JP5454129B2 - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter Download PDF

Info

Publication number
JP5454129B2
JP5454129B2 JP2009291729A JP2009291729A JP5454129B2 JP 5454129 B2 JP5454129 B2 JP 5454129B2 JP 2009291729 A JP2009291729 A JP 2009291729A JP 2009291729 A JP2009291729 A JP 2009291729A JP 5454129 B2 JP5454129 B2 JP 5454129B2
Authority
JP
Japan
Prior art keywords
receiver
ultrasonic
transmitter
flow path
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009291729A
Other languages
Japanese (ja)
Other versions
JP2011133289A (en
Inventor
真人 佐藤
裕史 藤井
裕治 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009291729A priority Critical patent/JP5454129B2/en
Publication of JP2011133289A publication Critical patent/JP2011133289A/en
Application granted granted Critical
Publication of JP5454129B2 publication Critical patent/JP5454129B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、超音波パスルの送受信を行う超音波送受波器およびこの超音波送受波器を用いて気体や液体の流量や流速の計測を行う装置に関するものである。   The present invention relates to an ultrasonic transducer for transmitting and receiving ultrasonic pulses and an apparatus for measuring the flow rate and flow velocity of gas and liquid using the ultrasonic transducer.

従来、この種の超音波式流量計測装置は図6に示すように、送受信器101aと101bは音波の送受信面を下向きにして取り付けてある。反射体102aと102bは音波を反射させて方向を変えるもので、図では方向を90度変えている。音波は送受信器101aから送信されると下方向に進んで反射体102aで反射し、流路103内を水平に伝搬し、反射体102bに反射して送受信器101bで受信される。送受信器101bから発信する場合には逆の経路を通過して送受信器101aへ伝搬していた。   Conventionally, as shown in FIG. 6, this type of ultrasonic flow rate measuring apparatus has transceivers 101a and 101b attached with the sound wave transmission / reception surface facing downward. The reflectors 102a and 102b reflect sound waves and change their directions. In the figure, the directions are changed by 90 degrees. When the sound wave is transmitted from the transmitter / receiver 101a, it travels downward, is reflected by the reflector 102a, propagates horizontally in the flow path 103, is reflected by the reflector 102b, and is received by the transmitter / receiver 101b. When transmitting from the transceiver 101b, it has propagated to the transceiver 101a through the reverse path.

特開2004−69529号公報JP 2004-69529 A

しかしながら、前記従来の超音波式流量計測装置では、図6に示すように送受信器101aから送信された音波は、流路3を伝搬し送受信器101bの前方に設けてある空間で放射状に広がるため、特にAの部分で不要な音波が発生し、主の音波を送受信器101bで受信する前に、不要な音波が送受信器101bに到達してしまうことがある。図7は、このような不要な音波を含む音波を受信器101bで受信した信号を表したもので、主音波の前に、不要な音波が存在している。このため、不要な受信信号はノイズ源となり、計測に用いる受信信号に影響を与えるため、計測精度が悪化する可能性があった。   However, in the conventional ultrasonic flow measurement device, as shown in FIG. 6, the sound wave transmitted from the transceiver 101a propagates in the flow path 3 and spreads radially in the space provided in front of the transceiver 101b. In particular, unnecessary sound waves may be generated in the portion A, and unnecessary sound waves may reach the transceiver 101b before the main sound waves are received by the transceiver 101b. FIG. 7 shows a signal obtained by receiving the sound wave including such an unnecessary sound wave by the receiver 101b, and the unnecessary sound wave exists before the main sound wave. For this reason, an unnecessary received signal becomes a noise source and affects the received signal used for measurement, so that the measurement accuracy may be deteriorated.

上記従来の課題を解決するために、本発明の超音波式流量計測装置は、被測定流体が流れる流路と、前記流路の上流と下流に配置された音波を送信または受信する一対の送受信器と、前記送受信器間の超音波信号の伝搬時間を計測する計測手段と、前記伝搬時間に応じて流体の流量を算出する流量算出手段と、前記一対の送受信器のそれぞれの送受信面に対抗して設けられた反射体とを備え、前記一対の送受信器は、共に前記流路の側方に配置され、一方の送受信器から発信された超音波が前記反射体により90度方向を変えられて、前記被測定流体を伝搬した後、再度反射体により90度方向が変えられて他方の送受信器に受信されるように配置すると共に、前記流路から前記送受信器に至る経路に、不要な超音波信号を排除する減衰部を配置し、前記減衰部は、段差状の空間で構成したことを特徴とすることにより、不要信号の影響を受けずに計測に必要な信号を受信することが可能となる。 In order to solve the above-described conventional problems, an ultrasonic flow measuring device according to the present invention includes a channel through which a fluid to be measured flows and a pair of transmission / reception units that transmit or receive sound waves disposed upstream and downstream of the channel. A counter, a measuring means for measuring a propagation time of an ultrasonic signal between the transceiver, a flow rate calculating means for calculating a fluid flow rate according to the propagation time, and a transmission / reception surface of each of the pair of transceivers And the pair of transmitters / receivers are both disposed on the side of the flow path, and the ultrasonic waves transmitted from one transmitter / receiver can be turned 90 degrees by the reflectors. Then, after propagating through the fluid to be measured, it is arranged so that the direction is again changed by 90 degrees by the reflector and received by the other transceiver, and is unnecessary for the path from the flow path to the transceiver. Attenuator to eliminate ultrasonic signal And location, the damping unit, by characterized in that it is constituted by a stepped space, it is possible to receive the signals required for measurement without being affected by unwanted signals.

本発明の超音波式流量計測装置によれば、超音波が流路から出で送受信器に向けて伝搬したときに、放射状に広がる音波が計測に不要な信号を送受信器が受信しないように、減衰部を設けているので不要な信号によるノイズの影響を受けずに音波伝搬時間の計測が可能となるため、精度の高い計測が可能となる。   According to the ultrasonic flow measuring device of the present invention, when the ultrasonic wave propagates from the flow path toward the transmitter / receiver, the transmitter / receiver does not receive a signal unnecessary for measurement of the sound waves that spread radially. Since the attenuation unit is provided, it is possible to measure the sound wave propagation time without being affected by noise caused by unnecessary signals, so that highly accurate measurement is possible.

本発明の実施の形態1の超音波式流量計測装置のブロック図1 is a block diagram of an ultrasonic flow rate measuring apparatus according to Embodiment 1 of the present invention. (a)同実施の形態に係る超音波式流量計測装置断面図、(b)(a)のA−A断面図、(c)(a)のB−B断面図(A) Ultrasonic flow measuring device sectional view concerning the embodiment, (b) AA sectional view of (a), (c) BB sectional view of (a) 図2のC−C断面図CC sectional view of FIG. 第2実施形態に係る超音波式流量計測装置の断面図Sectional drawing of the ultrasonic type flow measuring device concerning a 2nd embodiment. 第3実施形態に係る超音波式流量計測装置の断面図Sectional drawing of the ultrasonic type flow measuring device concerning a 3rd embodiment 従来の超音波式流量計測装置の断面図Cross-sectional view of a conventional ultrasonic flow measurement device 従来の超音波式流量計測装置の受信波形を示す図The figure which shows the received waveform of the conventional ultrasonic flow measuring device

第1の発明は、被測定流体が流れる流路と、前記流路の上流と下流に配置された音波を送信または受信する一対の送受信器と、前記送受信器間の超音波信号の伝搬時間を計測する計測手段と、前記伝搬時間に応じて流体の流量を算出する流量算出手段と、前記一対の送受信器のそれぞれの送受信面に対抗して設けられた反射体とを備え、前記一対の送受信器は、共に前記流路の側方に配置され、一方の送受信器から発信された超音波が前記反射体により90度方向を変えられて、前記被測定流体を伝搬した後、再度反射体により90度方向が変えられて他方の送受信器に受信されるように配置すると共に、前記流路から前記送受信器に至る経路に、不要な超音波信号を排除する減衰部を配置し、前記減衰部は、段差状の空間で構成したことを特徴とすることにより、不要信号の影響を受けずに計測に必要な信号を受信することが可能となる。 The first invention provides a flow path through which a fluid to be measured flows, a pair of transceivers that transmit or receive sound waves disposed upstream and downstream of the flow path, and a propagation time of an ultrasonic signal between the transceivers. A measuring means for measuring, a flow rate calculating means for calculating a flow rate of the fluid according to the propagation time, and a reflector provided to oppose each transmitting / receiving surface of the pair of transceivers, Both are placed on the side of the flow path, and after the ultrasonic wave transmitted from one transmitter / receiver is changed in direction by 90 degrees by the reflector and propagates through the fluid to be measured, the reflector again The attenuator is arranged so that the direction is changed by 90 degrees and is received by the other transmitter / receiver, and an attenuator that eliminates unnecessary ultrasonic signals is arranged on the path from the flow path to the transmitter / receiver. It is constructed with a step-like space With symptom, it is possible to receive the signals required for measurement without being affected by unwanted signals.

以下、本発明の実施形態に係る超音波式流量計測装置について、図面を参照して説明する。なお図面中で同一符号を付しているものは同一なものであり、詳細な説明は省略する。   Hereinafter, an ultrasonic flow measuring device according to an embodiment of the present invention will be described with reference to the drawings. In addition, what attaches | subjects the same code | symbol in drawing is the same thing, and abbreviate | omits detailed description.

(実施の形態1)
図1における4は被測定流体が流れる流路、5,6は流路4の流れの上流と下流に配置された送受信器、計測手段1は、送受信器5,6の使用周波数を発信する発振回路7、発振回路7に接続され送受信器5,6を駆動する駆動回路8、送受信器5,6の送信と受信を切り替える切替回路9、超音波パルスを検知する受信検知回路10、超音波パルスの伝搬時間を計測するタイマ11及び、駆動回路8とタイマ11に制御信号を出力する制御部13で構成されており、流量演算手段12は、タイマ11の出力より流量を演算する。
(Embodiment 1)
In FIG. 1, reference numeral 4 denotes a flow path through which the fluid to be measured flows, reference numerals 5 and 6 denote transmitters / receivers arranged upstream and downstream of the flow of the flow path 4, and the measuring unit 1 oscillates to transmit a use frequency of the transmitter / receivers 5 and 6 A circuit 7; a drive circuit 8 connected to the oscillation circuit 7 for driving the transceivers 5 and 6; a switching circuit 9 for switching between transmission and reception of the transceivers 5 and 6; a reception detection circuit 10 for detecting an ultrasonic pulse; And a control unit 13 that outputs a control signal to the timer 11, and the flow rate calculation means 12 calculates the flow rate from the output of the timer 11.

上記のように構成される超音波流量計の動作を説明する。本実施の形態では被測定流体を都市ガス、超音波流量計として家庭用ガスメータを想定し、流路4を構成する材料をアルミニウム合金ダイカストとしている。   The operation of the ultrasonic flowmeter configured as described above will be described. In the present embodiment, the gas to be measured is assumed to be a city gas and the household gas meter is an ultrasonic flow meter, and the material constituting the flow path 4 is an aluminum alloy die casting.

また、送受信器5,6の使用周波数には約500kHzを選択する。発振回路7は例えばコンデンサと抵抗で構成され約500kHzの方形波を発信し、駆動回路8では発振回
路7の信号から送受信器5,6を駆動するため方形波が数波のバースト信号からなる駆動信号を出力可能ととしている。
In addition, about 500 kHz is selected as the operating frequency of the transceivers 5 and 6. The oscillation circuit 7 is composed of, for example, a capacitor and a resistor, and transmits a square wave of about 500 kHz. The drive circuit 8 drives the transmitters and receivers 5 and 6 from the signal of the oscillation circuit 7, so that the square wave is composed of several burst signals. The signal can be output.

制御部13では駆動回路8に送信開始信号を出力すると同時に、タイマ11の時間計測を開始させる。駆動回路8は送信開始信号を受けると送受信器5を駆動し、超音波パルスを送信する。送信された超音波パルスは流路4内を伝搬し送受信器6で受信される。受信された超音波パルスは送受信器5で電気信号に変換され、受信検知回路10に出力される。受信検知回路10では受信信号の受信タイミングを決定し、制御部13に受信検知信号を出力する。制御部13では受信検知信号を受けると、あらかじめ設定した遅延時間td経過後に再び駆動回路8に送信開始信号を出力し、2回目の計測を行う。この動作をN回繰返した後、タイマ11を停止させる。流量演算手段12ではタイマ11で測定した時間を測定回数のNで割り、遅延時間tdを引いて伝搬時間t1を演算する。   The control unit 13 outputs a transmission start signal to the drive circuit 8 and starts time measurement of the timer 11 at the same time. When receiving the transmission start signal, the drive circuit 8 drives the transmitter / receiver 5 and transmits ultrasonic pulses. The transmitted ultrasonic pulse propagates through the flow path 4 and is received by the transceiver 6. The received ultrasonic pulse is converted into an electrical signal by the transceiver 5 and output to the reception detection circuit 10. The reception detection circuit 10 determines the reception timing of the reception signal and outputs the reception detection signal to the control unit 13. When receiving the reception detection signal, the control unit 13 outputs a transmission start signal to the drive circuit 8 again after the elapse of a preset delay time td, and performs the second measurement. After repeating this operation N times, the timer 11 is stopped. The flow rate calculation means 12 calculates the propagation time t1 by dividing the time measured by the timer 11 by the number of times N and subtracting the delay time td.

引き続き切替回路9で駆動回路8と受信検知回路10に接続する送受信器5,6を切り替え、再び制御部13では駆動回路8に送信開始信号を出力すると同時に、タイマ11の時間計測を開始させる。伝搬時間t1の測定と逆に、送受信器5で超音波パルスを送信し、送受信器5で受信する計測をN回繰返し、流量演算手段12で伝搬時間t2を演算する。   Subsequently, the transmitter / receiver 5 and 6 connected to the drive circuit 8 and the reception detection circuit 10 are switched by the switching circuit 9, and the control unit 13 again outputs a transmission start signal to the drive circuit 8 and simultaneously starts the time measurement of the timer 11. Contrary to the measurement of the propagation time t1, the transmitter / receiver 5 transmits an ultrasonic pulse, the measurement received by the transceiver 5 is repeated N times, and the flow rate calculation means 12 calculates the propagation time t2.

ここで、送受信器5,6の中心を結ぶ距離をL、空気の無風状態での音速をC、流路4内での流速をV、非測定流体の流れの方向と送受信器5,6の中心を結ぶ線との角度をθとすると、伝搬時間t1、t2は、
t1=L/(C+Vcosθ)・・・(式1)
t2=L/(C−Vcosθ)・・・(式2)
で示される。(式1)(式2)より音速Cを消去して、流速Vを求めると
V=L/2cosθ(1/t1−1/t2)・・・(式3)
が得られる。L、θは既知であるのでt1とt2を測定すれば流速Vが求められる。この流速Vと流量測定部1の面積をS、補正係数をKとすれば、流量Qは
Q=KSV・・・(式4)
で演算できる。
Here, the distance connecting the centers of the transceivers 5 and 6 is L, the speed of sound in the absence of air is C, the flow velocity in the flow path 4 is V, the flow direction of the non-measurement fluid and the transceivers 5 and 6 If the angle with the line connecting the centers is θ, the propagation times t1, t2 are
t1 = L / (C + V cos θ) (Formula 1)
t2 = L / (C−Vcos θ) (Expression 2)
Indicated by (Equation 1) Erasing the sound velocity C from (Equation 2) and obtaining the flow velocity V, V = L / 2 cos θ (1 / t1-1 / t2) (Equation 3)
Is obtained. Since L and θ are known, the flow velocity V can be obtained by measuring t1 and t2. If the flow velocity V and the area of the flow rate measuring unit 1 are S and the correction coefficient is K, the flow rate Q is Q = KSV (Equation 4)
It can be calculated with.

図2(a)は、本実施の形態の超音波式流量計測装置の平面図で、送受信器5と6の配置を表している。その流路4は図2(b)に示す様に断面が矩形の形状で、送受信器5,6は共に流路4の短辺側の側面4aに配置されており、送受信器5から発信された超音波が反射体14により90度方向を変えられて、流路内に浸入した後、被測定流体を伝搬した後、再度反射体14により90度方向が変えられて送受信器6に受信されるように配置されている。なお、超音波信号は、流路内で流路4を斜めに横断するように進み、流路4のもう一方の側面4bに反射してV字状に屈曲される構成としている。   FIG. 2A is a plan view of the ultrasonic flow rate measuring apparatus according to the present embodiment, and shows the arrangement of the transceivers 5 and 6. The flow path 4 has a rectangular cross section as shown in FIG. 2 (b), and the transceivers 5 and 6 are both arranged on the side surface 4 a on the short side of the flow path 4, and are transmitted from the transceiver 5. The reflected ultrasonic wave is changed by 90 degrees by the reflector 14 and enters the flow path, and then propagates through the fluid to be measured. Then, the reflected wave is again changed by 90 degrees by the reflector 14 and received by the transmitter / receiver 6. It is arranged so that. Note that the ultrasonic signal travels obliquely across the flow path 4 in the flow path, is reflected on the other side surface 4b of the flow path 4, and is bent in a V shape.

図3は、図2のA−A断面の詳細、及び超音波の伝搬経路を表したもので、送受信器5は音波の受信面5aを下向きに取付けてある。送受信器6は記載していないが送受信器5と同様である。また、反射体14は音波を反射させて方向を変えるもので、図では方向を90度変えている。送受信器6側に関して、記載していないが、図3と同様の構成になっている。音波は送受信器5から送信されると図の下方向に進んで反射体14で反射し、流路4内を水平に伝搬し、流路4の内壁面4bで反射し他方の反射体(図示せず)で反射してから受信器6で受信される。送受信器6から発信する場合には逆の経路を通過して送受信器5へ伝搬する。   FIG. 3 shows the details of the AA cross section of FIG. 2 and the ultrasonic wave propagation path. The transceiver 5 has a sound wave receiving surface 5a attached downward. Although the transceiver 6 is not shown, it is the same as the transceiver 5. The reflector 14 reflects the sound wave and changes the direction. In the figure, the direction is changed by 90 degrees. The transmitter / receiver 6 side has the same configuration as that of FIG. When the sound wave is transmitted from the transmitter / receiver 5, it travels downward in the figure and is reflected by the reflector 14, propagates horizontally in the channel 4, is reflected by the inner wall surface 4 b of the channel 4, and is reflected on the other reflector (see FIG. (Not shown) and then received by the receiver 6. When transmitting from the transmitter / receiver 6, the signal passes through the reverse path and propagates to the transmitter / receiver 5.

図3の矢印Cは、送受信器5が受信側に設定された場合における音波の中心が伝搬する様子を表しており、矢印D1、D2、D3は音波が流路から出て送受信器5に向かって放
射状に広がりながら伝搬していく様子を示す。そして、不要な音波を減衰させる減衰部としての反射面15を送受信器5の流路側の手前に設けてある。反射面15を設けることで、矢印D1、D2、D3のような計測に不要な音波を受信器5に到達させることを防げるため、ノイズの影響を受けずに音波伝搬時間の計測ができるようになり、精度の高い計測が可能となる。なお、他方の送受信器6側にも同様の反射面を設けてあり、同様の効果を有する。
An arrow C in FIG. 3 represents a state in which the center of the sound wave propagates when the transmitter / receiver 5 is set to the receiving side, and arrows D1, D2, and D3 indicate that the sound wave exits the flow path toward the transmitter / receiver 5. Shows how it propagates while spreading radially. And the reflection surface 15 as an attenuation part which attenuates an unnecessary sound wave is provided in the near side of the channel side of the transceiver 5. By providing the reflecting surface 15, it is possible to prevent the sound waves unnecessary for measurement such as arrows D1, D2, and D3 from reaching the receiver 5, so that the sound wave propagation time can be measured without being affected by noise. Therefore, highly accurate measurement is possible. A similar reflecting surface is provided on the other transmitter / receiver 6 side, and the same effect is obtained.

なお、本実施の形態においては、送受信器から発信された音波は流路の内壁面に反射する構成として説明したが、従来例の説明で用いた図6に示すように、送受信器を対向して設けて、流路内で反射しないようにした構成においても適用できることは言うまでもない。   In this embodiment, the sound wave transmitted from the transmitter / receiver has been described as being reflected on the inner wall surface of the flow path. However, as shown in FIG. 6 used in the description of the conventional example, the transmitter / receiver is opposed to the transmitter / receiver. Needless to say, the present invention can also be applied to a configuration in which the light is not reflected in the flow path.

(実施の形態2)
図4は本発明の第2の実施の形態を示す断面図であり、不要な音波を減衰させる減衰部としての吸音材16を送受信器5の流路側の手前に設けてある。吸音材16の材質としては、被計測流体に耐えうる材料を選定し、気孔径が音波の波長λの1/4よりも大きい多孔体を用いた。吸音材16により、流路4から出た音波が送受信器5に到達するまでに、ノイズの要因の音波を吸収させるので、送受信面5aの前方の空間で共鳴する音波を低減させることが可能となり、より高精度な計測が可能となる。なお、他方の送受信器6側にも同様の吸音材を設けてあり、同様の効果を有する。
(Embodiment 2)
FIG. 4 is a cross-sectional view showing a second embodiment of the present invention, in which a sound absorbing material 16 as an attenuating portion for attenuating unnecessary sound waves is provided in front of the channel side of the transceiver 5. As the material of the sound absorbing material 16, a material that can withstand the fluid to be measured was selected, and a porous body having a pore diameter larger than ¼ of the wavelength λ of the sound wave was used. The sound absorbing material 16 absorbs the sound wave that causes noise until the sound wave emitted from the flow path 4 reaches the transmitter / receiver 5, so that it is possible to reduce the sound wave that resonates in the space in front of the transmitting / receiving surface 5a. , More accurate measurement is possible. A similar sound absorbing material is also provided on the other transmitter / receiver 6 side, and has the same effect.

(実施の形態3)
図5は本発明の第3の実施の形態を示す断面図であり、不要な音波を減衰させる減衰部としてのくぼみ部17を送受信器5の流路側の手前に設けてある。くぼみ部17の高さhとしては、音波の波長λの1/4よりも大きくしており、流路4から出た計測に不要な音波を反射させて、送受信器5まで伝搬させないようにした。従って、音波を壁面反射させて不要な音波を直接受信させないようにすることにより、容易な形状で高精度な計測が可能となる。なお、他方の送受信器6側にも同様のくぼみ部を設けてあり、同様の効果を有する。
(Embodiment 3)
FIG. 5 is a cross-sectional view showing a third embodiment of the present invention, in which a hollow portion 17 as an attenuation portion for attenuating unnecessary sound waves is provided in front of the channel side of the transceiver 5. The height h of the hollow portion 17 is larger than ¼ of the wavelength λ of the sound wave, so that the sound wave unnecessary for the measurement from the flow path 4 is reflected and does not propagate to the transceiver 5. . Therefore, by reflecting the sound wave on the wall surface so as not to directly receive the unnecessary sound wave, it is possible to perform highly accurate measurement with an easy shape. A similar recess is provided on the other transmitter / receiver 6 side, which has the same effect.

本発明は、計測流路内を流れる流体の流速を計測する超音波式流量計測装置への適用に好適である。   The present invention is suitable for application to an ultrasonic flow measurement device that measures the flow velocity of a fluid flowing in a measurement channel.

1 計測手段
4 流路
6、6 送受信器
12 流量演算手段
14 反射体
15 反射面(減衰部)
16 吸音材(減衰部)
17 くぼみ部(減衰部)
DESCRIPTION OF SYMBOLS 1 Measuring means 4 Flow path 6, 6 Transmitter / receiver 12 Flow volume calculating means 14 Reflector 15 Reflecting surface (attenuation part)
16 Sound absorbing material (attenuation part)
17 Indentation (Attenuation)

Claims (1)

被測定流体が流れる流路と、前記流路の上流と下流に配置された音波を送信または受信する一対の送受信器と、前記送受信器間の超音波信号の伝搬時間を計測する計測手段と、前記伝搬時間に応じて流体の流量を算出する流量算出手段と、前記一対の送受信器のそれぞれの送受信面に対抗して設けられた反射体とを備え、前記一対の送受信器は、共に前記流路の側方に配置され、一方の送受信器から発信された超音波が前記反射体により90度方向を変えられて、前記被測定流体を伝搬した後、再度反射体により90度方向が変えられて他方の送受信器に受信されるように配置すると共に、前記流路から前記送受信器に至る経路に、不要な超音波信号を排除する減衰部を配置し、前記減衰部は、段差状の空間で構成したことを特徴とする超音波式流量計測装置。 A flow path through which a fluid to be measured flows, a pair of transmitters / receivers that transmit or receive sound waves disposed upstream and downstream of the flow path, and a measuring unit that measures a propagation time of an ultrasonic signal between the transmitter / receiver, A flow rate calculating means for calculating a flow rate of the fluid according to the propagation time; and a reflector provided to oppose each transmission / reception surface of the pair of transceivers. An ultrasonic wave placed on the side of the road and transmitted from one transmitter / receiver is changed in direction by 90 degrees by the reflector, propagates through the fluid to be measured, and then changed in direction by 90 degrees by the reflector again. And an attenuation unit that eliminates unnecessary ultrasonic signals is arranged in a path from the flow path to the transmitter / receiver, and the attenuation unit is a stepped space. in ultrasonic characterized by being configured Formula flow rate measuring device.
JP2009291729A 2009-12-24 2009-12-24 Ultrasonic flow meter Expired - Fee Related JP5454129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009291729A JP5454129B2 (en) 2009-12-24 2009-12-24 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009291729A JP5454129B2 (en) 2009-12-24 2009-12-24 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP2011133289A JP2011133289A (en) 2011-07-07
JP5454129B2 true JP5454129B2 (en) 2014-03-26

Family

ID=44346193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009291729A Expired - Fee Related JP5454129B2 (en) 2009-12-24 2009-12-24 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP5454129B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11281424A (en) * 1998-03-26 1999-10-15 Yazaki Corp Gas meter
JP2001311636A (en) * 2000-04-28 2001-11-09 Matsushita Electric Ind Co Ltd Ultrasonic flow rate-measuring device

Also Published As

Publication number Publication date
JP2011133289A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
CN110199179B (en) Ultrasonic flowmeter and method for detecting a throughflow parameter
JP2007529725A (en) Ultrasonic flow rate flow sensor with transducer array and reflective surface
JP2014178202A (en) Ultrasonic flowmeter and method for measuring ultrasonic flow
JP5046330B2 (en) Ultrasonic flowmeter and ultrasonic transducer unit
KR101680998B1 (en) Ultrasonic flow meter, flow velocity measurement method, and flow velocity measurement program
JP6231754B2 (en) Ultrasonic flowmeter and ultrasonic absorber for ultrasonic flowmeter
JP4535065B2 (en) Doppler ultrasonic flow meter
JP4939907B2 (en) Ultrasonic flow meter for gas
JP5454129B2 (en) Ultrasonic flow meter
JP2006292381A (en) Ultrasonic flowmeter
JP2015230260A (en) Ultrasonic flowmeter and method of attaching ultrasonic flowmeter
EP3035006A2 (en) Apparatus and a method for providing a time measurement
JP4797515B2 (en) Ultrasonic flow measuring device
JP2011038870A (en) Ultrasonic flow meter and flow rate measuring method using the same
JP7151311B2 (en) ultrasonic flow meter
JP5369940B2 (en) Ultrasonic flow meter
JP5231278B2 (en) Ultrasonic flow meter
JP2005180988A (en) Ultrasonic flowmeter
JP6393074B2 (en) Ultrasonic absorber pasting method and ultrasonic flow meter
JP2010181321A (en) Ultrasonic flowmeter
JP2014157071A (en) Ultrasonic flow meter, and ultrasonic sensor for ultrasonic flow meter
JP7203352B2 (en) ultrasonic flow meter
JP3368305B2 (en) Ultrasonic flow meter
JP2020076615A (en) Ultrasonic measuring device
JP2004239868A (en) Ultrasonic flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120907

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131223

R151 Written notification of patent or utility model registration

Ref document number: 5454129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees