体配管 (10)内の被測定流体 (11)中へ入射させる。すると、被測定流体 (11)に入射さ れた超音波パルスのうち、測定領域力も反射されたもの (図 1中では「反射波 A」)が測 定対象となり、反射されな力つた超音波パルスの一部(図 1中では「超音波 C」)は被 測定流体 (11)の流体配管 (10)に到達する。しかし、その到達位置における配管外壁 には吸音材 (40)が固定されており、その吸音材 (40)の音響インピーダンスは、流体配 管 (10)の音響インピーダンスと近似値となるような高密度な材質なので、ほとんどが吸 収される。したがって、流体配管 (10)からの反射波が測定対象となって測定誤差の原 因となることを抑制できる。  First, an ultrasonic pulse of a required frequency is incident on the fluid to be measured (11) in the fluid pipe (10) along the ultrasonic transducer (20) force measurement line. Then, of the ultrasonic pulses incident on the fluid to be measured (11), those that also reflected the force in the measurement area (“reflected wave A” in Fig. 1) became the measurement target, and the reflected ultrasonic waves Part of the pulse (“ultrasonic wave C” in FIG. 1) reaches the fluid pipe (10) of the fluid to be measured (11). However, the sound absorbing material (40) is fixed to the pipe outer wall at the arrival position, and the acoustic impedance of the sound absorbing material (40) is high enough to approximate the acoustic impedance of the fluid pipe (10). Most of the material is absorbed. Therefore, it is possible to prevent the reflected wave from the fluid pipe (10) from becoming a measurement target and causing a measurement error.
流体速度分布測定手段 (超音波トランスジユーサ (20)は、超音波エコーを受信し、測 定領域における被測定流体 (11)の流速分布を測定する。そして前記被測定流体 (11) の流速分布に基づいて、前記測定領域における被測定流体 (11)の流量を流量演算 手段が演算する。  Fluid velocity distribution measuring means (The ultrasonic transducer (20) receives the ultrasonic echo and measures the flow velocity distribution of the fluid to be measured (11) in the measurement area. The flow rate calculating means calculates the flow rate of the fluid to be measured (11) in the measurement area based on the distribution.
[0021] (請求項 2) [0021] (Claim 2)
請求項 2記載の発明は、被測定流体に係る流体配管へ接続して用いるフランジぉ よび配管を備え、被測定流体に係る流体配管に挟まれて固定される超音波流量計 に係る。  The invention according to claim 2 relates to an ultrasonic flowmeter provided with a flange and a pipe connected to a fluid pipe related to a fluid to be measured and fixed between the fluid pipes related to the fluid to be measured.
すなわち、前記流体配管 (10)と内径を同一とする部分配管 (15)と、 その部分配管 (15)を被測定流体 (11)に係る流体配管 (10)へ固定するためのフランジ (16,16)と、 前 記部分配管 (15)に固定されるとともに所要周波数の超音波パルスを超音波トランスジ ユーサから測定線に沿って流体配管内の被測定流体中へ入射させる超音波送信手 段 (20)とを備える。また、その超音波送信手段 (20)によって入射される超音波が到達 する前記部分配管 (15)の内壁には、流体配管 (10)の音響インピーダンスと近似値とな るような音響インピーダンスである高密度な材質吸音材 (40)を備える。 That is, a partial pipe (15) having the same inner diameter as the fluid pipe (10), Flanges (16, 16) for fixing (15) to the fluid pipe (10) related to the fluid to be measured (11) and the ultrasonic pulse of the required frequency fixed to the partial pipe (15) and An ultrasonic transmission means (20) for injecting the ultrasonic wave from the ultrasonic transducer along the measurement line into the fluid to be measured in the fluid pipe. In addition, the inner wall of the partial pipe (15), to which the ultrasonic wave incident by the ultrasonic wave transmitting means (20) reaches, has an acoustic impedance that approximates the acoustic impedance of the fluid pipe (10). Equipped with high-density sound absorbing material (40).
更に、前記超音波送信手段 (20)には、被測定流体 (11)に入射された超音波パルス のうち測定領域力 反射された超音波エコーを受信し、測定領域における被測定流 体の流速分布を測定する流体速度分布測定手段と、 前記被測定流体の流速分布 に基づ!/、て、前記測定領域における被測定流体の流量を演算する流量演算手段と を接続したことを特徴とする。  Further, the ultrasonic transmitting means (20) receives the ultrasonic echo reflected from the measurement region force among the ultrasonic pulses incident on the fluid to be measured (11), and detects the velocity of the fluid to be measured in the measurement region. Fluid velocity distribution measuring means for measuring the distribution, and flow rate calculating means for calculating the flow rate of the fluid to be measured in the measurement area based on the flow rate distribution of the fluid to be measured. .
(作用)  (Action)
流量を測定したい被測定流体に係る流体配管 (10)の途中に、フランジ (16,16)を用 いて本請求項に係る超音波流量計を取り付ける。取り付けた超音波流量計は、その 部分配管 (15)が測定したい流体配管 (10)の内径と同一であるので、内壁は連続し、 被測定流体 (11)の流れを変化させるようなことはない。  The ultrasonic flowmeter according to the present invention is mounted in the middle of the fluid pipe (10) of the fluid to be measured whose flow rate is to be measured, using the flanges (16, 16). Since the installed ultrasonic flowmeter has the same partial pipe (15) as the inside diameter of the fluid pipe (10) to be measured, the inner wall is continuous, and it is not possible to change the flow of the fluid (11) to be measured. Absent.
所要周波数の超音波パルスを超音波トランスジユーサ (20)力 測定線に沿って流体 配管 (10)内の被測定流体 (11)中へ入射させる。すると、被測定流体 (11)に入射された 超音波パルスのうち、測定領域から反射されたもの (反射波 A)が測定対象となり、超 音波パルスの一部は被測定流体 (11)の流体配管 (10)に到達したり、被測定流体 (11) に達することなく流体配管 (10)内部で反射したりする。しかし、その到達位置における 配管内壁には吸音材 (40)が固定されており、その吸音材 (40)の音響インピーダンスは 、流体配管 (10)の音響インピーダンスと近似値となるような高密度な材質なので、ほと んどが吸収される。したがって、流体配管 (10)からの反射波が測定対象となって測定 誤差の原因となることを抑制できる。  An ultrasonic pulse of a required frequency is injected along the ultrasonic transducer (20) force measurement line into the fluid to be measured (11) in the fluid pipe (10). Then, of the ultrasonic pulses incident on the fluid to be measured (11), those reflected from the measurement area (reflected wave A) are to be measured, and a part of the ultrasonic pulse is the fluid of the fluid to be measured (11). It reaches the pipe (10) and reflects inside the fluid pipe (10) without reaching the fluid to be measured (11). However, a sound-absorbing material (40) is fixed to the inner wall of the pipe at the arrival position, and the acoustic impedance of the sound-absorbing material (40) is high-density so as to approximate the acoustic impedance of the fluid pipe (10). Mostly absorbed because of the material. Therefore, it is possible to prevent the reflected wave from the fluid pipe (10) from being a measurement target and causing a measurement error.
超音波トランスジユーサ (20)は、超音波エコーを受信し、超音波トランスジユーサ (20) に接続された流体速度分布測定手段が測定領域における被測定流体 (11)の流速分 布を測定する。そして、前記被測定流体 (11)の流速分布に基づいて、前記測定領域 における被測定流体の流量を流量演算手段が演算する。 The ultrasonic transducer (20) receives the ultrasonic echo, and the fluid velocity distribution measuring means connected to the ultrasonic transducer (20) measures the flow velocity distribution of the fluid to be measured (11) in the measurement area. I do. Then, based on the flow velocity distribution of the fluid to be measured (11), the measurement area Is calculated by the flow rate calculating means.
[0023] (請求項 3)  (Claim 3)
請求項 3記載の発明は、請求項 1または請求項 2のいずれかに記載の超音波流量 計を限定したものである。  The invention according to claim 3 limits the ultrasonic flowmeter according to claim 1 or 2.
すなわち、前記吸音材 (40)は、配管 (10)内側に備えられたライナーと一体的に設置さ れることを特徴とする。  That is, the sound absorbing material (40) is provided integrally with a liner provided inside the pipe (10).
[0024] (作用) [0024] (Action)
吸音材 (40)とライナーとを一体的に形成するには、例えば、以下のような方法とする 。予めライニングが施されている配管 (10)にあっては、吸音材 (40)が必要とされる箇所 を切削し、その切削箇所へ、吸音材 (40)をライニングと一体的に設置する。これより、 吸音 (40)によって形成される内面がライナー部分における内壁面と面一となる。その ため、測定対象となる流体の流速が、吸音材 (40)の存在を理由として変化することは ない。  In order to integrally form the sound absorbing material (40) and the liner, for example, the following method is used. In the case of the pipe (10) which has been lining in advance, the part where the sound absorbing material (40) is required is cut, and the sound absorbing material (40) is installed integrally with the lining at the cut part. Thus, the inner surface formed by the sound absorbing (40) is flush with the inner wall surface in the liner portion. Therefore, the flow velocity of the fluid to be measured does not change due to the presence of the sound absorbing material (40).
[0025] (請求項 4)  (Claim 4)
請求項 4記載の発明は、請求項 1から請求項 3のいずれかに記載の発明を限定し たものである。  The invention described in claim 4 limits the invention described in any one of claims 1 to 3.
すなわち、吸音材 (40)の音響インピーダンスは、流体配管 (10)の音響インピーダン スと近似値となるような高密度な材質としたとする。  That is, it is assumed that the acoustic impedance of the sound absorbing material (40) is a high-density material that approximates the acoustic impedance of the fluid pipe (10).
[0026] 「流体配管の音響インピーダンスと近似値」とは、例えばプラスマイナス約 15%程度、 好ましくはプラスマイナス約 10%程度、より好ましくはプラスマイナス約 5%程度であ る。 “Acoustic impedance and approximate value of fluid piping” is, for example, about ± 15%, preferably about ± 10%, and more preferably about ± 5%.
より具体的には、合成樹脂に高密度金属粉を配合して成形した材質にて形成する 。これにより、厚さが 5— 15mm程度でもほとんどの反射波を吸収できる。この厚さ寸 法により、ライニングを施した配管に採用しても、管の内壁を面一にすることができる 発明の効果  More specifically, it is formed of a material formed by mixing a high-density metal powder with a synthetic resin. This allows most reflected waves to be absorbed even if the thickness is about 5-15 mm. Due to this thickness dimension, the inner wall of the pipe can be made flush even when adopted for lining pipes.
[0027] 請求項 1から請求項 3に記載の発明によれば、、配管からの反射波を原因とする測 定誤差を低減して、より正確な流量を計測する超音波流量計を提供することができた 発明を実施するための最良の形態 According to the inventions set forth in claims 1 to 3, there is provided an ultrasonic flowmeter for reducing a measurement error caused by a reflected wave from a pipe and measuring a more accurate flow rate. Was able to BEST MODE FOR CARRYING OUT THE INVENTION
[0028] 以下、本発明を実施の形態及び図面に基づいて、更に詳しく説明する。ここで使用 する図面は、図 1乃至図 4である。  Hereinafter, the present invention will be described in more detail based on embodiments and drawings. The drawings used here are FIGS. 1 to 4.
(図 1)  (Figure 1)
図 1は、被測定流体 11が流れる流体配管 10の流量を計測するための超音波流量 計にぉ ヽて、被測定流体 11に入射された超音波パルスの測定領域から反射された 超音波エコーを受信する受信機を兼ねた超音波送受信手段 (トランスジユーサ 20)を 備える。そのトランスジユーサ 20は、榭脂製のくさび 30にて配管 10の所定箇所に固 定されている。くさび 30の材質は、例えばエポキシ榭脂である。  FIG. 1 shows an ultrasonic flowmeter for measuring a flow rate of a fluid pipe 10 through which a fluid 11 to be measured flows, and an ultrasonic echo reflected from a measurement area of an ultrasonic pulse incident on the fluid 11 to be measured. An ultrasonic transmission / reception means (transducer 20) also serving as a receiver for receiving the signal. The transducer 20 is fixed to a predetermined portion of the pipe 10 with a resin wedge 30. The material of the wedge 30 is, for example, epoxy resin.
[0029] トランスジユーサ 20は、被測定流体 11に対して測定線に沿って所要周波数 (基本 周波数)の超音波パルスを送信させる超音波送信手段と、被測定流体に入射された 超音波パルスの測定領域力 反射された超音波エコーを受信し、測定領域における 被測定流体の流速分布を測定する流体速度分布測定手段とを兼ねて!/ヽる。そして、 その流速分布に基づいて被測定流体の流量を時間依存で求める流量演算手段とし てのマイコン、 CPU、 MPU等のコンピュータと、このコンピュータからの出力を時系 列的に表示可能な表示装置とに接続されている。 [0029] Transducer 20 includes an ultrasonic transmission unit that transmits an ultrasonic pulse of a required frequency (fundamental frequency) to measurement target fluid 11 along a measurement line, and an ultrasonic pulse incident on measurement target fluid. Measurement area force Receives the reflected ultrasonic echo and also serves as a fluid velocity distribution measuring means for measuring the flow velocity distribution of the fluid to be measured in the measurement area! A computer, such as a microcomputer, CPU, or MPU, serving as a flow rate calculating means for obtaining the flow rate of the fluid to be measured in a time-dependent manner based on the flow velocity distribution, and a display device capable of displaying the output from the computer in a time-series manner And connected to.
[0030] また、トランスジユーサ 20には、トランスジユーサ 20を加振させる信号発生器として の加振用アンプを備えており、加振用アンプ力 所要の基本周波数のパルス電気信 号が超音波トランスジユーサへ入力されるようになっている。そして、パルス電気信号 の印加により基本周波数の超音波パルスが測定線に沿って発信せしめられる。超音 波パルスは、パルス幅 5mm程度で拡がりをほとんど持たな!、直進性のビームである。  Further, the transducer 20 is provided with a vibrating amplifier as a signal generator for vibrating the transducer 20, and a pulse electric signal of a required fundamental frequency is generated by the vibrating amplifier. The signal is input to a sound wave transducer. Then, an ultrasonic pulse of the fundamental frequency is transmitted along the measurement line by application of the pulse electric signal. The ultrasonic pulse is a straight beam with a pulse width of about 5 mm and almost no spread!
[0031] トランスジユーサ 20は、発信し超音波パルスが流体 11中の反射体 12に当って反射 される超音波エコー (反射波 A)を受信するようになっている。ここで反射体 12とは、 被測定流体 11中に一様に含まれる気泡である。基本的に、被測定流体 11とは、音 響インピーダンスが異なる異物でなければならない。  The transducer 20 is configured to receive an ultrasonic echo (reflected wave A) transmitted and reflected by the reflector 12 in the fluid 11. Here, the reflector 12 is a gas bubble uniformly contained in the fluid 11 to be measured. Basically, the fluid to be measured 11 must be a foreign substance having a different acoustic impedance.
[0032] トランスジユーサ 20にて受信された超音波エコーは、図示を省略した反射波レシ一 バーにて受信され、その反射波レシーバ一にてエコー電気信号へ変換される。この エコー電気信号は、増幅器で増幅された後、 AD変 を通ってデジタルィ匕される。 そして、デジタル化されたデジタルエコー信号が流速分布計測回路を備えた流速計 算装置に入力される。 [0032] The ultrasonic echo received by the transducer 20 is received by a reflected wave receiver (not shown), and is converted into an echo electric signal by the reflected wave receiver. this The echo electric signal is amplified by an amplifier and then digitally converted through an AD converter. Then, the digitized digital echo signal is input to a flow velocity calculator provided with a flow velocity distribution measuring circuit.
流速計算装置には、発信用アンプからの基本周波数の電気信号がデジタル化され て入力され、両信号の周波数差力 ドッブラシフトに基づく流速の変化もしくは両信 号の相互相関値を用いて流速を計測し、測定線に沿う測定領域の流速分布を算出 している。測定領域の流速分布を超音波の入射角度 αで較正することによって、流 体配管の横断面における流速分布を計測することができる。  An electric signal of the fundamental frequency from the transmitting amplifier is digitized and input to the flow velocity calculator, and the flow velocity is measured using the change in the flow velocity based on the Doppler shift of the two signals or the cross-correlation value of the two signals. Then, the flow velocity distribution in the measurement area along the measurement line is calculated. By calibrating the flow velocity distribution in the measurement area with the incident angle α of the ultrasonic wave, the flow velocity distribution in the cross section of the fluid pipe can be measured.
[0033] さて、流体配管 10の寸法 (外径、肉厚、内径のいずれか 2つ以上)、流体配管 10の 材質、流体 11の種類などが予め把握できている場合には、前述した超音波の入射 角度 αは特定できる。その場合には、くさび 30を省略して「接液形」とすることができ る。 [0033] If the dimensions of the fluid pipe 10 (two or more of outer diameter, wall thickness, and inner diameter), the material of the fluid pipe 10 and the type of the fluid 11 are known in advance, The incident angle α of the sound wave can be specified. In such a case, the wedge 30 can be omitted to obtain a “wetted type”.
[0034] トランスジユーサ 20による超音波の入射角度 ocが決定され、更に配管の材質、配 管の内径および外径または肉厚、被測定流体の種類などの可変条件が特定されると 、吸音材 40が備えられるべき流体配管 10における内壁の位置が決定される。その位 置に吸音材 40が位置するように、吸音材サポータ 41が当該吸音材 40を配置固定す る。なお、吸音材 40の厚さは 7— 15mmである。また、超音波パルスは、パルス幅 5 mm程度で拡がりをほとんど持たな 、直進性のビームであるので、可変条件が特定さ れている場合には、吸音材 40は 10— 20mm程度の直径であれば足りる。  [0034] When the incident angle oc of the ultrasonic wave by the transducer 20 is determined and variable conditions such as the material of the pipe, the inner diameter and outer diameter or wall thickness of the pipe, and the type of the fluid to be measured are specified, the sound absorption The position of the inner wall in the fluid pipe 10 where the material 40 is to be provided is determined. The sound absorbing material supporter 41 arranges and fixes the sound absorbing material 40 so that the sound absorbing material 40 is located at that position. The thickness of the sound absorbing material 40 is 7 to 15 mm. Also, since the ultrasonic pulse is a straight beam with a pulse width of about 5 mm and almost no spread, if the variable conditions are specified, the sound absorbing material 40 has a diameter of about 10 to 20 mm. If it is enough.
なお、吸音材 40および吸音材サポータ 41によって形成される内面は、それらが存 在しない流体配管 10における内壁面と面一となるように形成し、流速の変化が生じ ないようにしている。  Note that the inner surface formed by the sound absorbing material 40 and the sound absorbing material supporter 41 is formed so as to be flush with the inner wall surface of the fluid pipe 10 where they do not exist, so that the flow velocity does not change.
[0035] 前述の「吸音材サポータ 41」の材質は、配管 10を流れる液体が鋼製の配管を腐蝕 させるような液体 (例えば海水や各種の排水)である場合であって、ライニングを採用 する場合には、ライニングに採用される材質 (ポリエチレン、ガラスフレーク)となる。耐 腐食性の材質の配管を採用する場合にも、「吸音材サポータ 41」の材質は、当該液 体で腐蝕しな 、材質であることが望ま U、。  [0035] The material of the above-mentioned "sound absorbing material supporter 41" is a case where the liquid flowing through the pipe 10 is a liquid (for example, seawater or various kinds of wastewater) that corrodes steel pipes, and employs a lining. In this case, the material used for the lining (polyethylene, glass flake) is used. Even when piping made of a corrosion-resistant material is used, the material of the “sound absorbing material supporter 41” is desirably a material that does not corrode with the liquid.
予めライニングが施されている配管 10にあっては、吸音材 40が必要とされる箇所を 切削し、その切削箇所へ、吸音材をライニングと一体的に設置する。これより、吸音 材 40によって形成される内面は、ライナー部分における内壁面と面一となり、流速の 変化を生じない。 In the case of piping 10 that has been lined in advance, Cutting is performed, and a sound absorbing material is installed integrally with the lining at the cut portion. Thus, the inner surface formed by the sound absorbing material 40 is flush with the inner wall surface in the liner portion, and the flow velocity does not change.
[0036] 上述の吸音材 40の音響インピーダンスは、流体配管 10の音響インピーダンスと近 似値となるような高密度な材質としている。より具体的には、合成樹脂 (エポキシ榭脂 )に高密度金属粉 (タングステン粉)を配合して成形した材質である。この吸音材 40の 存在により、流体中の気泡 12に反射しなかった超音波 Cが流体配管 10の内壁に反 射して発生する反射波を抑制できる。したがって、流体配管 10からの反射波が測定 対象となって測定誤差の原因となることを抑制できる。  The acoustic impedance of the above-described sound absorbing material 40 is a high-density material having a similar value to the acoustic impedance of the fluid pipe 10. More specifically, it is a material formed by mixing a high-density metal powder (tungsten powder) with a synthetic resin (epoxy resin). Due to the presence of the sound absorbing material 40, it is possible to suppress the reflected waves generated by the ultrasonic waves C not reflected by the bubbles 12 in the fluid reflected on the inner wall of the fluid pipe 10. Therefore, it is possible to suppress the reflected wave from the fluid pipe 10 from becoming a measurement target and causing a measurement error.
なお、吸音材の材質は、エポキシ榭脂にタングステン粉を配合して成形したものに 限られず、流体配管 10の音響インピーダンスと近似値となるような高密度な材質であ ればよぐ例えばタングステンの代わりに鉛やモリブデンを用いることもできる。  The material of the sound absorbing material is not limited to a material formed by mixing tungsten powder with epoxy resin, but may be any material having a high density that approximates the acoustic impedance of the fluid pipe 10, such as tungsten. Alternatively, lead or molybdenum can be used.
[0037] トランスジユーサ 20の受信機が受信した反射波は、図示を省略した増幅器で増幅 された後、 AD変^ ^を通ってデジタルィ匕される。そして、デジタルィ匕されたデジタル エコー信号を用いて音速計算装置が音速を算出する。算出された音速は、超音波 流量計に対して出力され、流量、流速分布などをリアルタイムで算出するのに用いら れる。  [0037] The reflected wave received by the receiver of the trans- ducer 20 is amplified by an amplifier (not shown) and then digitally converted through an AD converter. Then, the sound speed calculation device calculates the sound speed using the digital echo signal that has been digitally converted. The calculated sound speed is output to the ultrasonic flow meter and used to calculate the flow rate, flow velocity distribution, and the like in real time.
[0038] なお、測定領域にて反射されな力つた超音波パルスの一部力 被測定流体の流体 配管に到達して反射したことで測定誤差が生じたと考えられる事態が発生したとする 。その場合、配管外壁に対する当該吸音材 40の固定位置が適切でないと考えられ るので、吸音材 40および吸音材サポータ 41の配置を見直す。例えば、適切な位置 へ吸音材 40を移動させる、吸音材 40の固定箇所を増やす、あるいは流体配管 10に 対するトランスジユーサ 20の照射角度を変更する、といった対処をする。  [0038] It is assumed that a part of the ultrasonic pulse that is not reflected in the measurement area has reached the fluid pipe of the fluid to be measured and has been reflected, causing a situation that is considered to have caused a measurement error. In this case, it is considered that the fixing position of the sound absorbing material 40 with respect to the pipe outer wall is not appropriate, so the arrangement of the sound absorbing material 40 and the sound absorbing material supporter 41 is reviewed. For example, measures such as moving the sound absorbing material 40 to an appropriate position, increasing the number of fixed portions of the sound absorbing material 40, or changing the irradiation angle of the transducer 20 to the fluid pipe 10 are taken.
適切な位置に吸音材 40および吸音材サポータ 41が配置されている場合には、流 体中の気泡 12に反射しな力つた超音波 Cを原因とする測定誤差は発生を確認でき なかった。  When the sound absorbing material 40 and the sound absorbing material supporter 41 were arranged at appropriate positions, no measurement error due to the ultrasonic waves C that were reflected by the bubbles 12 in the fluid could not be confirmed.
[0039] (図 2)  [0039] (Fig. 2)
図 2に示す実施形態は、トランスジユーサ 20から発信された超音波のうち、流体配 管 10を介して非測定流体 11の内部へ発信されずに、流体配管 10の内壁に反射し て発生した反射波 Eが非測定流体 11の内部へ入らな 、ように、その反射波 Eの到達 位置に吸音材 40を配置したものである。吸音材 40および吸音材サポータ 41によつ て形成される内面力 それらが存在しない流体配管 10における内壁面と面一となる ように形成し、流速の変化が生じないようにしている点など、図 1に示した実施形態と 同様である。 The embodiment shown in FIG. 2 includes a fluid distribution among the ultrasonic waves transmitted from the transducer 20. The reflected wave E generated by being reflected on the inner wall of the fluid pipe 10 without being transmitted to the inside of the non-measuring fluid 11 through the pipe 10 does not enter the inside of the non-measuring fluid 11 so that the reflected wave E The sound absorbing material 40 is arranged at the reaching position. The inner surface force formed by the sound absorbing material 40 and the sound absorbing material supporter 41 is formed so as to be flush with the inner wall surface of the fluid pipe 10 where they do not exist, and the flow velocity does not change. This is the same as the embodiment shown in FIG.
[0040] (図 3) [0040] (Fig. 3)
図 3に示す第三の実施形態は、流量を測定したい被測定流体に係る流体配管 10 の途中に、フランジ 16, 16を用いて取り付け可能に形成したフランジ付き超音波流 量計である。  The third embodiment shown in FIG. 3 is an ultrasonic flowmeter with a flange formed so as to be mountable using flanges 16 and 16 in the middle of a fluid pipe 10 for a fluid to be measured whose flow rate is to be measured.
すなわち、流量を測定したい被測定流体に係る流体配管 10と内径を同一とする部 分配管 15と、 その部分配管 15を被測定流体 11に係る流体配管 10へ固定するた めのフランジ 16, 16と、 前記部分配管 15に固定されるとともに所要周波数の超音 波パルスを超音波トランスジユーサ力 測定線に沿って流体配管内の被測定流体中 へ入射させる超音波送信手段 20とを備えて ヽる。  That is, a partial pipe 15 having the same inner diameter as the fluid pipe 10 of the fluid to be measured whose flow rate is to be measured, and flanges 16 for fixing the partial pipe 15 to the fluid pipe 10 of the fluid to be measured 11 And an ultrasonic transmission means 20 fixed to the partial pipe 15 and for causing an ultrasonic pulse of a required frequency to be incident on the fluid to be measured in the fluid pipe along the ultrasonic transducer force measurement line. Puru.
[0041] 部分配管 15における吸音材 40および吸音材サポータ 41によって形成される内面 力 流量を測定したい被測定流体に係る流体配管 10の内壁面と面一となるように形 成しておく必要がある。取り付けた超音波流量計は、その部分配管 15が測定したい 流体配管 10の内径と同一であるので、内壁は連続し、被測定流体 11の流れを変化 させるようなことはない。  [0041] The inner surface formed by the sound absorbing material 40 and the sound absorbing material supporter 41 in the partial pipe 15 needs to be formed so as to be flush with the inner wall surface of the fluid pipe 10 related to the fluid to be measured whose flow rate is to be measured. is there. In the attached ultrasonic flow meter, the partial pipe 15 has the same inner diameter as the fluid pipe 10 to be measured, so that the inner wall is continuous and the flow of the fluid to be measured 11 does not change.
なお、トランスジユーサ 20はくさび 30にて固定したものとして図示している力 更に 配管の材質、配管の内径および外径または肉厚、被測定流体の種類などの可変条 件が特定できて 、る場合には、接液型として提供することも可能である。  The transducers 20 are fixed with wedges 30 as shown in the figure, and the variable conditions such as the pipe material, the pipe inner diameter and outer diameter or wall thickness, and the type of the fluid to be measured can be specified. In such a case, it may be provided as a wetted type.
[0042] (図 4)  [0042] (FIG. 4)
図 4に示す実施形態は、図 1および図 2に示す実施形態を組み合わせたようなもの である。すなわち、トランスジユーサ 20とは反対側の流体配管 10の内壁面へ到達す る超音波 Cのための吸音材 40と、流体配管 10の内壁に反射して発生した反射波 E のための吸音材 40とを備えたものである。このように、吸音材 40は組み合わせて配 置することが合理的である。 The embodiment shown in FIG. 4 is a combination of the embodiments shown in FIGS. 1 and 2. That is, the sound absorbing material 40 for the ultrasonic waves C reaching the inner wall surface of the fluid pipe 10 on the opposite side to the transducer 20 and the sound absorbing material E for the reflected wave E generated by reflecting on the inner wall of the fluid pipe 10 Material 40 is provided. Thus, the sound absorbing material 40 is arranged in combination. It is reasonable to place them.
[0043] 先行技術も実施形態も、超音波送信手段と超音波エコーの受信手段とを一体に形 成した超音波流量計として説明した。しかし、超音波送信手段と超音波エコーの受信 手段とを別体として備えた超音波流量計においても、被測定流体の流体配管におけ る超音波パルスの到達位置における配管外壁に、固定可能な上述のような吸音材を 備えることによって、流体配管力もの反射波による測定誤差の発生を抑制できる。  [0043] Both the prior art and the embodiment have been described as the ultrasonic flowmeter in which the ultrasonic transmitting means and the ultrasonic echo receiving means are integrally formed. However, even in an ultrasonic flowmeter having an ultrasonic transmitting means and an ultrasonic echo receiving means as separate bodies, the ultrasonic flowmeter can be fixed to the outer wall of the pipe at the position where the ultrasonic pulse arrives in the fluid pipe of the fluid to be measured. By providing the above-described sound absorbing material, it is possible to suppress the occurrence of measurement error due to the reflected wave due to the fluid piping force.
[0044] さて、吸音材 40を用いたにも関わらず配管 10からの反射波による測定誤差の発生 を抑制できない場合には、吸音材 40の位置が適切でないと考えられる。その場合に は、トランスジユーサ 20による超音波の入射角度を変更する。すなわち、くさび 30の 種類を変更することによってトランスジユーサ 20の固定角度が異ならせ、トランスジュ ーサ 20による超音波の入射角度を変更するのである。これは、図 1から図 4に示した いずれの実施形態にて、同様である。  [0044] If the occurrence of measurement errors due to reflected waves from the pipe 10 cannot be suppressed despite the use of the sound absorbing material 40, it is considered that the position of the sound absorbing material 40 is not appropriate. In this case, the angle of incidence of the ultrasonic wave by the transducer 20 is changed. That is, by changing the type of the wedge 30, the fixed angle of the transducer 20 is changed, and the incident angle of the ultrasonic wave by the transducer 20 is changed. This is the same in any of the embodiments shown in FIGS.
産業上の利用可能性  Industrial applicability
[0045] 本願発明は、ドッブラ式超音波流量計に限られず、一般の超音波流量計に属する 流量計においても採用することができる。 [0045] The present invention is not limited to the Doppler type ultrasonic flow meter, but can also be applied to a flow meter belonging to a general ultrasonic flow meter.
また、超音波流量計の製造業のほか、超音波流量計取り付け業、メンテナンス業に おいても用いられる。  It is also used in the ultrasonic flow meter manufacturing industry, ultrasonic flow meter mounting industry, and maintenance industry.
図面の簡単な説明  Brief Description of Drawings
[0046] [図 1]第一の実施形態を示す概念図である。 FIG. 1 is a conceptual diagram showing a first embodiment.
[図 2]第二の実施形態を示す概念図である。  FIG. 2 is a conceptual diagram showing a second embodiment.
[図 3]第三の実施形態を示す概念図である。  FIG. 3 is a conceptual diagram showing a third embodiment.
[図 4]第四の実施形態を示す概念図である。  FIG. 4 is a conceptual diagram showing a fourth embodiment.
[図 5]従来の技術の問題点を示すための概念図である。  FIG. 5 is a conceptual diagram showing a problem of a conventional technique.
[図 6]従来の技術の問題点を示すための概念図である。  FIG. 6 is a conceptual diagram showing a problem of a conventional technique.
符号の説明  Explanation of symbols
[0047] 10 流体配管 11 被測定流体  [0047] 10 Fluid piping 11 Fluid to be measured
12 流体中の気泡  12 Bubbles in fluid
15 部分配管 16 フランジ 超音波送受信手段 (トランスジュ くさび 15 Partial piping 16 Flange Ultrasonic transmission / reception means (Transju wedge
吸音材 Sound absorbing material

Claims

請求の範囲 The scope of the claims
[1] 所要周波数の超音波パルスを超音波トランスジユーサ力 測定線に沿って流体配 管内の被測定流体中へ入射させる超音波送信手段と、 被測定流体に入射された 超音波パルスのうち測定領域力 反射された超音波エコーを受信し、測定領域にお ける被測定流体の流速分布を測定する流体速度分布測定手段と、 前記被測定流 体の流速分布に基づ!/、て、前記測定領域における被測定流体の流量を演算する流 量演算手段とを備えて被測定流体の流量を測定する超音波流量計であって、 被測定流体の流体配管に対して前記超音波送信手段を固定する付近の流体配管 の内壁には、流体配管の音響インピーダンスと近似値となるような音響インピーダン スである高密度な材質の吸音材を備えたことを特徴とする超音波流量計。  [1] An ultrasonic transmitting means for injecting an ultrasonic pulse of a required frequency along an ultrasonic transducer force measuring line into a fluid to be measured in a fluid pipe; Measuring area force receives the reflected ultrasonic echo and measures the flow velocity distribution of the fluid to be measured in the measuring area, and a fluid velocity distribution measuring means based on the flow velocity distribution of the fluid to be measured. An ultrasonic flowmeter for measuring the flow rate of the fluid to be measured, comprising: a flow rate calculating means for calculating the flow rate of the fluid to be measured in the measurement area; An ultrasonic flowmeter comprising a high-density sound-absorbing material having an acoustic impedance that approximates the acoustic impedance of the fluid pipe on an inner wall of the fluid pipe near the fixing pipe.
[2] 被測定流体に係る流体配管に挟まれて固定される超音波流量計であって、  [2] An ultrasonic flowmeter fixed by being sandwiched between fluid pipes related to a fluid to be measured,
前記流体配管と内径を同一とする部分配管と、  A partial pipe having the same inner diameter as the fluid pipe,
その部分配管を被測定流体に係る流体配管へ固定するためのフランジと、 前記部分配管に固定されるとともに所要周波数の超音波パルスを超音波トランスジ ユーサから測定線に沿って流体配管内の被測定流体中へ入射させる超音波送信手 段とを備え、  A flange for fixing the partial pipe to the fluid pipe related to the fluid to be measured; and an ultrasonic pulse fixed to the partial pipe and having a required frequency in the fluid pipe along the measurement line from the ultrasonic transducer. Means for transmitting ultrasonic waves into the fluid,
その超音波送信手段によって入射される超音波が到達する前記部分配管の内壁 には、流体配管の音響インピーダンスと近似値となるような音響インピーダンスである 高密度な材質吸音材を備え、  The inner wall of the partial pipe to which the ultrasonic wave incident by the ultrasonic transmission means reaches is provided with a high-density material sound-absorbing material having an acoustic impedance that approximates the acoustic impedance of the fluid pipe,
前記超音波送信手段には、被測定流体に入射された超音波パルスのうち測定領域 力 反射された超音波エコーを受信し、測定領域における被測定流体の流速分布を 測定する流体速度分布測定手段と、 前記被測定流体の流速分布に基づいて、前 記測定領域における被測定流体の流量を演算する流量演算手段とを接続したことを 特徴とする超音波流量計。  The ultrasonic transmission means includes a fluid velocity distribution measuring means for receiving an ultrasonic echo reflected in a measurement region of the ultrasonic pulse incident on the measurement target fluid and measuring a flow velocity distribution of the measurement target fluid in the measurement region. And a flow rate calculating means for calculating the flow rate of the fluid to be measured in the measurement area based on the flow velocity distribution of the fluid to be measured.
[3] 前記吸音材は、配管内側に備えられたライナーと一体的に設置されることを特徴とす る請求項 1または請求項 2のいずれかに記載の超音波流量計。  3. The ultrasonic flowmeter according to claim 1, wherein the sound absorbing material is installed integrally with a liner provided inside the pipe.
[4] 吸音材は、合成樹脂に高密度金属粉を配合して成形した材質にて形成したことを 特徴とする請求項 1から請求項 3のいずれかに記載の超音波流量計。  [4] The ultrasonic flowmeter according to any one of claims 1 to 3, wherein the sound absorbing material is formed of a material formed by mixing high density metal powder with a synthetic resin.
PCT/JP2004/019431 2003-12-26 2004-12-24 Ultrasonic flow meter WO2005064286A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005516671A JPWO2005064286A1 (en) 2003-12-26 2004-12-24 Ultrasonic flow meter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-435907 2003-12-26
JP2003435907 2003-12-26

Publications (1)

Publication Number Publication Date
WO2005064286A1 true WO2005064286A1 (en) 2005-07-14

Family

ID=34736649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019431 WO2005064286A1 (en) 2003-12-26 2004-12-24 Ultrasonic flow meter

Country Status (2)

Country Link
JP (1) JPWO2005064286A1 (en)
WO (1) WO2005064286A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174812A (en) * 1982-04-07 1983-10-13 Honda Motor Co Ltd Ultrasonic flowmeter for intake air in internal combustion engine
JPS6128821A (en) * 1984-07-19 1986-02-08 Fuji Electric Corp Res & Dev Ltd Ultrasonic flow meter
JPH0449948B2 (en) * 1984-08-27 1992-08-12 Fuji Denki Sogo Kenkyusho Kk
JP2775011B2 (en) * 1989-09-28 1998-07-09 矢崎総業株式会社 Flow detector
JP2001311636A (en) * 2000-04-28 2001-11-09 Matsushita Electric Ind Co Ltd Ultrasonic flow rate-measuring device
JP2003130699A (en) * 2001-10-26 2003-05-08 Tokyo Electric Power Co Inc:The Doppler-type ultrasonic flowmeter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2972265B2 (en) * 1990-03-20 1999-11-08 トキコ株式会社 Flowmeter
JP3193774B2 (en) * 1991-06-07 2001-07-30 シューベルト・ウント・ザルツァー・コントロール・システムズ・ゲーエムベーハー Apparatus for measuring small flow velocity of liquids and particles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174812A (en) * 1982-04-07 1983-10-13 Honda Motor Co Ltd Ultrasonic flowmeter for intake air in internal combustion engine
JPS6128821A (en) * 1984-07-19 1986-02-08 Fuji Electric Corp Res & Dev Ltd Ultrasonic flow meter
JPH0449948B2 (en) * 1984-08-27 1992-08-12 Fuji Denki Sogo Kenkyusho Kk
JP2775011B2 (en) * 1989-09-28 1998-07-09 矢崎総業株式会社 Flow detector
JP2001311636A (en) * 2000-04-28 2001-11-09 Matsushita Electric Ind Co Ltd Ultrasonic flow rate-measuring device
JP2003130699A (en) * 2001-10-26 2003-05-08 Tokyo Electric Power Co Inc:The Doppler-type ultrasonic flowmeter

Also Published As

Publication number Publication date
JPWO2005064286A1 (en) 2007-07-19

Similar Documents

Publication Publication Date Title
US7363174B2 (en) Apparatus and method for measuring a fluid flow rate profile using acoustic doppler effect
US7607358B2 (en) Flow rate determination of a gas-liquid fluid mixture
US8047081B2 (en) Flow monitoring apparatus having an ultrasonic sensor with a coupling adapter having securing mechanism
US6681641B2 (en) Clamp-on gas flowmeter
JP5971428B2 (en) Fluid measuring device
WO2016013623A1 (en) Flow rate measurement device and flow rate measurement method
CN103477194B (en) Coupling element of an ultrasonic transducer for an ultrasonic flow meter
US10890471B2 (en) Method and assembly for ultrasonic clamp-on flow measurement, and bodies for implementing off-center flow measurement
KR20150043598A (en) Method for measuring physical value of fluid flow in pipe using ultrasonic waves and apparatus for the same
US20050154307A1 (en) Apparatus and method for measuring a fluid velocity profile using acoustic doppler effect
US20070151362A1 (en) Ultrasonic flowmeter, wedge for ultrasonic flowmeter, method for setting ultrasonic transmitting/receiving unit, and ultrasonic transmitting/receiving unit
WO2005064286A1 (en) Ultrasonic flow meter
Chun et al. Assessment of combined V/Z clamp-on ultrasonic flow metering
JP2005180988A (en) Ultrasonic flowmeter
JP2005195371A (en) Ultrasonic flowmeter, and sound absorbing material for ultrasonic flowmeter
WO2005064288A1 (en) Ultrasonic flowmeter, wedge for ultrasonic flowmeter, method for setting ultrasonic transmitting/receiving unit, and ultrasonic transmitting/receiving unit
JP2007178244A (en) Ultrasonic flowmeter and wedge therefor
JP2005195374A (en) Ultrasonic flowmeter, and wedge used therefor
RU2313068C2 (en) Mode of measuring gas consumption in main pipelines and an arrangement for its execution
JP4296947B2 (en) Ultrasonic transceiver unit of Doppler type ultrasonic flow velocity distribution meter
JP3191118B2 (en) Ultrasonic vortex flowmeter
WO2005064289A1 (en) Ultrasonic flowmeter, ultrasonic transducer, ultrasonic transmitting/receiving unit, and flowrate measuring method using ultrasonic flowmeter
JPS60202310A (en) Ultrasonic-wave type flow-rate measuring device
JP2005241436A (en) Doppler type ultrasonic flowmeter
JP2005241494A (en) Clamp-on type doppler type ultrasonic flow velocity distribution meter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005516671

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase