WO2014125720A1 - Ultrasonic flow meter and ultrasound absorbing body for ultrasonic flow meter - Google Patents

Ultrasonic flow meter and ultrasound absorbing body for ultrasonic flow meter Download PDF

Info

Publication number
WO2014125720A1
WO2014125720A1 PCT/JP2013/083468 JP2013083468W WO2014125720A1 WO 2014125720 A1 WO2014125720 A1 WO 2014125720A1 JP 2013083468 W JP2013083468 W JP 2013083468W WO 2014125720 A1 WO2014125720 A1 WO 2014125720A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
pipe
wave
reception unit
gas
Prior art date
Application number
PCT/JP2013/083468
Other languages
French (fr)
Japanese (ja)
Inventor
林 智仁
Original Assignee
アズビル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アズビル株式会社 filed Critical アズビル株式会社
Publication of WO2014125720A1 publication Critical patent/WO2014125720A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/14Casings, e.g. of special material

Definitions

  • Some embodiments according to the present invention relate to an ultrasonic flowmeter that measures a flow rate of a fluid flowing through a pipe using ultrasonic waves and an ultrasonic absorber for the ultrasonic flowmeter.
  • one or more ultrasonic transducers constituted by an ultrasonic transducer and a bevel wedge are installed on the outer periphery of a pipe through which fluid flows, and the flow direction of the fluid and It is known that when an ultrasonic wave is propagated in the opposite direction, each propagation time is measured, and the measurement control unit calculates and outputs the flow rate of the fluid based on the propagation time (see, for example, Patent Document 1). .
  • the ultrasonic wave emitted from the ultrasonic vibrator is divided into a fluid propagation wave propagating through the fluid flowing through the pipe and a pipe propagation wave reflecting off the pipe wall of the pipe and propagating through the pipe.
  • the fluid propagation wave is a signal (signal component) to be detected
  • the pipe propagation wave is noise (noise component) with respect to the signal.
  • the conventional ultrasonic flowmeter cannot sufficiently reduce the energy (magnitude or strength) of the pipe propagation wave relative to the energy (magnitude or intensity) of the fluid propagation wave. It was difficult to distinguish from waves. Therefore, there is a possibility that the conventional ultrasonic flowmeter erroneously measures the flow rate of the fluid.
  • Some aspects of the present embodiment have been made in view of the above-described problems, and provide an ultrasonic flowmeter capable of accurately measuring a gas flow rate and an ultrasonic absorber for the ultrasonic flowmeter. This is one of the purposes.
  • An ultrasonic flowmeter is provided on the outer periphery on the upstream side in a pipe through which gas flows, and includes a first ultrasonic transmission / reception unit that transmits and receives ultrasonic waves, and an outer periphery on the downstream side in the above-described pipe
  • a second ultrasonic transmission / reception unit that transmits and receives ultrasonic waves, and a time until the second ultrasonic transmission / reception unit receives ultrasonic waves transmitted from the first ultrasonic transmission / reception unit,
  • an ultrasonic absorber that absorbs a pipe propagation wave through which the ultrasonic wave propagates through the pipe.
  • the ultrasonic absorber includes uncrosslinked butyl rubber.
  • the ultrasonic absorber is provided on the outer periphery of the pipe and absorbs the pipe propagation wave through which the ultrasonic wave propagates through the pipe, and the ultrasonic absorber includes uncrosslinked butyl rubber.
  • uncrosslinked butyl rubber has an acoustic impedance value close to that of the pipe material, and has a high ability to absorb vibrations in the ultrasonic frequency band (absorption performance).
  • the ultrasonic absorber can attenuate the pipe propagation wave in the process of propagating the pipe, and the energy (magnitude, size) of the pipe propagation wave reaching the first ultrasonic transmission / reception unit and the second ultrasonic transmission / reception unit.
  • intensity can be made sufficiently smaller than the energy (magnitude or intensity) of the gas propagation wave, that is, the SN ratio can be improved.
  • uncrosslinked butyl rubber is also a viscoelastic body having adhesiveness and elasticity.
  • the ultrasonic absorber since the ultrasonic absorber is easy to adhere, it can be fixed in close contact with the outer periphery of the pipe, and the ultrasonic absorber is easily deformed by elasticity, so it can be applied to pipes of various materials, shapes, and surface conditions. It can be easily provided.
  • uncrosslinked butyl rubber has sufficient durability (environmental resistance) with respect to, for example, temperature and humidity in the usage environment of the ultrasonic flowmeter.
  • the ultrasonic absorber can utilize uncrosslinked butyl rubber without performing crosslinking (vulcanization) using sulfur or the like in order to enhance strength and environmental resistance.
  • the ultrasonic absorber further includes predetermined mixed particles mixed with uncrosslinked butyl rubber.
  • the ultrasonic absorber further includes predetermined mixed particles mixed with uncrosslinked butyl rubber.
  • unmixed butyl rubber is used as the predetermined mixed particles, which have an acoustic impedance value close to that of the piping material and / or improve the ability to absorb vibrations in the ultrasonic frequency band (absorption performance).
  • the SN ratio can be further improved.
  • the predetermined mixed particles are tungsten.
  • the predetermined mixed particles are tungsten.
  • an ultrasonic absorber that further improves the SN ratio can be easily realized (configured).
  • the predetermined mixed particles are ferrite.
  • the predetermined mixed particles are ferrite.
  • an ultrasonic absorber that further improves the SN ratio can be easily realized (configured).
  • the aforementioned predetermined mixed particles are barium sulfate.
  • the predetermined mixed particles are barium sulfate.
  • the ultrasonic absorber for an ultrasonic flowmeter includes a time until the ultrasonic wave transmitted from the outer periphery on the upstream side in the pipe through which gas flows is received on the outer periphery on the downstream side in the pipe described above.
  • the ultrasonic flowmeter for measuring the flow rate of the gas based on the time until the ultrasonic wave transmitted from the downstream outer periphery of the pipe is received by the upstream outer periphery of the pipe.
  • a sound absorber which is provided on the outer periphery of the pipe, absorbs the pipe propagation wave propagating through the pipe, and includes uncrosslinked butyl rubber.
  • the ultrasonic wave is provided on the outer periphery of the above-described pipe, the above-described ultrasonic wave absorbs the pipe propagation wave propagating through the above-described pipe, and includes uncrosslinked butyl rubber.
  • uncrosslinked butyl rubber has an acoustic impedance value close to that of the pipe material, and has a high ability to absorb vibrations in the ultrasonic frequency band (absorption performance).
  • the ultrasonic absorber can attenuate the pipe propagation wave in the process of propagating the pipe, and the received pipe propagation wave energy (magnitude or strength) is changed to the gas propagation wave energy (magnitude, Or the strength), that is, the SN ratio can be improved.
  • uncrosslinked butyl rubber is also a viscoelastic body having adhesiveness and elasticity.
  • the ultrasonic absorber since the ultrasonic absorber is easy to adhere, it can be closely attached and fixed to the outer periphery of the pipe, and the ultrasonic absorber is easily deformed by elasticity, so that the pipe A having various materials, shapes, and surface states. Can be easily provided.
  • uncrosslinked butyl rubber has sufficient durability (environmental resistance) with respect to, for example, temperature and humidity in the usage environment of the ultrasonic flowmeter.
  • the ultrasonic absorber can utilize uncrosslinked butyl rubber without performing crosslinking (vulcanization) using sulfur or the like in order to enhance strength and environmental resistance.
  • the ultrasonic absorber can attenuate the pipe propagation wave in the process of propagating the pipe, and the pipe reaches the first ultrasonic transmission / reception unit and the second ultrasonic transmission / reception unit.
  • the energy (magnitude or intensity) of the propagating wave can be made sufficiently smaller than the energy (magnitude or intensity) of the gas propagating wave, that is, the SN ratio can be improved. Therefore, the ultrasonic flowmeter can easily distinguish between the gas propagation wave and the pipe propagation wave, and can accurately measure the gas flow rate.
  • the ultrasonic flowmeter can accurately measure the flow rate of a gas having a low pressure.
  • the ultrasonic absorber can attenuate the pipe propagation wave in the process of propagating the pipe, and the received pipe propagation wave energy (magnitude) , Or intensity) can be made sufficiently smaller than the energy (magnitude or intensity) of the gas propagating wave, that is, the SN ratio can be improved. Therefore, the ultrasonic flowmeter can easily distinguish between the gas propagation wave and the pipe propagation wave, and can accurately measure the gas flow rate. In particular, when the pressure of the gas flowing inside the pipe is low, the energy (magnitude or strength) of the gas propagation wave is relatively small, but the ultrasonic absorber has an SN ratio even when the gas pressure is low. Therefore, the ultrasonic flowmeter can accurately measure the flow rate of a gas having a low pressure.
  • FIG. 1 It is a block diagram which shows an example of schematic structure of an ultrasonic flowmeter. It is an expanded sectional view explaining the structure of the 1st ultrasonic transmission / reception part shown in FIG. It is a sectional side view for demonstrating the calculation method of the flow volume of the gas which flows through the inside of piping. It is sectional drawing for demonstrating a mode that the ultrasonic wave transmitted from the 1st ultrasonic wave transmission / reception part is received by the 2nd ultrasonic wave transmission / reception part.
  • 3 is a graph of a reception signal output from the reception circuit unit illustrated in FIG. 1.
  • 3 is a graph of a reception signal output from the reception circuit unit illustrated in FIG. 1.
  • FIG. 1 to 10 show an embodiment of an ultrasonic flowmeter and an ultrasonic absorber for an ultrasonic flowmeter according to the present invention.
  • FIG. 1 is a configuration diagram illustrating an example of a schematic configuration of the ultrasonic flowmeter 100.
  • the ultrasonic flowmeter 100 is for measuring the flow rate of a gas (gas) flowing inside the pipe A.
  • the gas that is the measurement target of the ultrasonic flowmeter 100 flows in the direction indicated by the white arrow in FIG. 1 (the direction from left to right in FIG. 1).
  • the ultrasonic flowmeter 100 includes a first ultrasonic transmission / reception unit 20A, a second ultrasonic transmission / reception unit 20B, a main body unit 50, and an ultrasonic absorber 10.
  • the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B are provided on the outer periphery of the pipe A, respectively.
  • the first ultrasonic transmission / reception unit 20 ⁇ / b> A is disposed on the upstream side in the pipe A
  • the second ultrasonic transmission / reception unit 20 ⁇ / b> B is disposed on the downstream side in the pipe A.
  • the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B transmit and receive ultrasonic waves, and transmit and receive ultrasonic waves to and from each other.
  • the ultrasonic wave transmitted by the first ultrasonic transmission / reception unit 20A is received by the second ultrasonic transmission / reception unit 20B, and the ultrasonic wave transmitted by the second ultrasonic transmission / reception unit 20B is received by the first ultrasonic transmission / reception unit 20A. Is done.
  • FIG. 2 is an enlarged cross-sectional view for explaining the configuration of the first ultrasonic transmission / reception unit 20A shown in FIG.
  • the first ultrasonic transmission / reception unit 20 ⁇ / b> A includes a wedge 21 and a piezoelectric element 22.
  • the wedge 21 is for allowing ultrasonic waves to enter the pipe A at a predetermined acute angle, and is a resin or metal member.
  • the wedge 21 is installed such that the bottom surface 21 a contacts the outer peripheral surface of the pipe A. Further, the wedge 21 is formed with a slope 21b having a predetermined angle with respect to the bottom surface 21a.
  • a piezoelectric element 22 is installed on the slope 21b.
  • a contact medium may be interposed between the bottom surface 21a and the outer peripheral surface of the pipe A.
  • the piezoelectric element 22 is for transmitting ultrasonic waves and receiving ultrasonic waves.
  • a lead wire (not shown) is electrically connected to the piezoelectric element 22.
  • the piezoelectric element 22 vibrates at the predetermined frequency and emits an ultrasonic wave. Thereby, an ultrasonic wave is transmitted.
  • the ultrasonic wave transmitted from the piezoelectric element 22 propagates through the wedge 21 at an angle of the inclined surface 21b.
  • the ultrasonic wave propagating through the wedge 21 is refracted at the interface between the wedge 21 and the outer wall of the pipe A to change the incident angle, and is further refracted and incident at the interface between the inner wall of the pipe A and the gas flowing in the pipe A.
  • the angle changes and propagates through the gas. Since the refraction at the interface follows Snell's law, the angle of the inclined surface 21b is set in advance based on the velocity of the ultrasonic wave when propagating through the pipe A and the velocity of the ultrasonic wave when propagating through the gas. Can be incident on the gas at a desired incident angle and propagated.
  • the piezoelectric element 22 vibrates at the frequency of the ultrasonic wave to generate an electric signal. Thereby, an ultrasonic wave is received. An electrical signal generated in the piezoelectric element 22 is detected by a main body 50 described later via a lead wire.
  • the second ultrasonic transmission / reception unit 20B has the same configuration as the first ultrasonic transmission / reception unit 20A. That is, the second ultrasonic transmission / reception unit 20 ⁇ / b> B also includes a wedge 21 and a piezoelectric element 22. Therefore, the detailed description of the second ultrasonic transmission / reception unit 20B is omitted from the description of the first ultrasonic transmission / reception unit 20A.
  • the main body 50 shown in FIG. 1 is for measuring the flow rate of the gas based on the time during which the ultrasonic wave propagates through the gas flowing in the pipe A.
  • the main body unit 50 includes a switching unit 51, a transmission circuit unit 52, a reception circuit unit 53, a timer unit 54, a calculation control unit 55, and an input / output unit 56.
  • the switching unit 51 is for switching between transmission and reception of ultrasonic waves.
  • the switching unit 51 is connected to the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B.
  • the switching unit 51 can be configured to include, for example, a changeover switch.
  • the calculation switching unit 51 switches the changeover switch based on a control signal input from the calculation control unit 55, and connects one of the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B to the transmission circuit unit 52.
  • the other of the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B is connected to the reception circuit unit 53.
  • one of the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B transmits an ultrasonic wave, and the other of the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B Ultrasound can be received.
  • the transmission circuit unit 52 is for causing the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B to transmit ultrasonic waves.
  • the transmission circuit unit 52 can be configured to include, for example, an oscillation circuit that generates a rectangular wave with a predetermined frequency, a drive circuit that drives the first ultrasonic transmission / reception unit 20A, and the second ultrasonic transmission / reception unit 20B. .
  • the first ultrasonic transmission / reception unit 20B and the second ultrasonic transmission / reception unit 20B using the rectangular wave generated by the oscillation circuit as a drive signal. Is output to one of the piezoelectric elements 22. Thereby, one piezoelectric element 22 of the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B is driven, and the piezoelectric element 22 transmits ultrasonic waves.
  • the receiving circuit unit 53 is for detecting the ultrasonic waves received by the first ultrasonic transmitting / receiving unit 20A and the second ultrasonic transmitting / receiving unit 20B.
  • the receiving circuit unit 53 can include, for example, an amplifier circuit that amplifies a signal with a predetermined gain (gain), a filter circuit that extracts an electric signal with a predetermined frequency, and the like.
  • gain a predetermined gain
  • filter circuit that extracts an electric signal with a predetermined frequency
  • the reception circuit unit 53 Based on the control signal input from the arithmetic control unit 55, the reception circuit unit 53 receives the electrical signal output from one piezoelectric element 22 of the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B. Amplify, filter and convert to received signal.
  • the reception circuit unit 53 outputs the converted reception signal to the calculation control unit 55.
  • the timer 54 is for measuring time in a predetermined period.
  • the timer unit 54 can be constituted by, for example, an oscillation circuit. Note that the oscillation circuit may be shared with the transmission circuit unit 52.
  • the timer 54 measures the time by counting the number of reference waves of the oscillation circuit based on the start signal and stop signal input from the arithmetic control unit 55.
  • the time measuring unit 54 outputs the measured time to the calculation control unit 55.
  • the calculation control unit 55 is for calculating the flow rate of the gas flowing inside the pipe A by calculation.
  • the arithmetic control unit 55 can be configured by, for example, a CPU, a memory such as a ROM or a RAM, an input / output interface, or the like.
  • the arithmetic control unit 55 controls each part of the main body unit 50 such as the switching unit 51, the transmission circuit unit 52, the reception circuit unit 53, the time measuring unit 54, and the input / output unit 56. Note that a method by which the arithmetic control unit 55 calculates the gas flow rate will be described later.
  • the input / output unit 56 is for a user (user) to input information and to output information to the user.
  • the input / output unit 56 can be configured by, for example, input means such as operation buttons, output means such as a display display, and the like.
  • input means such as operation buttons
  • output means such as a display display, and the like.
  • various types of information such as settings are input to the arithmetic control unit 55 via the input / output unit 56.
  • the input / output unit 56 displays and outputs information such as the gas flow rate, the gas velocity, and the integrated flow rate during a predetermined period calculated by the calculation control unit 55 on a display display or the like.
  • FIG. 3 is a side sectional view for explaining a method of calculating the flow rate of the gas flowing inside the pipe A.
  • the velocity (hereinafter referred to as the flow velocity) of the gas flowing in a predetermined direction (the direction from the left side to the right side in FIG. 3) inside the pipe A is V [m / s], and exceeds the inside of the gas.
  • the velocity at which the sound wave propagates (hereinafter referred to as the sound velocity) is C [m / s]
  • the propagation path length of the ultrasonic wave propagating through the gas is L [m]
  • the propagation axis of the pipe A and the ultrasonic wave of the pipe A Let ⁇ be the angle formed with the path.
  • the propagation time t 12 to the ultrasonic wave propagates through the gas inside the pipe a is represented by the following formula (1).
  • t 12 L / (C + V cos ⁇ ) (1)
  • V (L / 2 cos ⁇ ) ⁇ ⁇ (1 / t 12 ) ⁇ (1 / t 21 ) ⁇ (3)
  • the flow rate Q [m 3 / s] of the gas flowing inside the pipe A is expressed as follows using the flow velocity V [m / s], the complement coefficient K and the cross-sectional area S [m 2 ] of the pipe A: It is represented by Formula (4).
  • Q KVS (4)
  • the arithmetic control unit 55 stores the propagation path length L, the angle ⁇ , the complement coefficient K, and the cross-sectional area S of the pipe A in a memory or the like in advance. Then, the arithmetic control unit 55 based on the reception signal input from the reception circuit unit 53, by measuring the propagation time t 12 and the propagation time t 21 by the timer 54, from the equation (3) and (4) The flow rate Q of the gas flowing inside the pipe A can be calculated.
  • the arithmetic control unit 55 may calculate the gas flow rate by another method, for example, a known propagation time difference method.
  • the ultrasonic wave transmitted by one of the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20A propagates the gas inside the pipe A, and the first ultrasonic transmission / reception unit 20A and Although the example directly received by the other of the second ultrasonic transmission / reception unit 20A has been shown, the present invention is not limited to this.
  • the ultrasonic wave propagating through the gas inside the pipe A can be reflected on the inner wall of the pipe A. Therefore, the other of the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20A may receive ultrasonic waves reflected 2n times (n is a positive integer) on the inner wall of the pipe A.
  • the ultrasonic absorber 10 shown in FIG. 1 is provided on the outer peripheral surface of the pipe A. Specifically, the ultrasonic absorber 10 is disposed on the outer peripheral surface of the pipe A so as to cover at least a region between the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B. Closely fixed to the outer peripheral surface. First ultrasonic transmission / reception unit 20A and second ultrasonic transmission / reception unit of ultrasonic absorber 10 such that first ultrasonic transmission / reception unit 20A and second ultrasonic transmission / reception unit 20B are in direct contact with the outer peripheral surface of pipe A. In the portion where 20B is arranged, a part of the ultrasonic absorber 10 is cut into a frame shape.
  • the ultrasonic absorber 10 includes, as a main material, uncrosslinked, that is, uncrosslinked butyl rubber (IIR, a copolymer of isobutylene and isoprene).
  • FIG. 4 is a cross-sectional view for explaining how the ultrasonic wave transmitted from the first ultrasonic wave transmitting / receiving unit 20A is received by the second ultrasonic wave transmitting / receiving unit 20B.
  • ultrasonic waves transmitted from the first ultrasonic transmitter-receiver 20A includes a gas propagating wave W 1 which passes through the pipe A (transmitted) to propagating inside of the gas pipe A, pipe It is divided into a pipe propagation wave W 2 that is reflected by the pipe wall of A and propagates through the pipe A. Gas propagating wave W 1 reaches the second ultrasonic transmitter-receiver 20B through the pipe A again.
  • the pipe propagating wave W 2 may also reach the second ultrasonic transmitter-receiver 20B while being reflected several times the inner and outer walls of the pipe A.
  • the ultrasonic waves transmitted from the second ultrasonic transmitter-receiver 20A is also a gas propagating wave W 1 pipe
  • the propagation wave W 2 is divided into the propagation wave W 2 , the gas propagation wave W 1 passes through the pipe A and reaches the first ultrasonic transmission / reception unit 20 A, and the pipe propagation wave W 2 also reflects the inner wall and the outer wall of the pipe A multiple times. However, it can reach the first ultrasonic transmission / reception unit 20A.
  • a sound wave propagating through one medium is transmitted (passed) or reflected at an interface with the other medium is determined by a difference in acoustic impedance between the one medium and the other medium.
  • the smaller the difference in acoustic impedance the more the sound wave propagating in one configuration is transmitted to the other medium, and the greater the difference in acoustic impedance, the more acoustic wave propagating in one configuration is at the interface with the other medium. There is a tendency to reflect.
  • the difference between the acoustic impedance of the liquid and the acoustic impedance of the pipe material for example, a metal such as stainless steel (SUS) or a polymer compound such as synthetic resin is Since the ultrasonic wave is relatively small, the ultrasonic wave transmits (passes) through the pipe A and propagates (flows) through the liquid flowing in the inside (transmission) is large (large), that is, the ratio of reflection on the pipe wall of the pipe A (reflection). rate) is small (small), the piping propagating wave W 2 energy (size or strength) is small.
  • a metal such as stainless steel (SUS) or a polymer compound such as synthetic resin
  • the acoustic impedance of gas is small compared to the acoustic impedance of liquid. Therefore, when the fluid flowing inside the pipe A is a gas, the difference between the acoustic impedance of the gas and the acoustic impedance of the pipe A is relatively large, so that the ultrasonic wave transmits (passes) the pipe A. proportion of propagating liquid flowing inside (transmittance) less (small), i.e., ratio of reflected a tube wall of the pipe a (reflectance) many (large), the piping propagating wave W 2 energy (size, (Or strength) is large.
  • the gas propagation wave W 1 is a signal to be detected (new synthesis).
  • piping propagating wave W 2 is the noise to the signal (noise component). Therefore, the gas propagating wave W 1 of the energy (size or strength) pipe propagating wave W 2 of the energy (size or strength) with respect to the is not sufficiently small, the gas propagation wave W 1 and the pipe propagating wave W 2 becomes difficult to distinguish. As a result, there is a possibility that the gas propagation wave W 1 and the pipe propagation wave W 2 will be mistaken for the measurement of the propagation time and the gas flow rate will be measured based on the erroneous propagation time.
  • Ultrasonic absorber 10 is provided on the outer circumference of the pipe A, it absorbs pipe propagating wave W 2 propagating through pipe A. Further, the ultrasonic absorption 10 includes uncrosslinked butyl rubber as described above. Here, uncrosslinked butyl rubber has an acoustic impedance value close to that of the material of the pipe A, and has a high ability to absorb vibrations in the ultrasonic frequency band (absorption performance).
  • the ultrasonic absorber 10 can attenuate the pipe propagating wave W 2 in the process of propagating through the pipe A, reaches the first ultrasonic transmitter-receiver 20A and the second ultrasonic transmitter-receiver 20B, that is, sufficiently small pipe propagating wave W 2 of the energy (size or strength) received a gas propagating wave W 1 of the energy (size or strength) with respect to, i.e., it is possible to improve the SN ratio .
  • uncrosslinked butyl rubber is also a viscoelastic body having adhesiveness and elasticity.
  • the ultrasonic absorber 10 is easy to adhere, it can be adhered and fixed to the outer periphery of the pipe A, and the ultrasonic absorber 10 is easily deformed by elasticity, so various materials, shapes, and surface states The pipe A can be easily provided.
  • uncrosslinked butyl rubber has sufficient durability (environmental resistance) with respect to, for example, temperature and humidity in the environment where the ultrasonic flowmeter 100 is used.
  • the ultrasonic absorber 10 can utilize uncrosslinked butyl rubber without performing crosslinking (vulcanization) using sulfur or the like in order to enhance strength and environmental resistance.
  • ultrasonic waves mean sound waves in a frequency band of 20 [kHz] or higher. Therefore, the ultrasonic waves transmitted by the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B are sound waves in a frequency band of 20 [kHz] or higher. Preferably, the ultrasonic waves transmitted by the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B are ultrasonic waves in a frequency band of 100 [kHz] or more and 2.0 [MHz] or less.
  • the ultrasonic waves transmitted by the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B are ultrasonic waves in a frequency band of 0.5 [MHz] or more and 1.0 [MHz] or less. is there.
  • the ultrasonic wave transmitted by the first ultrasonic transmission / reception unit 20A and the ultrasonic wave transmitted by the second ultrasonic transmission / reception unit 20B may be the same frequency or at different frequencies. There may be.
  • 5 and 6 are graphs of received signals output from the receiving circuit unit 53 shown in FIG. 5 and 6, the horizontal axis represents time, and the vertical axis represents amplitude (voltage).
  • the upper graph is a graph in which the pressure of the gas flowing inside the pipe A is 0.5 [MPa]
  • the lower graph is the pressure of the gas flowing in the pipe A within 0.3 [MPa]. It is a graph of.
  • FIG. 5 is a graph in which the frequency of ultrasonic waves transmitted by the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B is 0.5 [MHz], and FIG.
  • the gas pressure is 0.5 [MPa]
  • the frequency of the ultrasonic waves transmitted by the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B is 0.
  • the ultrasonic absorber 10 can attenuate the pipe propagation wave W 2 , and the arithmetic control unit 55 can generate the relatively large amplitude gas propagation wave W 1 generated near the center of the graph. Can be identified and detected.
  • the pressure of the gas is 0.5 [MPa]
  • the frequency of the ultrasonic waves transmitted by the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B is 1. .0 similarly be a [MHz]
  • ultrasound absorber 10 is able to attenuate the pipe propagating wave W 2
  • the calculation control unit 55 is larger gas propagation of relatively amplitude generated in the vicinity of the center of the graph it can be detected to identify a wave W 1.
  • the acoustic impedance of the gas is proportional to the pressure. become large, gas propagating wave W 1 of the energy (size or strength) is further reduced.
  • the pressure of the gas flowing through the pipe A is low, for example, even when the pressure of the gas is 0.3 [MPa], as shown in the lower graphs of FIGS. the absorbent body 10 can be attenuated piping propagating wave W 2, the calculation control unit 55 may be detected to identify the gas propagation wave W 1 larger relatively amplitude generated in the vicinity of the center of the graph.
  • ultrasound absorber 10 even if gas propagating wave W 1 of the energy (size or strength) is small, it is possible to sufficiently attenuate the pipe propagating wave W 2, the SN ratio Can be improved.
  • FIG. 7 is a graph of a reception signal of a virtual ultrasonic flowmeter including another ultrasonic absorber.
  • the virtual ultrasonic flowmeter is the same as the ultrasonic flowmeter 100 except that an ultrasonic absorber different from the ultrasonic absorber 10 is provided.
  • the horizontal axis represents time
  • the vertical axis represents amplitude (voltage).
  • the frequency of the ultrasonic wave is 0.5 [MHz]
  • the upper part is a graph in which the pressure of the gas flowing inside the pipe is 0.5 [MPa]
  • the lower part is the gas flowing inside the pipe. Is a graph with a pressure of 0.3 [MPa].
  • a virtual ultrasonic flowmeter provided with another ultrasonic absorber including asphalt as a main material is shown in FIG. 7 in comparison with the graph of the ultrasonic flowmeter 100 of the present embodiment shown in FIG. as such, it is not possible to ultrasound absorber sufficiently attenuate the pipe propagating wave W 2, to identify the pipe propagating wave W 2 and the gas propagating wave W 1 becomes difficult.
  • FIG. 8 is a table showing SN ratios of ultrasonic absorbers of various materials.
  • the pressure of the gas flowing inside the pipe A is 0.3 [MPa]
  • the frequency of the ultrasonic waves transmitted by the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B is 0.5. [MHz].
  • the ratio of the maximum amplitude of the gas propagation wave W 1 and the maximum amplitude of the pipe propagation wave W 2 (hereinafter referred to as SN ratio) is 3.8. Stop on.
  • the ultrasonic absorber 10 including uncrosslinked butyl rubber is provided, the SN ratio is 7.4, which is improved to about twice.
  • rubbers such as natural rubber and synthetic rubber have high vibration absorption performance.
  • rubbers (rubber compositions) such as natural rubber and synthetic rubber have high vibration absorption performance.
  • FIG. 8 even when rubbers (rubber compositions) other than uncrosslinked butyl rubber are used as the main material of the ultrasonic absorber, the gas flowing through the pipe A in the ultrasonic frequency band is used. In the case of propagation, it was found that the SN ratio was not improved.
  • the ultrasonic absorber 10 is not limited to the case containing only uncrosslinked butyl rubber.
  • the ultrasonic absorber 10 may include predetermined mixed particles mixed with uncrosslinked butyl rubber. Thereby, as a predetermined mixed particle, the value of the acoustic impedance is close to that of the material of the pipe A and / or the mixed particle that improves the ability to absorb vibrations in the frequency band of the ultrasonic wave (absorption performance) is uncrosslinked. By mixing with butyl rubber, the ultrasonic absorber 10 can further improve the SN ratio.
  • Examples of the predetermined mixed particles include metal particles such as tungsten, organic compound particles such as ferrite, and inorganic compound particles such as barium sulfate.
  • FIG. 9 is a table showing the SN ratio of the ultrasonic absorber 10.
  • the pressure of the gas flowing inside the pipe A is 0.3 [MPa]
  • the frequency of the ultrasonic waves transmitted by the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B is 0.5. [MHz].
  • the SN ratio is 7.4.
  • the ultrasonic absorber 10 further includes ferrite as the predetermined mixed particles 11, it is 8.9 when it further includes tungsten, 11.7 when it further includes tungsten, and 34. 2, the SN ratio is further improved as compared with the ultrasonic absorber 10 containing only uncrosslinked butyl rubber.
  • the first ultrasonic transmission / reception unit 20 ⁇ / b> A is arranged above the pipe A in FIG. 1 so that the first ultrasonic transmission / reception unit 20 ⁇ / b> A and the second ultrasonic transmission / reception unit 20 ⁇ / b> B face each other.
  • positions the 2nd ultrasonic wave transmission / reception part 20B was shown in FIG.
  • the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B may be provided on the outer circumferences of the upstream side and the downstream side of the pipe A.
  • FIG. 10 is a configuration diagram illustrating another example of the schematic configuration of the ultrasonic flowmeter 100.
  • the same components as those of the ultrasonic flow meter 100 shown in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
  • the first ultrasonic transmission / reception unit 20A is located on the outer circumference on the upstream side (left side in FIG. 10), and the second ultrasonic transmission / reception unit 20B is located on the downstream side (right side in FIG. 10). Provided on the outer circumference.
  • the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B are both arranged on the upper side of the pipe A in FIG.
  • a reflection method gas propagating wave W 1 of the ultrasonic wave transmitted from the first ultrasonic transmitter-receiver 20A is to reach the second ultrasonic transmitter-receiver 20B are reflected by the inner wall of the pipe A ( V method).
  • the ultrasonic waves provided on the outer periphery of the pipe A and transmitted by the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B pass through the pipe A. It comprises an ultrasonic absorber 10 for absorbing the pipe propagating wave W 2 which propagates ultrasonic absorber 10 comprises a rubber uncrosslinked.
  • uncrosslinked butyl rubber has an acoustic impedance value close to that of the material of the pipe A, and has a high ability to absorb vibrations in the ultrasonic frequency band (absorption performance).
  • the ultrasonic absorber 10 the pipe A can be attenuated piping propagating wave W 2 in the process of propagating through the piping propagating wave to reach the first ultrasonic transmitter-receiver 20A and the second ultrasonic transmitter-receiver 20B
  • the energy (magnitude or intensity) of W 2 can be made sufficiently smaller than the energy (magnitude or intensity) of the gas propagation wave W 1 , that is, the SN ratio can be improved. Therefore, the ultrasonic flow meter 100, a the gas propagation wave W 1 and pipe propagating wave W 2 can be easily identified, the flow rate of the gas can be accurately measured.
  • the ultrasonic flowmeter 100 can accurately measure the flow rate of a gas having a low pressure.
  • uncrosslinked butyl rubber is also a viscoelastic body having adhesiveness and elasticity.
  • the ultrasonic absorber 10 is easy to adhere, it can be adhered and fixed to the outer periphery of the pipe A, and the ultrasonic absorber 10 is easily deformed by elasticity, so various materials, shapes, and surface states The pipe A can be easily provided.
  • uncrosslinked butyl rubber has sufficient durability (environmental resistance) with respect to, for example, temperature and humidity in the environment where the ultrasonic flowmeter 100 is used.
  • the ultrasonic absorber 10 can utilize uncrosslinked butyl rubber without performing crosslinking (vulcanization) using sulfur or the like in order to enhance strength and environmental resistance.
  • the ultrasonic absorber 10 further includes predetermined mixed particles mixed with uncrosslinked butyl rubber.
  • predetermined mixed particle the value of the acoustic impedance is close to that of the material of the pipe A and / or the mixed particle that improves the ability to absorb vibrations in the frequency band of the ultrasonic wave (absorption performance) is uncrosslinked.
  • the ultrasonic absorber 10 can further improve the SN ratio.
  • the predetermined mixed particles are tungsten.
  • the ultrasonic absorber 10 that further improves the SN ratio can be easily realized (configured).
  • the predetermined mixed particles are ferrite.
  • the ultrasonic absorber 10 that further improves the SN ratio can be easily realized (configured).
  • the predetermined mixed particles are barium sulfate.
  • the ultrasonic absorber 10 that further improves the SN ratio can be easily realized (configured).
  • the ultrasonic absorber 10 for the ultrasonic flowmeter 100 in the present embodiment is provided on the outer periphery of the pipe A, and is transmitted from the upstream outer periphery of the pipe and the downstream outer periphery of the pipe.
  • ultrasound absorbs pipe propagating wave W 2 propagating a pipe a, including butyl rubber uncrosslinked.
  • uncrosslinked butyl rubber has an acoustic impedance value close to that of the material of the pipe A, and has a high ability to absorb vibrations in the ultrasonic frequency band (absorption performance).
  • the ultrasonic absorber 10 can attenuate the pipe propagating wave W 2 in the process of propagating through the pipe A, pipe propagating wave W 2 of the energy (size or strength) received a gas propagating wave It is possible to sufficiently reduce the energy (size or intensity) of W 1 , that is, to improve the SN ratio. Therefore, the ultrasonic flow meter 100, a the gas propagation wave W 1 and pipe propagating wave W 2 can be easily identified, the flow rate of the gas can be accurately measured.
  • the ultrasonic flowmeter 100 can accurately measure the flow rate of a gas having a low pressure.
  • uncrosslinked butyl rubber is also a viscoelastic body having adhesiveness and elasticity.
  • uncrosslinked butyl rubber has sufficient durability (environmental resistance) with respect to, for example, temperature and humidity in the environment where the ultrasonic flowmeter 100 is used.
  • the ultrasonic absorber 10 can utilize uncrosslinked butyl rubber without performing crosslinking (vulcanization) using sulfur or the like in order to enhance strength and environmental resistance.
  • the present invention can be applied to a technique for measuring the flow rate of a gas flowing through a pipe using ultrasonic waves.

Abstract

[Problem] To provide an ultrasonic flow meter and an ultrasound absorbing body for an ultrasonic flow meter capable of accurately measuring the flow rate of a gas. [Solution] An ultrasonic flow meter (100) comprises: a first ultrasonic transceiver unit (20A) that transmits and receives ultrasonic waves and is provided on the outer circumference on the upstream side of a pipe (A) in which a gas flows; a second ultrasonic transceiver unit (20B) that transmits and receives ultrasonic waves and is provided on the outer circumference on the downstream side of the pipe (A); a main unit (50) that measures the flow rate of the gas on the basis of the time for an ultrasonic wave transmitted from the first ultrasonic transceiver unit (20A) to be received by the second ultrasonic transceiver unit (20B) and the time for an ultrasonic wave transmitted from the second ultrasonic transceiver unit (20B) to be received by the first ultrasonic transceiver unit (20A); and an ultrasound absorbing body (10) that is provided on the outer circumference of the pipe (A) and absorbs pipe propagating waves that are ultrasonic waves propagating in the pipe (A). The ultrasound absorbing body (10) contains an uncrosslinked butyl rubber.

Description

超音波流量計および超音波流量計用の超音波吸収体Ultrasonic flowmeter and ultrasonic absorber for ultrasonic flowmeter
 本発明に係るいくつかの態様は、超音波を用いて配管を流れる流体の流量を測定する超音波流量計および超音波流量計用の超音波吸収体に関する。 Some embodiments according to the present invention relate to an ultrasonic flowmeter that measures a flow rate of a fluid flowing through a pipe using ultrasonic waves and an ultrasonic absorber for the ultrasonic flowmeter.
 従来、この種の超音波流量計として、超音波振動子と斜角楔とによって構成した超音波送受波器1対または1対以上を流体の流れる配管の外周に設置し、流体の流れ方向および逆方向に超音波を伝搬させたときそれぞれの伝搬時間を計測し、伝搬時間に基づいて計測制御部が流体の流量を演算して出力するものが知られている(例えば、特許文献1参照)。 Conventionally, as this type of ultrasonic flowmeter, one or more ultrasonic transducers constituted by an ultrasonic transducer and a bevel wedge are installed on the outer periphery of a pipe through which fluid flows, and the flow direction of the fluid and It is known that when an ultrasonic wave is propagated in the opposite direction, each propagation time is measured, and the measurement control unit calculates and outputs the flow rate of the fluid based on the propagation time (see, for example, Patent Document 1). .
特許第3216769号公報Japanese Patent No. 3216769
 ところで、超音波振動子から発せられた超音波は、配管を流れる流体を伝搬する流体伝搬波と、配管の管壁で反射して配管を伝搬する配管伝搬波とに分けられる。従来の超音波流量計において、流体伝搬波は検出すべき信号(信号成分)であり、配管伝搬波は信号に対するノイズ(ノイズ成分)である。 By the way, the ultrasonic wave emitted from the ultrasonic vibrator is divided into a fluid propagation wave propagating through the fluid flowing through the pipe and a pipe propagation wave reflecting off the pipe wall of the pipe and propagating through the pipe. In the conventional ultrasonic flowmeter, the fluid propagation wave is a signal (signal component) to be detected, and the pipe propagation wave is noise (noise component) with respect to the signal.
 しかしながら、従来の超音波流量計では、流体伝搬波のエネルギー(大きさ、または強度)に対して配管伝搬波のエネルギー(大きさ、または強度)を十分に小さくできず、流体伝搬波と配管伝搬波との識別が困難になっていた。そのため、従来の超音波流量計は流体の流量を誤って測定してしまう可能性があった。 However, the conventional ultrasonic flowmeter cannot sufficiently reduce the energy (magnitude or strength) of the pipe propagation wave relative to the energy (magnitude or intensity) of the fluid propagation wave. It was difficult to distinguish from waves. Therefore, there is a possibility that the conventional ultrasonic flowmeter erroneously measures the flow rate of the fluid.
 本実施形態のいくつかの態様は前述の問題に鑑みてなされたものであり、気体の流量を正確に測定することのできる超音波流量計および超音波流量計用の超音波吸収体を提供することを目的の1つとする。 Some aspects of the present embodiment have been made in view of the above-described problems, and provide an ultrasonic flowmeter capable of accurately measuring a gas flow rate and an ultrasonic absorber for the ultrasonic flowmeter. This is one of the purposes.
 本発明に係る超音波流量計は、内部を気体が流れる配管における上流側の外周に設けられ、超音波の送信および受信を行う第1の超音波送受信部と、前述の配管における下流側の外周に設けられ、超音波の送信および受信を行う第2の超音波送受信部と、第1の超音波送受信部から送信された超音波が第2の超音波送受信部に受信されるまでの時間と、第2の超音波送受信部から送信された超音波が第1の超音波送受信部に受信されるまでの時間とに基づいて、前述の気体の流量を測定する本体部と、前述の配管の外周に設けられ、前述の超音波が前述の配管を伝搬する配管伝搬波を吸収する超音波吸収体と、を備え、超音波吸収体は、未架橋のブチルゴムを含む。 An ultrasonic flowmeter according to the present invention is provided on the outer periphery on the upstream side in a pipe through which gas flows, and includes a first ultrasonic transmission / reception unit that transmits and receives ultrasonic waves, and an outer periphery on the downstream side in the above-described pipe A second ultrasonic transmission / reception unit that transmits and receives ultrasonic waves, and a time until the second ultrasonic transmission / reception unit receives ultrasonic waves transmitted from the first ultrasonic transmission / reception unit, A main body for measuring the flow rate of the gas based on the time until the ultrasonic wave transmitted from the second ultrasonic wave transmitting / receiving unit is received by the first ultrasonic wave transmitting / receiving unit; And an ultrasonic absorber that absorbs a pipe propagation wave through which the ultrasonic wave propagates through the pipe. The ultrasonic absorber includes uncrosslinked butyl rubber.
 かかる構成によれば、前述の配管の外周に設けられ、前述の超音波が配管を伝搬する配管伝搬波を吸収する超音波吸収体を備え、超音波吸収体が未架橋のブチルゴムを含む。ここで、未架橋のブチルゴムは、音響インピーダンスの値が配管の材料と近く、かつ、超音波の周波数帯の振動を吸収する能力(吸収性能)が高い。これにより、超音波吸収体は、配管を伝搬する過程で配管伝搬波を減衰させることができ、第1超音波送受信部および第2超音波送受信部に到達する配管伝搬波のエネルギー(大きさ、または強度)を気体伝搬波のエネルギー(大きさ、または強度)に対して十分に小さくする、すなわち、SN比を向上させることができる。 According to such a configuration, the ultrasonic absorber is provided on the outer periphery of the pipe and absorbs the pipe propagation wave through which the ultrasonic wave propagates through the pipe, and the ultrasonic absorber includes uncrosslinked butyl rubber. Here, uncrosslinked butyl rubber has an acoustic impedance value close to that of the pipe material, and has a high ability to absorb vibrations in the ultrasonic frequency band (absorption performance). Thereby, the ultrasonic absorber can attenuate the pipe propagation wave in the process of propagating the pipe, and the energy (magnitude, size) of the pipe propagation wave reaching the first ultrasonic transmission / reception unit and the second ultrasonic transmission / reception unit. Or intensity) can be made sufficiently smaller than the energy (magnitude or intensity) of the gas propagation wave, that is, the SN ratio can be improved.
 また、未架橋のブチルゴムは、粘着性および弾性を有する粘弾性体でもある。これにより、超音波吸収体は粘着しやすいので、配管の外周に密着して固定することができるとともに、超音波吸収体は弾性により変形しやすいので、様々な材料、形状、表面状態の配管に容易に設けることができる。 Further, uncrosslinked butyl rubber is also a viscoelastic body having adhesiveness and elasticity. As a result, since the ultrasonic absorber is easy to adhere, it can be fixed in close contact with the outer periphery of the pipe, and the ultrasonic absorber is easily deformed by elasticity, so it can be applied to pipes of various materials, shapes, and surface conditions. It can be easily provided.
 さらに、未架橋のブチルゴムは、超音波流量計の使用環境において、例えば、温度や湿度などについて、十分な耐久性(耐環境性)を有することが実験などで確認された。これにより、超音波吸収体は、強度や耐環境性を高めるために、硫黄などを用いた架橋(加硫)を行うことなく、未架橋のブチルゴムを利用することができる。 Furthermore, it has been confirmed through experiments and the like that uncrosslinked butyl rubber has sufficient durability (environmental resistance) with respect to, for example, temperature and humidity in the usage environment of the ultrasonic flowmeter. Thereby, the ultrasonic absorber can utilize uncrosslinked butyl rubber without performing crosslinking (vulcanization) using sulfur or the like in order to enhance strength and environmental resistance.
 好ましくは、超音波吸収体は、未架橋のブチルゴムと混合される所定の混合粒子をさらに含む。 Preferably, the ultrasonic absorber further includes predetermined mixed particles mixed with uncrosslinked butyl rubber.
 かかる構成によれば、超音波吸収体が未架橋のブチルゴムと混合される所定の混合粒子をさらに含む。これにより、所定の混合粒子として、音響インピーダンスの値が配管の材料と近くなる、および/または、超音波の周波数帯の振動を吸収する能力(吸収性能)を向上させる混合粒子を未架橋のブチルゴムと混合することで、超音波吸収体はSN比をさらに向上させることができる。 According to this configuration, the ultrasonic absorber further includes predetermined mixed particles mixed with uncrosslinked butyl rubber. As a result, unmixed butyl rubber is used as the predetermined mixed particles, which have an acoustic impedance value close to that of the piping material and / or improve the ability to absorb vibrations in the ultrasonic frequency band (absorption performance). By mixing with the ultrasonic absorber, the SN ratio can be further improved.
 好ましくは、前述の所定の混合粒子は、タングステンである。 Preferably, the predetermined mixed particles are tungsten.
 かかる構成によれば、所定の混合粒子がタングステンである。これにより、SN比をさらに向上させる超音波吸収体を容易に実現(構成)することができる。 According to such a configuration, the predetermined mixed particles are tungsten. Thereby, an ultrasonic absorber that further improves the SN ratio can be easily realized (configured).
 好ましくは、前述の所定の混合粒子は、フェライトである。 Preferably, the predetermined mixed particles are ferrite.
 かかる構成によれば、所定の混合粒子がフェライトである。これにより、SN比をさらに向上させる超音波吸収体を容易に実現(構成)することができる。 According to such a configuration, the predetermined mixed particles are ferrite. Thereby, an ultrasonic absorber that further improves the SN ratio can be easily realized (configured).
 好ましくは、前述の所定の混合粒子は、硫酸バリウムである。 Preferably, the aforementioned predetermined mixed particles are barium sulfate.
 かかる構成によれば、所定の混合粒子が硫酸バリウムである。これにより、SN比をさらに向上させる超音波吸収体を容易に実現(構成)することができる。 According to such a configuration, the predetermined mixed particles are barium sulfate. Thereby, an ultrasonic absorber that further improves the SN ratio can be easily realized (configured).
 本発明に係る超音波流量計用の超音波吸収体は、内部を気体が流れる配管における上流側の外周から送信された超音波が前述の配管における下流側の外周で受信されるまでの時間と、前述の配管における下流側の外周から送信された超音波が前述の配管における上流側の外周で受信されるまでの時間とに基づいて、前記気体の流量を測定する超音波流量計用の超音波吸収体であって、前述の配管の外周に設けられ、前述の超音波が前述の配管を伝搬する配管伝搬波を吸収し、未架橋のブチルゴムを含む。 The ultrasonic absorber for an ultrasonic flowmeter according to the present invention includes a time until the ultrasonic wave transmitted from the outer periphery on the upstream side in the pipe through which gas flows is received on the outer periphery on the downstream side in the pipe described above. The ultrasonic flowmeter for measuring the flow rate of the gas based on the time until the ultrasonic wave transmitted from the downstream outer periphery of the pipe is received by the upstream outer periphery of the pipe. A sound absorber, which is provided on the outer periphery of the pipe, absorbs the pipe propagation wave propagating through the pipe, and includes uncrosslinked butyl rubber.
 かかる構成によれば、前述の配管の外周に設けられ、前述の超音波が前述の配管を伝搬する配管伝搬波を吸収し、未架橋のブチルゴムを含む。ここで、未架橋のブチルゴムは、音響インピーダンスの値が配管の材料と近く、かつ、超音波の周波数帯の振動を吸収する能力(吸収性能)が高い。これにより、超音波吸収体は、配管を伝搬する過程で配管伝搬波を減衰させることができ、受信される配管伝搬波のエネルギー(大きさ、または強度)を気体伝搬波のエネルギー(大きさ、または強度)に対して十分に小さくする、すなわち、SN比を向上させることができる。 According to such a configuration, the ultrasonic wave is provided on the outer periphery of the above-described pipe, the above-described ultrasonic wave absorbs the pipe propagation wave propagating through the above-described pipe, and includes uncrosslinked butyl rubber. Here, uncrosslinked butyl rubber has an acoustic impedance value close to that of the pipe material, and has a high ability to absorb vibrations in the ultrasonic frequency band (absorption performance). Thereby, the ultrasonic absorber can attenuate the pipe propagation wave in the process of propagating the pipe, and the received pipe propagation wave energy (magnitude or strength) is changed to the gas propagation wave energy (magnitude, Or the strength), that is, the SN ratio can be improved.
 また、未架橋のブチルゴムは、粘着性および弾性を有する粘弾性体でもある。これにより、超音波吸収体は粘着しやすいので、配管の外周に密着して固定することができるとともに、超音波吸収体は弾性により変形しやすいので、様々な材料、形状、表面状態の配管Aに容易に設けることができる。 Further, uncrosslinked butyl rubber is also a viscoelastic body having adhesiveness and elasticity. Thereby, since the ultrasonic absorber is easy to adhere, it can be closely attached and fixed to the outer periphery of the pipe, and the ultrasonic absorber is easily deformed by elasticity, so that the pipe A having various materials, shapes, and surface states. Can be easily provided.
 さらに、未架橋のブチルゴムは、超音波流量計の使用環境において、例えば、温度や湿度などについて、十分な耐久性(耐環境性)を有することが実験などで確認された。これにより、超音波吸収体は、強度や耐環境性を高めるために、硫黄などを用いた架橋(加硫)を行うことなく、未架橋のブチルゴムを利用することができる。 Furthermore, it has been confirmed through experiments and the like that uncrosslinked butyl rubber has sufficient durability (environmental resistance) with respect to, for example, temperature and humidity in the usage environment of the ultrasonic flowmeter. Thereby, the ultrasonic absorber can utilize uncrosslinked butyl rubber without performing crosslinking (vulcanization) using sulfur or the like in order to enhance strength and environmental resistance.
 本発明の超音波流量計によれば、超音波吸収体は、配管を伝搬する過程で配管伝搬波を減衰させることができ、第1超音波送受信部および第2超音波送受信部に到達する配管伝搬波のエネルギー(大きさ、または強度)を気体伝搬波のエネルギー(大きさ、または強度)に対して十分に小さくする、すなわち、SN比を向上させることができる。したがって、超音波流量計は、気体伝搬波と配管伝搬波とを容易に識別することができ、気体の流量を正確に測定することができる。特に、配管の内部を流れる気体の圧力が低い場合に、気体伝搬波のエネルギー(大きさ、または強度)は相対的に小さくなるが、超音波吸収体は、気体の圧力が低い場合でもSN比を向上させることができるので、超音波流量計は、圧力の低い気体の流量を正確に測定することができる。 According to the ultrasonic flowmeter of the present invention, the ultrasonic absorber can attenuate the pipe propagation wave in the process of propagating the pipe, and the pipe reaches the first ultrasonic transmission / reception unit and the second ultrasonic transmission / reception unit. The energy (magnitude or intensity) of the propagating wave can be made sufficiently smaller than the energy (magnitude or intensity) of the gas propagating wave, that is, the SN ratio can be improved. Therefore, the ultrasonic flowmeter can easily distinguish between the gas propagation wave and the pipe propagation wave, and can accurately measure the gas flow rate. In particular, when the pressure of the gas flowing inside the pipe is low, the energy (magnitude or strength) of the gas propagation wave is relatively small, but the ultrasonic absorber has an SN ratio even when the gas pressure is low. Therefore, the ultrasonic flowmeter can accurately measure the flow rate of a gas having a low pressure.
 本発明の超音波流量計用の超音波吸収体によれば、超音波吸収体は、配管を伝搬する過程で配管伝搬波を減衰させることができ、受信される配管伝搬波のエネルギー(大きさ、または強度)を気体伝搬波のエネルギー(大きさ、または強度)に対して十分に小さくする、すなわち、SN比を向上させることができる。したがって、超音波流量計は、気体伝搬波と配管伝搬波とを容易に識別することができ、気体の流量を正確に測定することができる。特に、配管の内部を流れる気体の圧力が低い場合に、気体伝搬波のエネルギー(大きさ、または強度)は相対的に小さくなるが、超音波吸収体は、気体の圧力が低い場合でもSN比を向上させることができるので、超音波流量計は、圧力の低い気体の流量を正確に測定することができる。 According to the ultrasonic absorber for the ultrasonic flowmeter of the present invention, the ultrasonic absorber can attenuate the pipe propagation wave in the process of propagating the pipe, and the received pipe propagation wave energy (magnitude) , Or intensity) can be made sufficiently smaller than the energy (magnitude or intensity) of the gas propagating wave, that is, the SN ratio can be improved. Therefore, the ultrasonic flowmeter can easily distinguish between the gas propagation wave and the pipe propagation wave, and can accurately measure the gas flow rate. In particular, when the pressure of the gas flowing inside the pipe is low, the energy (magnitude or strength) of the gas propagation wave is relatively small, but the ultrasonic absorber has an SN ratio even when the gas pressure is low. Therefore, the ultrasonic flowmeter can accurately measure the flow rate of a gas having a low pressure.
超音波流量計の概略構成の一例を示す構成図である。It is a block diagram which shows an example of schematic structure of an ultrasonic flowmeter. 図1に示した第1超音波送受信部の構成を説明する拡大断面図である。It is an expanded sectional view explaining the structure of the 1st ultrasonic transmission / reception part shown in FIG. 配管の内部を流れる気体の流量の算出方法を説明するための側方断面図である。It is a sectional side view for demonstrating the calculation method of the flow volume of the gas which flows through the inside of piping. 第1超音波送受信部から送信された超音波が第2超音波送受信部に受信される様子を説明するための断面図である。It is sectional drawing for demonstrating a mode that the ultrasonic wave transmitted from the 1st ultrasonic wave transmission / reception part is received by the 2nd ultrasonic wave transmission / reception part. 図1に示した受信回路部が出力する受信信号のグラフである。3 is a graph of a reception signal output from the reception circuit unit illustrated in FIG. 1. 図1に示した受信回路部が出力する受信信号のグラフである。3 is a graph of a reception signal output from the reception circuit unit illustrated in FIG. 1. 他の超音波吸収体を備える仮想的な超音波流量計の受信信号のグラフである。It is a graph of the received signal of a virtual ultrasonic flowmeter provided with another ultrasonic absorber. 様々な材料の超音波吸収体のSN比を示す表である。It is a table | surface which shows the S / N ratio of the ultrasonic absorber of various materials. 超音波吸収体のSN比を示す表である。It is a table | surface which shows the S / N ratio of an ultrasonic absorber. 超音波流量計の概略構成の他の例を示す構成図である。It is a block diagram which shows the other example of schematic structure of an ultrasonic flowmeter.
 以下に本発明の実施の形態を説明する。以下の図面の記載において、同一または類似の部分には同一または類似の符号で表している。但し、図面は模式的なものである。したがって、具体的な寸法などは以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。なお、以下の説明において、図面の上側を「上」、下側を「下」、左側を「左」、右側を「右」という。 Embodiments of the present invention will be described below. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic. Therefore, specific dimensions and the like should be determined in light of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings. In the following description, the upper side of the drawing is referred to as “upper”, the lower side as “lower”, the left side as “left”, and the right side as “right”.
 図1ないし図10は、本発明に係る超音波流量計および超音波流量計用の超音波吸収体の一実施形態を示すためのものである。図1は、超音波流量計100の概略構成の一例を示す構成図である。図1に示すように、超音波流量計100は、配管Aの内部を流れる気体(ガス)の流量を測定するためのものである。超音波流量計100の測定対象である気体は、図1において白抜き矢印で示す方向(図1における左から右の方向)に流れている。超音波流量計100は、第1超音波送受信部20Aと、第2超音波送受信部20Bと、本体部50と、超音波吸収体10と、を備える。 1 to 10 show an embodiment of an ultrasonic flowmeter and an ultrasonic absorber for an ultrasonic flowmeter according to the present invention. FIG. 1 is a configuration diagram illustrating an example of a schematic configuration of the ultrasonic flowmeter 100. As shown in FIG. 1, the ultrasonic flowmeter 100 is for measuring the flow rate of a gas (gas) flowing inside the pipe A. The gas that is the measurement target of the ultrasonic flowmeter 100 flows in the direction indicated by the white arrow in FIG. 1 (the direction from left to right in FIG. 1). The ultrasonic flowmeter 100 includes a first ultrasonic transmission / reception unit 20A, a second ultrasonic transmission / reception unit 20B, a main body unit 50, and an ultrasonic absorber 10.
 第1超音波送受信部20Aおよび第2超音波送受信部20Bは、それぞれ配管Aの外周に設けられる。図1に示す例では、第1超音波送受信部20Aが配管Aにおける上流側に、第2超音波送受信部20Bは配管Aにおける下流側に、それぞれ配置される。第1超音波送受信部20Aおよび第2超音波送受信部20Bは、それぞれ超音波の送信および受信を行い、相互に超音波を送受信する。すなわち、第1超音波送受信部20Aが送信した超音波は、第2超音波送受信部20Bによって受信され、第2超音波送受信部20Bが送信した超音波は、第1超音波送受信部20Aによって受信される。 The first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B are provided on the outer periphery of the pipe A, respectively. In the example illustrated in FIG. 1, the first ultrasonic transmission / reception unit 20 </ b> A is disposed on the upstream side in the pipe A, and the second ultrasonic transmission / reception unit 20 </ b> B is disposed on the downstream side in the pipe A. The first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B transmit and receive ultrasonic waves, and transmit and receive ultrasonic waves to and from each other. That is, the ultrasonic wave transmitted by the first ultrasonic transmission / reception unit 20A is received by the second ultrasonic transmission / reception unit 20B, and the ultrasonic wave transmitted by the second ultrasonic transmission / reception unit 20B is received by the first ultrasonic transmission / reception unit 20A. Is done.
 図2は、図1に示した第1超音波送受信部20Aの構成を説明する拡大断面図である。図2に示すように、第1超音波送受信部20Aは、くさび21と、圧電素子22と、を備える。 FIG. 2 is an enlarged cross-sectional view for explaining the configuration of the first ultrasonic transmission / reception unit 20A shown in FIG. As shown in FIG. 2, the first ultrasonic transmission / reception unit 20 </ b> A includes a wedge 21 and a piezoelectric element 22.
 くさび21は、配管Aに対して所定の鋭角で超音波を入射させるためのものであり、樹脂製または金属製の部材である。くさび21は、底面21aが配管Aの外周面に接触するように設置される。また、くさび21は、底面21aに対して所定の角度を有する斜面21bが形成されている。斜面21bには、圧電素子22が設置される。 The wedge 21 is for allowing ultrasonic waves to enter the pipe A at a predetermined acute angle, and is a resin or metal member. The wedge 21 is installed such that the bottom surface 21 a contacts the outer peripheral surface of the pipe A. Further, the wedge 21 is formed with a slope 21b having a predetermined angle with respect to the bottom surface 21a. A piezoelectric element 22 is installed on the slope 21b.
 本実施形態では、底面21aが配管Aの外周面に接触する例を示したが、これに限定されない。底面21aと配管Aの外周面との間に接触媒質(カプラント)を介在させてもよい。 In the present embodiment, an example in which the bottom surface 21a is in contact with the outer peripheral surface of the pipe A is shown, but the present invention is not limited to this. A contact medium (coplant) may be interposed between the bottom surface 21a and the outer peripheral surface of the pipe A.
 圧電素子22は、超音波を送信するとともに、超音波を受信するためのものである。圧電素子22には、リード線(図示省略)が電気的に接続されている。リード線を介して所定周波数の電気信号が印加されと、圧電素子22は、当該所定周波数で振動して超音波を発する。これにより、超音波が送信される。図2において破線の矢印で示すように、圧電素子22から送信された超音波は、斜面21bの角度でくさび21を伝搬する。くさび21を伝搬する超音波は、くさび21と配管Aの外壁との界面で屈折して入射角が変化し、配管Aの内壁と配管Aの内部を流れる気体との界面でさら屈折して入射角が変化し、当該気体を伝搬する。界面おける屈折は、スネルの法則に従うので、配管Aを伝搬するときの超音波の速度、気体を伝搬するときの超音波の速度に基づいて、斜面21bの角度をあらかじめ設定することにより、超音波を所望の入射角で気体に入射させ、伝搬させることができる。 The piezoelectric element 22 is for transmitting ultrasonic waves and receiving ultrasonic waves. A lead wire (not shown) is electrically connected to the piezoelectric element 22. When an electrical signal with a predetermined frequency is applied via the lead wire, the piezoelectric element 22 vibrates at the predetermined frequency and emits an ultrasonic wave. Thereby, an ultrasonic wave is transmitted. As indicated by the dashed arrows in FIG. 2, the ultrasonic wave transmitted from the piezoelectric element 22 propagates through the wedge 21 at an angle of the inclined surface 21b. The ultrasonic wave propagating through the wedge 21 is refracted at the interface between the wedge 21 and the outer wall of the pipe A to change the incident angle, and is further refracted and incident at the interface between the inner wall of the pipe A and the gas flowing in the pipe A. The angle changes and propagates through the gas. Since the refraction at the interface follows Snell's law, the angle of the inclined surface 21b is set in advance based on the velocity of the ultrasonic wave when propagating through the pipe A and the velocity of the ultrasonic wave when propagating through the gas. Can be incident on the gas at a desired incident angle and propagated.
 一方、圧電素子22に超音波が到達すると、圧電素子22は、当該超音波の周波数で振動して電気信号を発生させる。これにより、超音波が受信される。圧電素子22に発生した電気信号は、リード線を介して後述する本体部50で検出される。 On the other hand, when the ultrasonic wave reaches the piezoelectric element 22, the piezoelectric element 22 vibrates at the frequency of the ultrasonic wave to generate an electric signal. Thereby, an ultrasonic wave is received. An electrical signal generated in the piezoelectric element 22 is detected by a main body 50 described later via a lead wire.
 なお、第2超音波送受信部20Bは、第1超音波送受信部20Aと同様の構成を備える。すなわち、第2超音波送受信部20Bも、くさび21と、圧電素子22と、を備える。よって、前述した第1超音波送受信部20Aの説明をもって、第2超音波送受信部20Bの詳細な説明を省略する。 The second ultrasonic transmission / reception unit 20B has the same configuration as the first ultrasonic transmission / reception unit 20A. That is, the second ultrasonic transmission / reception unit 20 </ b> B also includes a wedge 21 and a piezoelectric element 22. Therefore, the detailed description of the second ultrasonic transmission / reception unit 20B is omitted from the description of the first ultrasonic transmission / reception unit 20A.
 図1に示す本体部50は、超音波が配管Aの内部を流れる気体を伝搬する時間に基づいて当該気体の流量を測定するためのものである。本体部50は、切替部51と、送信回路部52と、受信回路部53と、計時部54と、演算制御部55と、入出力部56と、を備える。 The main body 50 shown in FIG. 1 is for measuring the flow rate of the gas based on the time during which the ultrasonic wave propagates through the gas flowing in the pipe A. The main body unit 50 includes a switching unit 51, a transmission circuit unit 52, a reception circuit unit 53, a timer unit 54, a calculation control unit 55, and an input / output unit 56.
 切替部51は、超音波の送信および受信を切り替えるためのものである。切替部51は、第1超音波送受信部20Aおよび第2超音波送受信部20Bに接続されている。切替部51は、例えば、切替スイッチなどを含んで構成することが可能である。演算切替部51は、演算制御部55から入力される制御信号に基づいて切替スイッチを切り替え、第1超音波送受信部20Aおよび第2超音波送受信部20Bのうちの一方を送信回路部52に接続させるとともに、第1超音波送受信部20Aおよび第2超音波送受信部20Bのうちの他方を受信回路部53と接続させる。これにより、第1超音波送受信部20Aおよび第2超音波送受信部20Bのうちの一方が超音波を送信し、第1超音波送受信部20Aおよび第2超音波送受信部20Bのうちの他方が当該超音波を受信することができる。 The switching unit 51 is for switching between transmission and reception of ultrasonic waves. The switching unit 51 is connected to the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B. The switching unit 51 can be configured to include, for example, a changeover switch. The calculation switching unit 51 switches the changeover switch based on a control signal input from the calculation control unit 55, and connects one of the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B to the transmission circuit unit 52. In addition, the other of the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B is connected to the reception circuit unit 53. Thereby, one of the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B transmits an ultrasonic wave, and the other of the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B Ultrasound can be received.
 送信回路部52は、第1超音波送受信部20Aおよび第2超音波送受信部20Bに超音波を送信させるためのものである。送信回路部52は、例えば、所定周波数の矩形波を生成する発振回路、第1超音波送受信部20Aおよび第2超音波送受信部20Bを駆動する駆動回路などを含んで構成することが可能である。送信回路部52は、演算制御部55から入力される制御信号に基づいて、駆動回路が発振回路により生成された矩形波を駆動信号として第1超音波送受信部20Aおよび第2超音波送受信部20Bのうちの一方の圧電素子22に出力する。これにより、第1超音波送受信部20Aおよび第2超音波送受信部20Bの一方の圧電素子22が駆動され、当該圧電素子22が超音波を送信する。 The transmission circuit unit 52 is for causing the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B to transmit ultrasonic waves. The transmission circuit unit 52 can be configured to include, for example, an oscillation circuit that generates a rectangular wave with a predetermined frequency, a drive circuit that drives the first ultrasonic transmission / reception unit 20A, and the second ultrasonic transmission / reception unit 20B. . In the transmission circuit unit 52, based on the control signal input from the arithmetic control unit 55, the first ultrasonic transmission / reception unit 20B and the second ultrasonic transmission / reception unit 20B using the rectangular wave generated by the oscillation circuit as a drive signal. Is output to one of the piezoelectric elements 22. Thereby, one piezoelectric element 22 of the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B is driven, and the piezoelectric element 22 transmits ultrasonic waves.
 受信回路部53は、第1超音波送受信部20Aおよび第2超音波送受信部20Bが受信した超音波を検出するためのものである。受信回路部53は、例えば、信号を所定の利得(ゲイン)で増幅する増幅回路、所定周波数の電気信号を取り出すためのフィルタ回路などを含んで構成することが可能である。受信回路部53は、演算制御部55から入力される制御信号に基づいて、第1超音波送受信部20Aおよび第2超音波送受信部20Bのうちの一方の圧電素子22から出力された電気信号を増幅し、フィルタリングして受信信号に変換する。受信回路部53は、変換した受信信号を演算制御部55に出力する。 The receiving circuit unit 53 is for detecting the ultrasonic waves received by the first ultrasonic transmitting / receiving unit 20A and the second ultrasonic transmitting / receiving unit 20B. The receiving circuit unit 53 can include, for example, an amplifier circuit that amplifies a signal with a predetermined gain (gain), a filter circuit that extracts an electric signal with a predetermined frequency, and the like. Based on the control signal input from the arithmetic control unit 55, the reception circuit unit 53 receives the electrical signal output from one piezoelectric element 22 of the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B. Amplify, filter and convert to received signal. The reception circuit unit 53 outputs the converted reception signal to the calculation control unit 55.
 計時部54は、所定の期間における時間を計測するためのものである。計時部54は、例えば、発振回路などで構成することが可能である。なお、発振回路は、送信回路部52と共有するようにしてもよい。計時部54は、演算制御部55から入力されるスタート信号およびストップ信号に基づいて、発振回路の基準波の数をカウントして時間を計測する。計時部54は、計測した時間を演算制御部55に出力する。 The timer 54 is for measuring time in a predetermined period. The timer unit 54 can be constituted by, for example, an oscillation circuit. Note that the oscillation circuit may be shared with the transmission circuit unit 52. The timer 54 measures the time by counting the number of reference waves of the oscillation circuit based on the start signal and stop signal input from the arithmetic control unit 55. The time measuring unit 54 outputs the measured time to the calculation control unit 55.
 演算制御部55は、配管Aの内部を流れる気体の流量を演算により算出するためのものである。演算制御部55は、例えば、CPU、ROMやRAMなどのメモリ、入出力インターフェースなどで構成することが可能である。また、演算制御部55は、切替部51、送信回路部52、受信回路部53、計時部54、および、入出力部56などの本体部50の各部を制御する。なお、演算制御部55が気体の流量を算出する方法については、後述する。 The calculation control unit 55 is for calculating the flow rate of the gas flowing inside the pipe A by calculation. The arithmetic control unit 55 can be configured by, for example, a CPU, a memory such as a ROM or a RAM, an input / output interface, or the like. The arithmetic control unit 55 controls each part of the main body unit 50 such as the switching unit 51, the transmission circuit unit 52, the reception circuit unit 53, the time measuring unit 54, and the input / output unit 56. Note that a method by which the arithmetic control unit 55 calculates the gas flow rate will be described later.
 入出力部56は、ユーザ(利用者)が情報を入力し、かつ、ユーザに対して情報を出力するためのものである。入出力部56は、例えば、操作ボタンなどの入力手段、表示ディスプレイなどの出力手段などで構成することが可能である。ユーザが操作ボタンなどを操作することにより、設定などの各種の情報が入出力部56を介して演算制御部55に入力される。また、入出力部56は、演算制御部55により算出された気体の流量、気体の速度、所定期間における積算流量などの情報を、表示ディスプレイなどに表示して出力する。 The input / output unit 56 is for a user (user) to input information and to output information to the user. The input / output unit 56 can be configured by, for example, input means such as operation buttons, output means such as a display display, and the like. When the user operates an operation button or the like, various types of information such as settings are input to the arithmetic control unit 55 via the input / output unit 56. The input / output unit 56 displays and outputs information such as the gas flow rate, the gas velocity, and the integrated flow rate during a predetermined period calculated by the calculation control unit 55 on a display display or the like.
 図3は、配管Aの内部を流れる気体の流量の算出方法を説明するための側方断面図である。図3に示すように、配管Aの内部を所定の方向(図3において左側から右側への方向)に流れる気体の速度(以下、流速という)をV[m/s]、当該気体中を超音波が伝搬するときの速度(以下、音速という)をC[m/s]とし、当該気体を伝搬する超音波の伝搬経路長をL[m]とし、配管Aの管軸と超音波の伝搬経路とのなす角度をθとする。ここで、配管Aの上流側(図3において左側)に設置された第1超音波送受信部20Aが超音波を送信し、配管Aの下流側(図3において右側)に設置された第2超音波送受信部20Bが当該超音波を受信するときに、当該超音波が配管Aの内部の気体を伝搬する伝搬時間t12は、以下の式(1)で表される。
   t12=L/(C+Vcosθ) …(1)
FIG. 3 is a side sectional view for explaining a method of calculating the flow rate of the gas flowing inside the pipe A. As shown in FIG. 3, the velocity (hereinafter referred to as the flow velocity) of the gas flowing in a predetermined direction (the direction from the left side to the right side in FIG. 3) inside the pipe A is V [m / s], and exceeds the inside of the gas. The velocity at which the sound wave propagates (hereinafter referred to as the sound velocity) is C [m / s], the propagation path length of the ultrasonic wave propagating through the gas is L [m], and the propagation axis of the pipe A and the ultrasonic wave of the pipe A Let θ be the angle formed with the path. Here, the first ultrasonic transmission / reception unit 20A installed on the upstream side (left side in FIG. 3) of the pipe A transmits the ultrasonic wave, and the second supersonic wave installed on the downstream side (right side in FIG. 3) of the pipe A. when the wave transmission and reception unit 20B receives the ultrasonic wave, the propagation time t 12 to the ultrasonic wave propagates through the gas inside the pipe a is represented by the following formula (1).
t 12 = L / (C + V cos θ) (1)
 一方、配管Aの下流側に設置された第2超音波送受信部20Bが超音波を送信し、配管Aの上流側に設置された第1超音波送受信部20Aが当該超音波を受信するときに、当該超音波が配管Aの内部の気体を伝搬する伝搬時間t21は、以下の式(2)で表される。
   t21=L/(C-Vcosθ) …(2)
On the other hand, when the 2nd ultrasonic transmission / reception part 20B installed in the downstream of the piping A transmits an ultrasonic wave, the 1st ultrasonic transmission / reception part 20A installed in the upstream of the piping A receives the said ultrasonic wave. , the propagation time t 21 to the ultrasonic wave propagates through the gas inside the pipe a is represented by the following formula (2).
t 21 = L / (C−V cos θ) (2)
 式(1)および式(2)から、気体の流速Vは、以下の式(3)で表される。
   V=(L/2cosθ)・{(1/t12)-(1/t21)} …(3)
From the equations (1) and (2), the gas flow velocity V is expressed by the following equation (3).
V = (L / 2 cos θ) · {(1 / t 12 ) − (1 / t 21 )} (3)
 式(3)において、伝搬経路長Lおよび角度θは、流量の測定前に既知の値であるから、流速Vは、伝搬時間t12および伝搬時間t21を計測することで、式(3)から算出することができる。 In the formula (3), propagation path length L and the angle theta, since a known value before measurement of the flow rate, the flow velocity V, by measuring the propagation time t 12 and the propagation time t 21, the formula (3) It can be calculated from
 そして、配管Aの内部を流れる気体の流量Q[m/s]は、流速V[m/s]と、補数係数Kおよび配管Aの断面積S[m]と、を用いて以下の式(4)で表される。
   Q=KVS …(4)
The flow rate Q [m 3 / s] of the gas flowing inside the pipe A is expressed as follows using the flow velocity V [m / s], the complement coefficient K and the cross-sectional area S [m 2 ] of the pipe A: It is represented by Formula (4).
Q = KVS (4)
 したがって、演算制御部55は、伝搬経路長L、角度θ、補数係数K、および、配管Aの断面積Sを、あらかじめメモリなどに記憶しておく。そして、演算制御部55は、受信回路部53から入力される受信信号に基づいて、計時54により伝搬時間t12および伝搬時間t21を計測することで、式(3)および式(4)から、配管Aの内部を流れる気体の流量Qを算出することができる。 Therefore, the arithmetic control unit 55 stores the propagation path length L, the angle θ, the complement coefficient K, and the cross-sectional area S of the pipe A in a memory or the like in advance. Then, the arithmetic control unit 55 based on the reception signal input from the reception circuit unit 53, by measuring the propagation time t 12 and the propagation time t 21 by the timer 54, from the equation (3) and (4) The flow rate Q of the gas flowing inside the pipe A can be calculated.
 本実施計形態では、図3および式(1)ないし式(4)を用いて、伝搬時間逆数差法により気体の流量を算出する例を示したが、これに限定されない。演算制御部55は、他の方法、例えば、周知の伝搬時間差法により気体の流量を算出するようにしてもよい。 In the present embodiment, the example in which the gas flow rate is calculated by the reciprocal propagation time method using FIG. 3 and equations (1) to (4) is shown, but the present invention is not limited to this. The arithmetic control unit 55 may calculate the gas flow rate by another method, for example, a known propagation time difference method.
 また、本実施計形態では、第1超音波送受信部20Aおよび第2超音波送受信部20Aの一方が送信した超音波が、配管Aの内部の気体を伝搬し、第1超音波送受信部20Aおよび第2超音波送受信部20Aの他方で直接受信する例を示したが、これに限定されない。配管Aの内部の気体を伝搬する超音波は、配管Aの内壁において反射し得る。よって、第1超音波送受信部20Aおよび第2超音波送受信部20Aの他方は、配管Aの内壁で2n回(nは正の整数)反射した超音波を受信してもよい。 In the present embodiment, the ultrasonic wave transmitted by one of the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20A propagates the gas inside the pipe A, and the first ultrasonic transmission / reception unit 20A and Although the example directly received by the other of the second ultrasonic transmission / reception unit 20A has been shown, the present invention is not limited to this. The ultrasonic wave propagating through the gas inside the pipe A can be reflected on the inner wall of the pipe A. Therefore, the other of the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20A may receive ultrasonic waves reflected 2n times (n is a positive integer) on the inner wall of the pipe A.
 図1に示す超音波吸収体10は、配管Aの外周面に設けられる。具体的には、超音波吸収体10は、配管Aの外周面において、少なくとも第1超音波送受信部20Aと第2超音波送受信部20Bとの間の領域を覆うように配置され、配管Aの外周面に密着して固定される。第1超音波送受信部20Aおよび第2超音波送受信部20Bが配管Aの外周面に直接接触するように、超音波吸収体10のうちの第1超音波送受信部20Aおよび第2超音波送受信部20Bが配置される部分は、超音波吸収体10の一部が枠状に切り取られる。また、超音波吸収体10は、主な材料として、架橋していない、すなわち、未架橋のブチルゴム(IIR、イソブチレンとイソプレンとの共重合体)を含んでいる。 The ultrasonic absorber 10 shown in FIG. 1 is provided on the outer peripheral surface of the pipe A. Specifically, the ultrasonic absorber 10 is disposed on the outer peripheral surface of the pipe A so as to cover at least a region between the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B. Closely fixed to the outer peripheral surface. First ultrasonic transmission / reception unit 20A and second ultrasonic transmission / reception unit of ultrasonic absorber 10 such that first ultrasonic transmission / reception unit 20A and second ultrasonic transmission / reception unit 20B are in direct contact with the outer peripheral surface of pipe A. In the portion where 20B is arranged, a part of the ultrasonic absorber 10 is cut into a frame shape. The ultrasonic absorber 10 includes, as a main material, uncrosslinked, that is, uncrosslinked butyl rubber (IIR, a copolymer of isobutylene and isoprene).
 図4は、第1超音波送受信部20Aから送信された超音波が第2超音波送受信部20Bに受信される様子を説明するための断面図である。図4に示すように、例えば、第1超音波送受信部20Aから送信された超音波は、配管Aを通過(透過)して配管Aの内部の気体を伝搬する気体伝搬波Wと、配管Aの管壁で反射して配管Aを伝搬する配管伝搬波Wとに分けられる。気体伝搬波Wは、再び配管Aを通過して第2超音波送受信部20Bに到達する。一方、配管伝搬波Wも、配管Aの内壁および外壁を複数回反射しながら第2超音波送受信部20Bに到達し得る。図示およびその詳細な説明を省略するが、第1超音波送受信部20Aから送信された超音波と同様に、第2超音波送受信部20Aから送信された超音波も、気体伝搬波Wと配管伝搬波Wとに分けられ、気体伝搬波Wは配管Aを通過して第1超音波送受信部20Aに到達するとともに、配管伝搬波Wも配管Aの内壁および外壁を複数回反射しながら第1超音波送受信部20Aに到達し得る。 FIG. 4 is a cross-sectional view for explaining how the ultrasonic wave transmitted from the first ultrasonic wave transmitting / receiving unit 20A is received by the second ultrasonic wave transmitting / receiving unit 20B. As shown in FIG. 4, for example, ultrasonic waves transmitted from the first ultrasonic transmitter-receiver 20A includes a gas propagating wave W 1 which passes through the pipe A (transmitted) to propagating inside of the gas pipe A, pipe It is divided into a pipe propagation wave W 2 that is reflected by the pipe wall of A and propagates through the pipe A. Gas propagating wave W 1 reaches the second ultrasonic transmitter-receiver 20B through the pipe A again. On the other hand, the pipe propagating wave W 2 may also reach the second ultrasonic transmitter-receiver 20B while being reflected several times the inner and outer walls of the pipe A. Although not shown and a detailed description thereof, like the ultrasonic wave transmitted from the first ultrasonic transmitter-receiver 20A, the ultrasonic waves transmitted from the second ultrasonic transmitter-receiver 20A is also a gas propagating wave W 1 pipe The propagation wave W 2 is divided into the propagation wave W 2 , the gas propagation wave W 1 passes through the pipe A and reaches the first ultrasonic transmission / reception unit 20 A, and the pipe propagation wave W 2 also reflects the inner wall and the outer wall of the pipe A multiple times. However, it can reach the first ultrasonic transmission / reception unit 20A.
 一般に、一方の媒質を伝搬する音波が、他方の媒質との界面で透過(通過)するか、反射するかは、一方の媒質と他方の媒質との音響インピーダンスの差によって決まる。すなわち、音響インピーダンスの差が小さいほど、一方の配質を伝搬する音波は他方の媒質に透過し、音響インピーダンスの差が大きいほど、一方の配質を伝搬する音波は他方の媒質との界面で反射する傾向がある。 Generally, whether a sound wave propagating through one medium is transmitted (passed) or reflected at an interface with the other medium is determined by a difference in acoustic impedance between the one medium and the other medium. In other words, the smaller the difference in acoustic impedance, the more the sound wave propagating in one configuration is transmitted to the other medium, and the greater the difference in acoustic impedance, the more acoustic wave propagating in one configuration is at the interface with the other medium. There is a tendency to reflect.
 配管Aの内部を流れる流体が、例えば、液体である場合、液体の音響インピーダンスと、配管の材料、例えば、ステンレス(SUS)などの金属や合成樹脂などの高分子化合物の音響インピーダンスとの差が相対的に小さいので、超音波は、配管Aを透過(通過)して内部を流れる液体を伝搬する割合(透過率)が多く(大きく)、つまり、配管Aの管壁で反射する割合(反射率)が少なく(小さく)、配管伝搬波Wのエネルギー(大きさ、または強度)は小さい。これに対し、気体の音響インピーダンスは、液体の音響インピーダンスと比較して小さい。そのため、配管Aの内部を流れる流体が気体である場合、気体の音響インピーダンスと、配管Aの音響インピーダンスとの差が相対的に大きくなるので、超音波は、配管Aを透過(通過)して内部を流れる液体を伝搬する割合(透過率)が少なく(小さく)、つまり、配管Aの管壁で反射する割合(反射率)が多く(大きく)、配管伝搬波Wのエネルギー(大きさ、または強度)は大きい。 When the fluid flowing in the pipe A is, for example, a liquid, the difference between the acoustic impedance of the liquid and the acoustic impedance of the pipe material, for example, a metal such as stainless steel (SUS) or a polymer compound such as synthetic resin is Since the ultrasonic wave is relatively small, the ultrasonic wave transmits (passes) through the pipe A and propagates (flows) through the liquid flowing in the inside (transmission) is large (large), that is, the ratio of reflection on the pipe wall of the pipe A (reflection). rate) is small (small), the piping propagating wave W 2 energy (size or strength) is small. On the other hand, the acoustic impedance of gas is small compared to the acoustic impedance of liquid. Therefore, when the fluid flowing inside the pipe A is a gas, the difference between the acoustic impedance of the gas and the acoustic impedance of the pipe A is relatively large, so that the ultrasonic wave transmits (passes) the pipe A. proportion of propagating liquid flowing inside (transmittance) less (small), i.e., ratio of reflected a tube wall of the pipe a (reflectance) many (large), the piping propagating wave W 2 energy (size, (Or strength) is large.
 ここで、超音波の気体伝搬波Wを受信して伝搬時間を計測し、当該伝搬時間に基づいて流量を測定する超音波流量計において、気体伝搬波Wは検出すべき信号(新合成分)であり、配管伝搬波Wは信号に対するノイズ(ノイズ成分)である。そのため、気体伝搬波Wのエネルギー(大きさ、または強度)に対して配管伝搬波Wのエネルギー(大きさ、または強度)が十分に小さくないと、気体伝搬波Wと配管伝搬波Wとの識別が困難になる。その結果、気体伝搬波Wと配管伝搬波Wとを取り違えて伝搬時間の計測を誤り、誤った伝搬時間に基づいて気体の流量を測定してしまう可能性がある。 Here, in the ultrasonic flowmeter that receives the ultrasonic gas propagation wave W 1 and measures the propagation time and measures the flow rate based on the propagation time, the gas propagation wave W 1 is a signal to be detected (new synthesis). a minute), piping propagating wave W 2 is the noise to the signal (noise component). Therefore, the gas propagating wave W 1 of the energy (size or strength) pipe propagating wave W 2 of the energy (size or strength) with respect to the is not sufficiently small, the gas propagation wave W 1 and the pipe propagating wave W 2 becomes difficult to distinguish. As a result, there is a possibility that the gas propagation wave W 1 and the pipe propagation wave W 2 will be mistaken for the measurement of the propagation time and the gas flow rate will be measured based on the erroneous propagation time.
 超音波吸収体10は、配管Aの外周に設けられており、配管Aを伝搬する配管伝搬波Wを吸収する。また、超音波吸収10は、前述したように、未架橋のブチルゴムを含んでいる。ここで、未架橋のブチルゴムは、音響インピーダンスの値が配管Aの材料と近く、かつ、超音波の周波数帯の振動を吸収する能力(吸収性能)が高い。これにより、超音波吸収体10は、配管Aを伝搬する過程で配管伝搬波Wを減衰させることができ、第1超音波送受信部20Aおよび第2超音波送受信部20Bに到達する、つまり、受信される配管伝搬波Wのエネルギー(大きさ、または強度)を気体伝搬波Wのエネルギー(大きさ、または強度)に対して十分に小さくする、すなわち、SN比を向上させることができる。 Ultrasonic absorber 10 is provided on the outer circumference of the pipe A, it absorbs pipe propagating wave W 2 propagating through pipe A. Further, the ultrasonic absorption 10 includes uncrosslinked butyl rubber as described above. Here, uncrosslinked butyl rubber has an acoustic impedance value close to that of the material of the pipe A, and has a high ability to absorb vibrations in the ultrasonic frequency band (absorption performance). Thereby, the ultrasonic absorber 10 can attenuate the pipe propagating wave W 2 in the process of propagating through the pipe A, reaches the first ultrasonic transmitter-receiver 20A and the second ultrasonic transmitter-receiver 20B, that is, sufficiently small pipe propagating wave W 2 of the energy (size or strength) received a gas propagating wave W 1 of the energy (size or strength) with respect to, i.e., it is possible to improve the SN ratio .
 また、未架橋のブチルゴムは、粘着性および弾性を有する粘弾性体でもある。これにより、超音波吸収体10は粘着しやすいので、配管Aの外周に密着して固定することができるとともに、超音波吸収体10は弾性により変形しやすいので、様々な材料、形状、表面状態の配管Aに容易に設けることができる。 Further, uncrosslinked butyl rubber is also a viscoelastic body having adhesiveness and elasticity. Thereby, since the ultrasonic absorber 10 is easy to adhere, it can be adhered and fixed to the outer periphery of the pipe A, and the ultrasonic absorber 10 is easily deformed by elasticity, so various materials, shapes, and surface states The pipe A can be easily provided.
 さらに、未架橋のブチルゴムは、超音波流量計100の使用環境において、例えば、温度や湿度などについて、十分な耐久性(耐環境性)を有することが実験などで確認された。これにより、超音波吸収体10は、強度や耐環境性を高めるために、硫黄などを用いた架橋(加硫)を行うことなく、未架橋のブチルゴムを利用することができる。 Furthermore, it has been confirmed through experiments and the like that uncrosslinked butyl rubber has sufficient durability (environmental resistance) with respect to, for example, temperature and humidity in the environment where the ultrasonic flowmeter 100 is used. Thereby, the ultrasonic absorber 10 can utilize uncrosslinked butyl rubber without performing crosslinking (vulcanization) using sulfur or the like in order to enhance strength and environmental resistance.
 一般に、超音波は、20[kHz]以上の周波数帯の音波を意味する。よって、第1超音波送受信部20Aおよび第2超音波送受信部20Bが送信する超音波は、20[kHz]以上の周波数帯の音波である。好ましくは、第1超音波送受信部20Aおよび第2超音波送受信部20Bが送信する超音波は、100[kHz]以上であって2.0[MHz]以下の周波数帯の超音波である。より好ましくは、第1超音波送受信部20Aおよび第2超音波送受信部20Bが送信する超音波は、0.5[MHz]以上であって1.0[MHz]以下の周波数帯の超音波である。なお、いずれの場合であっても、第1超音波送受信部20Aが送信する超音波と第2超音波送受信部20Bが送信する超音波とは、同一周波数であってもよいし、異なる周波数であってもよい。 Generally, ultrasonic waves mean sound waves in a frequency band of 20 [kHz] or higher. Therefore, the ultrasonic waves transmitted by the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B are sound waves in a frequency band of 20 [kHz] or higher. Preferably, the ultrasonic waves transmitted by the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B are ultrasonic waves in a frequency band of 100 [kHz] or more and 2.0 [MHz] or less. More preferably, the ultrasonic waves transmitted by the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B are ultrasonic waves in a frequency band of 0.5 [MHz] or more and 1.0 [MHz] or less. is there. In any case, the ultrasonic wave transmitted by the first ultrasonic transmission / reception unit 20A and the ultrasonic wave transmitted by the second ultrasonic transmission / reception unit 20B may be the same frequency or at different frequencies. There may be.
 図5および図6は、図1に示した受信回路部53が出力する受信信号のグラフである。図5および図6において、横軸は時間であり、縦軸は振幅(電圧)である。また、図5および図6において、上段は配管Aの内部を流れる気体の圧力が0.5[MPa]のグラフであり、下段は配管Aの内部を流れる気体の圧力が0.3[MPa]のグラフである。さらに、図5は第1超音波送受信部20Aおよび第2超音波送受信部20Bが送信する超音波の周波数が0.5[MHz]のグラフであり、図6は第1超音波送受信部20Aおよび第2超音波送受信部20Bが送信する超音波の周波数が1.0[MHz]のグラフである。図5の上段のグラフに示すように、気体の圧力が0.5[MPa]であって、第1超音波送受信部20Aおよび第2超音波送受信部20Bが送信する超音波の周波数が0.5[MHz]である場合に、超音波吸収体10は配管伝搬波Wを減衰させることができ、演算制御部55はグラフの中央付近に発生する相対的に振幅の大きい気体伝搬波Wを識別して検出することができる。また、図6の上段のグラフに示すように、気体の圧力が0.5[MPa]であって第1超音波送受信部20Aおよび第2超音波送受信部20Bが送信する超音波の周波数が1.0[MHz]である場合も同様に、超音波吸収体10は配管伝搬波Wを減衰させることができ、演算制御部55はグラフの中央付近に発生する相対的に振幅の大きい気体伝搬波Wを識別して検出することができる。 5 and 6 are graphs of received signals output from the receiving circuit unit 53 shown in FIG. 5 and 6, the horizontal axis represents time, and the vertical axis represents amplitude (voltage). 5 and 6, the upper graph is a graph in which the pressure of the gas flowing inside the pipe A is 0.5 [MPa], and the lower graph is the pressure of the gas flowing in the pipe A within 0.3 [MPa]. It is a graph of. Further, FIG. 5 is a graph in which the frequency of ultrasonic waves transmitted by the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B is 0.5 [MHz], and FIG. 6 shows the first ultrasonic transmission / reception unit 20A and It is a graph whose frequency of the ultrasonic wave which the 2nd ultrasonic transmission / reception part 20B transmits is 1.0 [MHz]. As shown in the upper graph of FIG. 5, the gas pressure is 0.5 [MPa], and the frequency of the ultrasonic waves transmitted by the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B is 0. When the frequency is 5 [MHz], the ultrasonic absorber 10 can attenuate the pipe propagation wave W 2 , and the arithmetic control unit 55 can generate the relatively large amplitude gas propagation wave W 1 generated near the center of the graph. Can be identified and detected. Moreover, as shown in the upper graph of FIG. 6, the pressure of the gas is 0.5 [MPa], and the frequency of the ultrasonic waves transmitted by the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B is 1. .0 similarly be a [MHz], ultrasound absorber 10 is able to attenuate the pipe propagating wave W 2, the calculation control unit 55 is larger gas propagation of relatively amplitude generated in the vicinity of the center of the graph it can be detected to identify a wave W 1.
 配管Aの内部を流れる気体の圧力が低い場合、例えば、気体の圧力が0.5[MPa]より低い場合、気体の音響インピーダンスは圧力に比例するので、配管Aの音響インピーダンスとの差はさらに大きくなり、気体伝搬波Wのエネルギー(大きさ、または強度)はさらに小さくなる。しかし、配管Aの内部を流れる気体の圧力が低い場合、例えば、気体の圧力が0.3[MPa]の場合であっても、図5および図6の下段のグラフに示すように、超音波吸収体10は配管伝搬波Wを減衰させることができ、演算制御部55はグラフの中央付近に発生する相対的に振幅の大きい気体伝搬波Wを識別して検出することができる。このように、超音波吸収体10は、気体伝搬波Wのエネルギー(大きさ、または強度)が小さい場合であっても、配管伝搬波Wを十分に減衰させることができ、SN比を向上させることができる。 When the pressure of the gas flowing inside the pipe A is low, for example, when the pressure of the gas is lower than 0.5 [MPa], the acoustic impedance of the gas is proportional to the pressure. become large, gas propagating wave W 1 of the energy (size or strength) is further reduced. However, when the pressure of the gas flowing through the pipe A is low, for example, even when the pressure of the gas is 0.3 [MPa], as shown in the lower graphs of FIGS. the absorbent body 10 can be attenuated piping propagating wave W 2, the calculation control unit 55 may be detected to identify the gas propagation wave W 1 larger relatively amplitude generated in the vicinity of the center of the graph. Thus, ultrasound absorber 10, even if gas propagating wave W 1 of the energy (size or strength) is small, it is possible to sufficiently attenuate the pipe propagating wave W 2, the SN ratio Can be improved.
 図7は、他の超音波吸収体を備える仮想的な超音波流量計の受信信号のグラフである。なお、仮想的な超音波流量計は、超音波吸収体10とは異なる超音波吸収体を備える点を除き、超音波流量計100と同様とする。図7において、横軸は時間であり、縦軸は振幅(電圧)である。また、図7において、超音波の周波数は0.5[MHz]であり、上段は配管の内部を流れる気体の圧力が0.5[MPa]のグラフであり、下段は配管の内部を流れる気体の圧力が0.3[MPa]のグラフである。主な材料としてアスファルトを含む他の超音波吸収体を備えた仮想的な超音波流量計は、図5に示した本実施形態の超音波流量計100のグラフと比較して、図7に示すように、超音波吸収体が配管伝搬波Wを十分に減衰させることができず、配管伝搬波Wと気体伝搬波Wとを識別するのが困難になる。 FIG. 7 is a graph of a reception signal of a virtual ultrasonic flowmeter including another ultrasonic absorber. The virtual ultrasonic flowmeter is the same as the ultrasonic flowmeter 100 except that an ultrasonic absorber different from the ultrasonic absorber 10 is provided. In FIG. 7, the horizontal axis represents time, and the vertical axis represents amplitude (voltage). Moreover, in FIG. 7, the frequency of the ultrasonic wave is 0.5 [MHz], the upper part is a graph in which the pressure of the gas flowing inside the pipe is 0.5 [MPa], and the lower part is the gas flowing inside the pipe. Is a graph with a pressure of 0.3 [MPa]. A virtual ultrasonic flowmeter provided with another ultrasonic absorber including asphalt as a main material is shown in FIG. 7 in comparison with the graph of the ultrasonic flowmeter 100 of the present embodiment shown in FIG. as such, it is not possible to ultrasound absorber sufficiently attenuate the pipe propagating wave W 2, to identify the pipe propagating wave W 2 and the gas propagating wave W 1 becomes difficult.
 図8は、様々な材料の超音波吸収体のSN比を示す表である。図8において、配管Aの内部を流れる気体の圧力は0.3[MPa]であり、第1超音波送受信部20Aおよび第2超音波送受信部20Bが送信する超音波の周波数は、0.5[MHz]である。図8に示すように、アスファルトを含む超音波吸収体を備える場合、気体伝搬波Wの最大振幅と配管伝搬波Wの最大振幅との比(以下、SN比という)は、3.8に止まる。一方、未架橋のブチルゴムを含む超音波吸収体10を備える場合、SN比は7.4となって約2倍にまで向上する。 FIG. 8 is a table showing SN ratios of ultrasonic absorbers of various materials. In FIG. 8, the pressure of the gas flowing inside the pipe A is 0.3 [MPa], and the frequency of the ultrasonic waves transmitted by the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B is 0.5. [MHz]. As shown in FIG. 8, when an ultrasonic absorber including asphalt is provided, the ratio of the maximum amplitude of the gas propagation wave W 1 and the maximum amplitude of the pipe propagation wave W 2 (hereinafter referred to as SN ratio) is 3.8. Stop on. On the other hand, when the ultrasonic absorber 10 including uncrosslinked butyl rubber is provided, the SN ratio is 7.4, which is improved to about twice.
 また、一般に、天然ゴムや合成ゴムなどのゴム類(ゴム組成物)は、振動吸収性能が高い。しかしながら、図8に示すように、超音波吸収体の主な材料として、未架橋のブチルゴム以外のゴム類(ゴム組成物)を使用しても、超音波の周波数帯域で配管Aを流れる気体を伝搬させる場合には、SN比が向上しないことが分かった。 In general, rubbers (rubber compositions) such as natural rubber and synthetic rubber have high vibration absorption performance. However, as shown in FIG. 8, even when rubbers (rubber compositions) other than uncrosslinked butyl rubber are used as the main material of the ultrasonic absorber, the gas flowing through the pipe A in the ultrasonic frequency band is used. In the case of propagation, it was found that the SN ratio was not improved.
 超音波吸収体10は、未架橋のブチルゴムのみを含む場合に限定されない。超音波吸収体10は、未架橋のブチルゴムと混合される所定の混合粒子を含んでいてもよい。これにより、所定の混合粒子として、音響インピーダンスの値が配管Aの材料と近くなる、および/または、超音波の周波数帯の振動を吸収する能力(吸収性能)を向上させる混合粒子を未架橋のブチルゴムと混合することで、超音波吸収体10はSN比をさらに向上させることができる。 The ultrasonic absorber 10 is not limited to the case containing only uncrosslinked butyl rubber. The ultrasonic absorber 10 may include predetermined mixed particles mixed with uncrosslinked butyl rubber. Thereby, as a predetermined mixed particle, the value of the acoustic impedance is close to that of the material of the pipe A and / or the mixed particle that improves the ability to absorb vibrations in the frequency band of the ultrasonic wave (absorption performance) is uncrosslinked. By mixing with butyl rubber, the ultrasonic absorber 10 can further improve the SN ratio.
 所定の混合粒子としては、例えば、タングステンなどの金属の粒子、フェライトなどの有機化合物の粒子、または、硫酸バリウムなどの無機化合物の粒子などが挙げられる。 Examples of the predetermined mixed particles include metal particles such as tungsten, organic compound particles such as ferrite, and inorganic compound particles such as barium sulfate.
 図9は、超音波吸収体10のSN比を示す表である。図9において、配管Aの内部を流れる気体の圧力は0.3[MPa]であり、第1超音波送受信部20Aおよび第2超音波送受信部20Bが送信する超音波の周波数は、0.5[MHz]である。図9に示すように、未架橋のブチルゴムのみを含む超音波吸収体10を備える場合、前述したように、SN比は7.4である。一方、超音波吸収体10が、所定の混合粒子11として、フェライトをさらに含む場合には8.9に、タングステンをさらに含む場合には11.7に、硫酸バリウムをさらに含む場合には34.2に、未架橋のブチルゴムのみを含む超音波吸収体10と比較して、それぞれSN比がさらに向上する。 FIG. 9 is a table showing the SN ratio of the ultrasonic absorber 10. In FIG. 9, the pressure of the gas flowing inside the pipe A is 0.3 [MPa], and the frequency of the ultrasonic waves transmitted by the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B is 0.5. [MHz]. As shown in FIG. 9, when the ultrasonic absorber 10 including only uncrosslinked butyl rubber is provided, as described above, the SN ratio is 7.4. On the other hand, when the ultrasonic absorber 10 further includes ferrite as the predetermined mixed particles 11, it is 8.9 when it further includes tungsten, 11.7 when it further includes tungsten, and 34. 2, the SN ratio is further improved as compared with the ultrasonic absorber 10 containing only uncrosslinked butyl rubber.
 図1では、第1超音波送受信部20Aおよび第2超音波送受信部20Bが互いに対向するように、図1において配管Aの上側に第1超音波送受信部20Aを配置し、配管Aの下側に第2超音波送受信部20Bを配置する例を示したが、これに限定されない。第1超音波送受信部20Aおよび第2超音波送受信部20Bは、配管Aの上流側と下流側との外周に設けられていればよい。 In FIG. 1, the first ultrasonic transmission / reception unit 20 </ b> A is arranged above the pipe A in FIG. 1 so that the first ultrasonic transmission / reception unit 20 </ b> A and the second ultrasonic transmission / reception unit 20 </ b> B face each other. Although the example which arrange | positions the 2nd ultrasonic wave transmission / reception part 20B was shown in FIG. The first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B may be provided on the outer circumferences of the upstream side and the downstream side of the pipe A.
 図10は、超音波流量計100の概略構成の他の例を示す構成図である。なお、図1に示した超音波流量計100と同一構成部分は同一符号をもって表し、その説明を適宜省略する。図10に示すように、第1超音波送受信部20Aは配管Aにおける上流側(図10において左側)の外周に、第2超音波送受信部20Bは配管Aにおける下流側(図10において右側)の外周に、それぞれ設けられる。第1超音波送受信部20Aおよび第2超音波送受信部20Bは、ともに、図10において配管Aの上側に、配管Aの管軸に平行な直線上に配置される。このような配置の場合、例えば、第1超音波送受信部20Aから送信した超音波の気体伝搬波Wは、配管Aの内壁で反射されて第2超音波送受信部20Bに到達する反射法(V法)により受信される。 FIG. 10 is a configuration diagram illustrating another example of the schematic configuration of the ultrasonic flowmeter 100. The same components as those of the ultrasonic flow meter 100 shown in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted as appropriate. As shown in FIG. 10, the first ultrasonic transmission / reception unit 20A is located on the outer circumference on the upstream side (left side in FIG. 10), and the second ultrasonic transmission / reception unit 20B is located on the downstream side (right side in FIG. 10). Provided on the outer circumference. The first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B are both arranged on the upper side of the pipe A in FIG. In such an arrangement, for example, a reflection method gas propagating wave W 1 of the ultrasonic wave transmitted from the first ultrasonic transmitter-receiver 20A is to reach the second ultrasonic transmitter-receiver 20B are reflected by the inner wall of the pipe A ( V method).
 このように、本実施形態における超音波流量計100によれば、配管Aの外周に設けられ、第1超音波送受信部20Aおよび第2超音波送受信部20Bにより送信された超音波が配管Aを伝搬する配管伝搬波Wを吸収する超音波吸収体10を備え、超音波吸収体10が未架橋のブチルゴムを含む。ここで、未架橋のブチルゴムは、音響インピーダンスの値が配管Aの材料と近く、かつ、超音波の周波数帯の振動を吸収する能力(吸収性能)が高い。これにより、超音波吸収体10は、配管Aを伝搬する過程で配管伝搬波Wを減衰させることができ、第1超音波送受信部20Aおよび第2超音波送受信部20Bに到達する配管伝搬波Wのエネルギー(大きさ、または強度)を気体伝搬波Wのエネルギー(大きさ、または強度)に対して十分に小さくする、すなわち、SN比を向上させることができる。したがって、超音波流量計100は、気体伝搬波Wと配管伝搬波Wとを容易に識別することができ、気体の流量を正確に測定することができる。特に、配管Aの内部を流れる気体の圧力が低い場合に、気体伝搬波Wのエネルギー(大きさ、または強度)は相対的に小さくなるが、超音波吸収体10は、気体の圧力が低い場合でもSN比を向上させることができるので、超音波流量計100は、圧力の低い気体の流量を正確に測定することができる。 As described above, according to the ultrasonic flowmeter 100 of the present embodiment, the ultrasonic waves provided on the outer periphery of the pipe A and transmitted by the first ultrasonic transmission / reception unit 20A and the second ultrasonic transmission / reception unit 20B pass through the pipe A. It comprises an ultrasonic absorber 10 for absorbing the pipe propagating wave W 2 which propagates ultrasonic absorber 10 comprises a rubber uncrosslinked. Here, uncrosslinked butyl rubber has an acoustic impedance value close to that of the material of the pipe A, and has a high ability to absorb vibrations in the ultrasonic frequency band (absorption performance). Thereby, the ultrasonic absorber 10, the pipe A can be attenuated piping propagating wave W 2 in the process of propagating through the piping propagating wave to reach the first ultrasonic transmitter-receiver 20A and the second ultrasonic transmitter-receiver 20B The energy (magnitude or intensity) of W 2 can be made sufficiently smaller than the energy (magnitude or intensity) of the gas propagation wave W 1 , that is, the SN ratio can be improved. Therefore, the ultrasonic flow meter 100, a the gas propagation wave W 1 and pipe propagating wave W 2 can be easily identified, the flow rate of the gas can be accurately measured. In particular, when the pressure of the gas flowing in the pipe A is low, the gas propagation wave W 1 of the energy (size or intensity) is relatively small, the ultrasonic absorber 10, the gas pressure is low Even in this case, since the SN ratio can be improved, the ultrasonic flowmeter 100 can accurately measure the flow rate of a gas having a low pressure.
 また、未架橋のブチルゴムは、粘着性および弾性を有する粘弾性体でもある。これにより、超音波吸収体10は粘着しやすいので、配管Aの外周に密着して固定することができるとともに、超音波吸収体10は弾性により変形しやすいので、様々な材料、形状、表面状態の配管Aに容易に設けることができる。 Further, uncrosslinked butyl rubber is also a viscoelastic body having adhesiveness and elasticity. Thereby, since the ultrasonic absorber 10 is easy to adhere, it can be adhered and fixed to the outer periphery of the pipe A, and the ultrasonic absorber 10 is easily deformed by elasticity, so various materials, shapes, and surface states The pipe A can be easily provided.
 さらに、未架橋のブチルゴムは、超音波流量計100の使用環境において、例えば、温度や湿度などについて、十分な耐久性(耐環境性)を有することが実験などで確認された。これにより、超音波吸収体10は、強度や耐環境性を高めるために、硫黄などを用いた架橋(加硫)を行うことなく、未架橋のブチルゴムを利用することができる。 Furthermore, it has been confirmed through experiments and the like that uncrosslinked butyl rubber has sufficient durability (environmental resistance) with respect to, for example, temperature and humidity in the environment where the ultrasonic flowmeter 100 is used. Thereby, the ultrasonic absorber 10 can utilize uncrosslinked butyl rubber without performing crosslinking (vulcanization) using sulfur or the like in order to enhance strength and environmental resistance.
 また、本実施形態における超音波流量計100によれば、超音波吸収体10が未架橋のブチルゴムと混合される所定の混合粒子をさらに含む。これにより、所定の混合粒子として、音響インピーダンスの値が配管Aの材料と近くなる、および/または、超音波の周波数帯の振動を吸収する能力(吸収性能)を向上させる混合粒子を未架橋のブチルゴムと混合することで、超音波吸収体10はSN比をさらに向上させることができる。 Moreover, according to the ultrasonic flowmeter 100 in the present embodiment, the ultrasonic absorber 10 further includes predetermined mixed particles mixed with uncrosslinked butyl rubber. Thereby, as a predetermined mixed particle, the value of the acoustic impedance is close to that of the material of the pipe A and / or the mixed particle that improves the ability to absorb vibrations in the frequency band of the ultrasonic wave (absorption performance) is uncrosslinked. By mixing with butyl rubber, the ultrasonic absorber 10 can further improve the SN ratio.
 また、本実施形態における超音波流量計100によれば、所定の混合粒子がタングステンである。これにより、SN比をさらに向上させる超音波吸収体10を容易に実現(構成)することができる。 Moreover, according to the ultrasonic flowmeter 100 in the present embodiment, the predetermined mixed particles are tungsten. Thereby, the ultrasonic absorber 10 that further improves the SN ratio can be easily realized (configured).
 また、本実施形態における超音波流量計100によれば、所定の混合粒子がフェライトである。これにより、SN比をさらに向上させる超音波吸収体10を容易に実現(構成)することができる。 Moreover, according to the ultrasonic flowmeter 100 in the present embodiment, the predetermined mixed particles are ferrite. Thereby, the ultrasonic absorber 10 that further improves the SN ratio can be easily realized (configured).
 また、本実施形態における超音波流量計100によれば、所定の混合粒子が硫酸バリウムである。これにより、SN比をさらに向上させる超音波吸収体10を容易に実現(構成)することができる。 Moreover, according to the ultrasonic flowmeter 100 in the present embodiment, the predetermined mixed particles are barium sulfate. Thereby, the ultrasonic absorber 10 that further improves the SN ratio can be easily realized (configured).
 また、本実施形態における超音波流量計100用の超音波吸収体10は、配管Aの外周に設けられ、配管における上流側の外周から送信された超音波および配管における下流側の外周から送信された超音波が配管Aを伝搬する配管伝搬波Wを吸収し、未架橋のブチルゴムを含む。ここで、未架橋のブチルゴムは、音響インピーダンスの値が配管Aの材料と近く、かつ、超音波の周波数帯の振動を吸収する能力(吸収性能)が高い。これにより、超音波吸収体10は、配管Aを伝搬する過程で配管伝搬波Wを減衰させることができ、受信される配管伝搬波Wのエネルギー(大きさ、または強度)を気体伝搬波Wのエネルギー(大きさ、または強度)に対して十分に小さくする、すなわち、SN比を向上させることができる。したがって、超音波流量計100は、気体伝搬波Wと配管伝搬波Wとを容易に識別することができ、気体の流量を正確に測定することができる。特に、配管Aの内部を流れる気体の圧力が低い場合に、気体伝搬波Wのエネルギー(大きさ、または強度)は相対的に小さくなるが、超音波吸収体10は、気体の圧力が低い場合でもSN比を向上させることができるので、超音波流量計100は、圧力の低い気体の流量を正確に測定することができる。 In addition, the ultrasonic absorber 10 for the ultrasonic flowmeter 100 in the present embodiment is provided on the outer periphery of the pipe A, and is transmitted from the upstream outer periphery of the pipe and the downstream outer periphery of the pipe. ultrasound absorbs pipe propagating wave W 2 propagating a pipe a, including butyl rubber uncrosslinked. Here, uncrosslinked butyl rubber has an acoustic impedance value close to that of the material of the pipe A, and has a high ability to absorb vibrations in the ultrasonic frequency band (absorption performance). Thereby, the ultrasonic absorber 10 can attenuate the pipe propagating wave W 2 in the process of propagating through the pipe A, pipe propagating wave W 2 of the energy (size or strength) received a gas propagating wave It is possible to sufficiently reduce the energy (size or intensity) of W 1 , that is, to improve the SN ratio. Therefore, the ultrasonic flow meter 100, a the gas propagation wave W 1 and pipe propagating wave W 2 can be easily identified, the flow rate of the gas can be accurately measured. In particular, when the pressure of the gas flowing in the pipe A is low, the gas propagation wave W 1 of the energy (size or intensity) is relatively small, the ultrasonic absorber 10, the gas pressure is low Even in this case, since the SN ratio can be improved, the ultrasonic flowmeter 100 can accurately measure the flow rate of a gas having a low pressure.
 また、未架橋のブチルゴムは、粘着性および弾性を有する粘弾性体でもある。これにより、超音波吸収体10は粘着しやすいので、配管Aの外周に密着して固定することができるとともに、吸音体10は弾性により変形しやすいので、様々な材料、形状、表面状態の配管Aに容易に設けることができる。 Further, uncrosslinked butyl rubber is also a viscoelastic body having adhesiveness and elasticity. Thereby, since the ultrasonic absorber 10 is easy to adhere, it can be fixed in close contact with the outer periphery of the pipe A, and the sound absorber 10 is easily deformed by elasticity, so that the pipes of various materials, shapes, and surface states A can be easily provided.
 さらに、未架橋のブチルゴムは、超音波流量計100の使用環境において、例えば、温度や湿度などについて、十分な耐久性(耐環境性)を有することが実験などで確認された。これにより、超音波吸収体10は、強度や耐環境性を高めるために、硫黄などを用いた架橋(加硫)を行うことなく、未架橋のブチルゴムを利用することができる。 Furthermore, it has been confirmed through experiments and the like that uncrosslinked butyl rubber has sufficient durability (environmental resistance) with respect to, for example, temperature and humidity in the environment where the ultrasonic flowmeter 100 is used. Thereby, the ultrasonic absorber 10 can utilize uncrosslinked butyl rubber without performing crosslinking (vulcanization) using sulfur or the like in order to enhance strength and environmental resistance.
 なお、前述した実施形態の構成は、組み合わせたり、あるいは一部の構成部分を入れ替えたりしたりしてもよい。また、本実施形態の構成は前述した実施形態のみに限定されるものではなく、本実施形態の要旨を逸脱しない範囲内において種々変更を加えてもよい。 Note that the configurations of the above-described embodiments may be combined or some of the components may be replaced. Further, the configuration of the present embodiment is not limited to the above-described embodiment, and various modifications may be made without departing from the scope of the present embodiment.
 本発明は、超音波を用いて配管を流れる気体の流量を測定する技術に適用することができる。 The present invention can be applied to a technique for measuring the flow rate of a gas flowing through a pipe using ultrasonic waves.
 10…超音波吸収体
 20A…第1超音波送受信部
 20B…第2超音波送受信部
 21…くさび
 21a…底面
 21b…斜面
 22…圧電素子
 50…本体部
 51…切替部
 52…送信回路部
 53…受信回路部
 54…計時部
 55…演算制御部
 56…入出力部
 100…超音波流量計
 A…配管
 W…気体伝搬波
 W…配管伝搬波
DESCRIPTION OF SYMBOLS 10 ... Ultrasonic absorber 20A ... 1st ultrasonic transmission / reception part 20B ... 2nd ultrasonic transmission / reception part 21 ... Wedge 21a ... Bottom 21b ... Slope 22 ... Piezoelectric element 50 ... Main-body part 51 ... Switching part 52 ... Transmission circuit part 53 ... receiver circuit section 54 ... time measuring portion 55 ... calculation control unit 56 ... input-output unit 100 ... ultrasonic flowmeter A ... pipe W 1 ... gas propagating wave W 2 ... pipe propagating wave

Claims (6)

  1.  内部を気体が流れる配管における上流側の外周に設けられ、超音波の送信および受信を行う第1の超音波送受信部と、
     前記配管における下流側の外周に設けられ、超音波の送信および受信を行う第2の超音波送受信部と、
     前記第1の超音波送受信部から送信された前記超音波が前記第2の超音波送受信部に受信されるまでの時間と、前記第2の超音波送受信部から送信された前記超音波が前記第1の超音波送受信部に受信されるまでの時間とに基づいて、前記気体の流量を測定する本体部と、
     前記配管の外周に設けられ、前記超音波が前記配管を伝搬する配管伝搬波を吸収する超音波吸収体と、を備え、
     前記超音波吸収体は、未架橋のブチルゴムを含む、
     超音波流量計。
    A first ultrasonic transmission / reception unit that is provided on the outer periphery on the upstream side in a pipe through which gas flows, and that transmits and receives ultrasonic waves;
    A second ultrasonic transmission / reception unit that is provided on the outer periphery on the downstream side of the pipe and transmits and receives ultrasonic waves;
    The time until the second ultrasonic transmission / reception unit receives the ultrasonic wave transmitted from the first ultrasonic transmission / reception unit, and the ultrasonic wave transmitted from the second ultrasonic transmission / reception unit A main body for measuring the flow rate of the gas based on the time until it is received by the first ultrasonic transmission / reception unit;
    An ultrasonic absorber that is provided on an outer periphery of the pipe and absorbs a pipe propagation wave in which the ultrasonic wave propagates through the pipe;
    The ultrasonic absorber includes uncrosslinked butyl rubber,
    Ultrasonic flow meter.
  2.  前記超音波吸収体は、前記未架橋のブチルゴムと混合される所定の混合粒子をさらに含む、
     請求項1に記載の超音波流量計。
    The ultrasonic absorber further includes predetermined mixed particles mixed with the uncrosslinked butyl rubber.
    The ultrasonic flowmeter according to claim 1.
  3.  前記所定の混合粒子は、タングステンである、
     請求項2に記載の超音波流量計。
    The predetermined mixed particles are tungsten.
    The ultrasonic flowmeter according to claim 2.
  4.  前記所定の混合粒子は、フェライトである、
     請求項2に記載の超音波流量計。
    The predetermined mixed particles are ferrite,
    The ultrasonic flowmeter according to claim 2.
  5.  前記所定の混合粒子は、硫酸バリウムである、
     請求項2に記載の超音波流量計。
    The predetermined mixed particles are barium sulfate.
    The ultrasonic flowmeter according to claim 2.
  6.  内部を気体が流れる配管における上流側の外周から送信された超音波が前記配管における下流側の外周で受信されるまでの時間と、前記配管における下流側の外周から送信された超音波が前記配管における上流側の外周で受信されるまでの時間とに基づいて、前記気体の流量を測定する超音波流量計用の超音波吸収体であって、
     前記配管の外周に設けられ、前記超音波が前記配管を伝搬する配管伝搬波を吸収し、未架橋のブチルゴムを含む、
     超音波流量計用の超音波吸収体。
    The time until the ultrasonic wave transmitted from the outer periphery on the upstream side in the pipe through which gas flows is received at the outer periphery on the downstream side in the pipe, and the ultrasonic wave transmitted from the outer periphery on the downstream side in the pipe An ultrasonic absorber for an ultrasonic flowmeter that measures the flow rate of the gas based on the time until it is received at the outer circumference on the upstream side in
    Provided on the outer periphery of the pipe, the ultrasonic wave absorbs a pipe propagation wave propagating through the pipe, and includes uncrosslinked butyl rubber.
    Ultrasonic absorber for ultrasonic flowmeter.
PCT/JP2013/083468 2013-02-18 2013-12-13 Ultrasonic flow meter and ultrasound absorbing body for ultrasonic flow meter WO2014125720A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-029149 2013-02-18
JP2013029149A JP6231754B2 (en) 2013-02-18 2013-02-18 Ultrasonic flowmeter and ultrasonic absorber for ultrasonic flowmeter

Publications (1)

Publication Number Publication Date
WO2014125720A1 true WO2014125720A1 (en) 2014-08-21

Family

ID=51353739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083468 WO2014125720A1 (en) 2013-02-18 2013-12-13 Ultrasonic flow meter and ultrasound absorbing body for ultrasonic flow meter

Country Status (2)

Country Link
JP (1) JP6231754B2 (en)
WO (1) WO2014125720A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107949408A (en) * 2015-08-28 2018-04-20 克里斯医疗系统股份有限公司 Flow sensor systems with absorber
WO2021150652A1 (en) * 2020-01-22 2021-07-29 Becton, Dickinson And Company Apparatus and method to join a coupler and flow tube in an ultrasonic flow meter
EP4108273A1 (en) * 2015-08-28 2022-12-28 Crisi Medical Systems, Inc. Flow sensor system including transmissive connection

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016109560A (en) * 2014-12-05 2016-06-20 東京電力株式会社 Flow rate measurement device and flow rate measurement method
JP6348409B2 (en) * 2014-12-05 2018-06-27 アズビル株式会社 Ultrasonic flow meter, flow measurement method, and ultrasonic flow meter kit for ultrasonic absorber
JP7160622B2 (en) 2018-10-11 2022-10-25 株式会社キーエンス Clamp-on type ultrasonic flowmeter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155696A (en) * 1984-08-27 1986-03-20 株式会社 富士電機総合研究所 Sound wave absorbing body
JP2003014513A (en) * 2001-06-28 2003-01-15 National Institute Of Advanced Industrial & Technology Ultrasonic flowmeter
JP2003194603A (en) * 2001-12-25 2003-07-09 Nissan Motor Co Ltd Flow sensor
WO2004048803A1 (en) * 2002-11-27 2004-06-10 Asahi Rubber Co., Ltd. Composite vibration damper

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3433390B2 (en) * 1997-05-13 2003-08-04 早川ゴム株式会社 Piping mounting structure
JP2012052641A (en) * 2010-09-03 2012-03-15 Hayakawa Rubber Co Ltd Sound insulation member for piping
JP2012157610A (en) * 2011-02-02 2012-08-23 Fujifilm Corp Magnetic field generation device, operation method for the same and magnetically guided drug delivery system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155696A (en) * 1984-08-27 1986-03-20 株式会社 富士電機総合研究所 Sound wave absorbing body
JP2003014513A (en) * 2001-06-28 2003-01-15 National Institute Of Advanced Industrial & Technology Ultrasonic flowmeter
JP2003194603A (en) * 2001-12-25 2003-07-09 Nissan Motor Co Ltd Flow sensor
WO2004048803A1 (en) * 2002-11-27 2004-06-10 Asahi Rubber Co., Ltd. Composite vibration damper

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107949408A (en) * 2015-08-28 2018-04-20 克里斯医疗系统股份有限公司 Flow sensor systems with absorber
US10782166B2 (en) 2015-08-28 2020-09-22 Crisi Medical Systems, Inc. Flow sensor system with absorber
CN107949408B (en) * 2015-08-28 2021-01-29 克里斯医疗系统股份有限公司 Flow sensor system with absorber
AU2020202269B2 (en) * 2015-08-28 2021-05-20 Crisi Medical Systems, Inc. Flow sensor system with absorber
CN112870486A (en) * 2015-08-28 2021-06-01 克里斯医疗系统股份有限公司 Flow sensor system with absorber
EP3922286A1 (en) * 2015-08-28 2021-12-15 Crisi Medical Systems, Inc. Flow sensor system with absorber
EP4108273A1 (en) * 2015-08-28 2022-12-28 Crisi Medical Systems, Inc. Flow sensor system including transmissive connection
AU2021209331B2 (en) * 2015-08-28 2023-05-11 Crisi Medical Systems, Inc. Flow sensor system with absorber
US11674831B2 (en) 2015-08-28 2023-06-13 Crisi Medical Systems, Inc. Ultrasonic flow sensor system including a flow tube with an absorber sheath encirling the flow tube
US11754428B2 (en) 2015-08-28 2023-09-12 Crisi Medical Systems, Inc. Flow sensor system including transmissive connection having bonding adhesive between the transducers and the fittings
WO2021150652A1 (en) * 2020-01-22 2021-07-29 Becton, Dickinson And Company Apparatus and method to join a coupler and flow tube in an ultrasonic flow meter
US11927467B2 (en) 2020-01-22 2024-03-12 Becton, Dickinson And Company Flow sensor sub-assembly in an ultrasonic flow meter including an absorber sleeve engaging a coupler and a flow tube

Also Published As

Publication number Publication date
JP2014157129A (en) 2014-08-28
JP6231754B2 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
WO2014125720A1 (en) Ultrasonic flow meter and ultrasound absorbing body for ultrasonic flow meter
JP6161448B2 (en) Ultrasonic flowmeter and ultrasonic absorber for ultrasonic flowmeter
US9170240B2 (en) Ultrasonic particle measuring system
JP5548834B1 (en) Ultrasonic flow meter
US20150323374A1 (en) Ultrasonic flow meter and ultrasound absorbing body fault evaluating method
RU2760517C1 (en) Ultrasonic flow meter with lens combination
US20130264142A1 (en) Coupling element of an ultrasonic transducer for an ultrasonic, flow measuring device
WO2012008151A1 (en) Ultrasonic flow measurement unit and ultrasonic flowmeter using same
JP3569799B2 (en) Ultrasonic flow meter
US10837851B2 (en) Measurement device and method for ascertaining a pressure in a measurement volume
CN113242959A (en) Ultrasonic instrument
WO2014148081A1 (en) Ultrasonic flow meter, flow velocity measurement method, and flow velocity measurement program
JP6781627B2 (en) Ultrasonic flow meter, ultrasonic shock absorber, ultrasonic flow measurement method, ultrasonic buffer method, and ultrasonic shock absorber mounting method
CN114111927B (en) High-frequency ultrasonic sensor suitable for gas flow detection
US20150355004A1 (en) Ultrasonic flowmeter and ultrasonic flowmeter attaching method
JP6393074B2 (en) Ultrasonic absorber pasting method and ultrasonic flow meter
JP2014157071A (en) Ultrasonic flow meter, and ultrasonic sensor for ultrasonic flow meter
JP2019039805A (en) Ultrasonic flow meter and ultrasonic flow measurement method
JP6179343B2 (en) Ultrasonic probe
JP2010181321A (en) Ultrasonic flowmeter
JP2012007976A (en) Ultrasonic velocity flowmeter
JP5454129B2 (en) Ultrasonic flow meter
JP2012242090A (en) Ultrasonic flowmeter
JP2007194896A (en) Ultrasonic transducer and flow measuring apparatus of fluid employing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13875174

Country of ref document: EP

Kind code of ref document: A1