JPS6155620A - Automatic focusing device - Google Patents

Automatic focusing device

Info

Publication number
JPS6155620A
JPS6155620A JP17905784A JP17905784A JPS6155620A JP S6155620 A JPS6155620 A JP S6155620A JP 17905784 A JP17905784 A JP 17905784A JP 17905784 A JP17905784 A JP 17905784A JP S6155620 A JPS6155620 A JP S6155620A
Authority
JP
Japan
Prior art keywords
distance
information
lens
distance measurement
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17905784A
Other languages
Japanese (ja)
Inventor
Yoichi Iwasaki
陽一 岩崎
Naoya Kaneda
直也 金田
Akihiro Fujiwara
昭広 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP17905784A priority Critical patent/JPS6155620A/en
Publication of JPS6155620A publication Critical patent/JPS6155620A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals

Abstract

PURPOSE:To improve the accuracy of range finding especially in a camera for photographing animation etc. by dividing a range finding area of a sensor as required, and finding the distance of a subject from respective area. CONSTITUTION:Signals from a sensor 19 are A/D converted 24, and picture elements are allotted to memories 41-43 in a gate 40. Hpfs of respective areas are calculated in arithmetic units 44-46, and a value k at which Hf makes zero crossing is found. When values of k obtained by arithmetic units 44-46 are k44-k46, circuits 47-49 calculate k44-k45, k44-k46, k45-k46 respectively. On the other hand, a depth calculating circuit 51 calculates the depth under the photographing condition as the width of the values k basing on information of aperture and information of focal distance of photographing lens system. A comparator circuit 50 compares ¦k44-k45¦, ¦k44-k46¦, ¦k45-k46¦ with the value k, and all are less than the value k, all of subject distances are judged to be within the depth of focus. On the other hand, information of distance k44-k46 is evened off 52, and necessary amount of shifting of a lens is calculated by an arithmetic circuit 57 from information of focal distance, etc. and a motor 27 is driven.

Description

【発明の詳細な説明】 本発明はビデオカメラ、スチールカメラ等の撮影装置に
用いる自動焦点調節装置、特に測距物体に対応して、異
る測距そ−ドが選択できる自動魚点装遣に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic focus adjustment device for use in photographing devices such as video cameras and still cameras, and in particular to an automatic fish point adjustment device that can select different distance measuring modes depending on the distance measuring object. It is related to.

従来、測距すべき物体距離を検出し、撮影レンズを調定
したシ距離情報の表示を行う等、各征自動焦点検出装置
は知られている。例えば米国特許第4185191号等
で示される光電センサー等を用いて測距情報を得るよう
にした装置は広く知られているが次のような問題点があ
る。
2. Description of the Related Art Conventionally, various automatic focus detection devices are known that detect the distance of an object to be measured and display distance information after adjusting a photographic lens. For example, a device disclosed in US Pat. No. 4,185,191 that uses a photoelectric sensor to obtain ranging information is widely known, but it has the following problems.

(1)低輝度下であフ、測距すべき物体のコントラスト
をセンナ−が抽出できない時。
(1) When the sensor cannot extract the contrast of the object to be measured under low brightness.

(乃 測距すべき物体自体が低コントラストで光電セン
サーがその特徴を抽出できない時。
(No) When the object to be measured has a low contrast and the photoelectric sensor cannot extract its features.

(3)測距すべき物体がセンサーの長手方向と同一方向
にくシ返し同じコントラスト特徴を有している時。
(3) When the object to be ranged has the same contrast characteristics as the sensor repeats in the same direction as the longitudinal direction.

(4)異る距Pi11Cちる測距すべき物体が光電セン
チ−内に一1i数ある場合。
(4) When there are objects to be measured at different distances Pi11C within a photoelectric centimeter.

この様な場合に従来は測距不能と判断してモータを停止
させておくか強制的に一方向iceがして合焦点を捜す
か又は定められた停止位置に持っていくなどの手段があ
ったが、特に動画を撮影する際には十分な対策とhe言
いづらかった。
In such cases, conventional methods include determining that distance measurement is not possible and stopping the motor, or forcing the ice to move in one direction to find the focal point, or bringing it to a predetermined stopping position. However, it was difficult to say that the measures were sufficient, especially when shooting videos.

本発明は上述従来例で述べた様な撮影状態における不安
定な測距動作を安定させると共Km影者の撮影意図をあ
る程度まで反映させ、結果としてスムースで見やすい動
画を撮影可能とする手段を提示するものである。
The present invention provides a means for stabilizing the unstable distance measurement operation in the shooting condition as described in the above-mentioned conventional example, and reflecting the shooting intention of the photographer to a certain extent, and as a result, making it possible to shoot a smooth and easy-to-see video. This is what we present.

以下本件の発明の具体的実施例を説明する前に本発明を
適用することのできる自動焦点調節装置の一例を実施す
るに適した形の自動焦点調節装置の光学配置図を示すも
ので、1はレンズ要素、2はレンズ要素の瞳面の像を再
結像するための小レンズ群で、この図では小レンズ2ケ
よシ成る様に描いたが、実際には20ケ以上のものが一
般的である。5〜6は例えばCOD素子よりなる受光素
子の各画素を示し、小レンズ2−1に対しては画素3と
4.2−2に対しては画素5と6が対応し画素6は、小
レンズ2−1を通してアパーチャ8部分・を、画素4は
小レンズ2−1を通してアパーチャア部分をにらんでい
る。同様に画素5は小レンズ2−2を通してアパーチャ
8部分を、゛画素6は小レンズ2−2を通してアパーチ
ャア部分をにらんでいる。前述の様に、実際には小レン
ズ及びセンサーは小レンズで数える20以上の列となっ
ておシ仮に2−1をn番目2−2をn −19目の小レ
ンズであるとすると、説明のため、n番目のレンズを通
してアパーチャ8をにらむ画素をAn、7をにらむ画素
をBn、n−1番目のレンズを通してアパーチャ8をに
らむ画素をAn−1,アパーチャアをにらむ画素をBn
−1とする。
Before explaining specific embodiments of the present invention, an optical layout diagram of an automatic focus adjustment device suitable for implementing an example of an automatic focus adjustment device to which the present invention can be applied is shown below. is a lens element, and 2 is a small lens group for re-forming the image of the pupil plane of the lens element. In this diagram, it is depicted as consisting of 2 small lenses, but in reality there are more than 20. Common. 5 to 6 indicate each pixel of a light receiving element made of a COD element, for example, pixels 3 and 4 correspond to the small lens 2-1, pixels 5 and 6 correspond to the small lens 2-2, and the pixel 6 corresponds to the small lens. The pixel 4 looks at the aperture part 8 through the lens 2-1, and the pixel 4 looks at the aperture part through the small lens 2-1. Similarly, pixel 5 looks at the aperture 8 portion through the small lens 2-2, and pixel 6 looks at the aperture portion through the small lens 2-2. As mentioned above, in reality, the small lenses and sensors are arranged in more than 20 rows counted as small lenses.If we assume that 2-1 is the n-th small lens and 2-2 is the n-19th small lens, then the explanation will be as follows. Therefore, the pixel that looks at aperture 8 through the nth lens is An, the pixel that looks at 7 is Bn, the pixel that looks at aperture 8 through the n-1st lens is An-1, and the pixel that looks at aperture A is Bn.
-1.

F°面はレンズ焦点面に尚たる。即ちビデオカメラを想
定すると撮像管の撮像面位置(等価位置)が7となる。
The F° plane is the focal plane of the lens. That is, assuming a video camera, the imaging surface position (equivalent position) of the imaging tube is 7.

したがってレンズ1が左右方向で位置を変えることによ
って1面(支)正しく結像する被写体距離は異シ、又合
焦距離にある物体の像をOCD列の出力としてとらえる
場合An=Bn%An−,:Bn 1となるのに対して
合焦距離にない物体の像をとらえる時にはAn=Bm、
n←m、となってくる。
Therefore, by changing the position of the lens 1 in the left-right direction, the distance to the object at which one plane (support) can be correctly imaged will vary, and if the image of an object at the focusing distance is captured as the output of the OCD array, An=Bn%An- , :Bn 1, whereas when capturing the image of an object that is not within the focusing distance, An=Bm,
It becomes n←m.

第1図においては距離R1がレンズ1の合焦距離となる
と9点の像はAn、Bn画素(3,4)に入るし、10
点の像はAn−1t Bn−1画素(5,6)に入る。
In FIG. 1, when distance R1 becomes the focusing distance of lens 1, the images of 9 points fall on pixels An and Bn (3, 4), and 10
The image of the point falls into the An-1t Bn-1 pixel (5,6).

逆の見方をすると光線11と12は点10で交わるし、
光線13”と14は点9で交わる。
Looking at it the other way, rays 11 and 12 intersect at point 10,
Rays 13'' and 14 intersect at point 9.

第2図は第1図゛をもって説明した受光素子列の出力を
横軸に受光素子の位置をもって示した図である。この図
では受光素子の画素個数として4個分だけAnとBnの
位置がずれている場合を゛示しこのずれを検出すれば非
合焦が検出できることとなる。
FIG. 2 is a diagram showing the output of the light-receiving element array explained with reference to FIG. 1, with the position of the light-receiving elements plotted on the horizontal axis. This figure shows a case where the positions of An and Bn are shifted by four pixels in the light receiving element, and if this shift is detected, out-of-focus can be detected.

第3図は上記の自動焦点調節装置を実際のビデオカメラ
に組込んだ場合のブロック構成図を示す。同図において
1は撮影レンズ系のうちで所謂前玉と言われる焦点調節
系のレンズ群、15は多くは変倍系と補正系の2群よシ
成シ撮影レンズの焦点距離を可変とするためのレンズ群
、16はハーフプリズム、17は全反射ミ2−118は
AF系のレンズ群、19は第1図で説明した小レンズ列
と受光素子列とを含んだセンサー−L二ツ)、20は絞
シメータ、21は絞夛羽根、22は結像系のレンズ、2
5はこの図ではイメージセンサ−としての固体撮像板、
24はセンサーから得られた信号をデジタル信号とする
秒置換器%25はこの情報及び焦点距離情報合焦距離情
報によシ、合焦、非合焦等の判断を行なうcptr、2
6はモータードライブ回路、27はレンズ群1の位置を
可変とするためのAFモータ、28はレンズ群1の位置
情報を検出するだめのエンコーダ、29は撮影レンズの
焦点距離情報を検出するためのエンコーダ装置である。
FIG. 3 shows a block configuration diagram when the above automatic focus adjustment device is incorporated into an actual video camera. In the figure, 1 is a focus adjustment lens group called the front lens in the photographic lens system, and 15 is often composed of two groups, a variable power system and a correction system, which make the focal length of the photographic lens variable. 16 is a half prism, 17 is a total reflection lens group, 2-118 is an AF system lens group, and 19 is a sensor (L) that includes the small lens array and light receiving element array described in FIG. , 20 is an iris meter, 21 is an iris blade, 22 is an imaging system lens, 2
5 is a solid-state image pickup plate as an image sensor in this figure;
24 is a second converter which converts the signal obtained from the sensor into a digital signal; 25 is a cptr which makes judgments such as in-focus, out-of-focus, etc. based on this information and focal length information;
6 is a motor drive circuit, 27 is an AF motor for varying the position of lens group 1, 28 is an encoder for detecting position information of lens group 1, and 29 is for detecting focal length information of a photographing lens. It is an encoder device.

CPU 25に於ての演算手段は種々知られているが、
例えば 財=ΣCIA(L−Bn’s l  l An+1−B
n I )で算出されるHfがほぼゼロの時が合焦と判
断される。
Various calculation means in the CPU 25 are known, but
For example, goods = ΣCIA(L-Bn's l l An+1-B
In-focus is determined when Hf calculated by n I ) is approximately zero.

ここで第2図のA、力−ヴとBnnカーブずれと方向、
(即ちピンボケの程度とマエピン、アトピンの区別)を
算出するには Hpf=Σ(l An+k ”B+11 1An+に+
+−nl )にて、k=−aからaまで可変としてHp
 fを算出する。ここでaの数値は前述の小しン°ズの
個数によって決定されるものである。
Here, A in Fig. 2, force-V and Bnn curve deviation and direction,
To calculate (that is, the degree of defocus and the distinction between maepin and atopin), Hpf=Σ(l An+k ”B+11 1An+ +
+-nl), Hp is variable from k=-a to a.
Calculate f. Here, the value of a is determined by the number of small pins mentioned above.

第4図は横軸にk、縦軸にHl)fをとった場合の計算
結果を示すが、ここで31はに=0 にてHpf =:
 Oとなり、よってこの状態でピントは合っていると見
なす°ことができる。一方30はkが負、32はkが正
でHI、fがゼロとなっているこの時のkの符号により
前ピン、後ピン、kの絶対値によυボケの程度が算出さ
れる。A、Bのとυ方によるが、仮にkが負の時を後ピ
ンとすると30の結果の時は後ピンでおり、32の時は
前ピンとなる。
Figure 4 shows the calculation results when the horizontal axis is k and the vertical axis is Hl)f, where 31 = 0 and Hpf =:
Therefore, it can be considered that the image is in focus in this state. On the other hand, in 30, k is negative, and in 32, k is positive, HI, and f is zero.The degree of υ blur is calculated based on the sign of k at this time, the front focus, the rear focus, and the absolute value of k. It depends on A, B and υ, but if k is negative, it will be a rear pin, then a result of 30 will be a rear pin, and a result of 32 will be a front pin.

以下、本発明の実施例を上述自動焦点調節装置を併用し
て構成する場合について以下説明する。
Hereinafter, a case will be described in which an embodiment of the present invention is constructed using the above-mentioned automatic focus adjustment device in combination.

第5図〜第14図に本発明の基本的考え方といくつか、
の実施例を示す。本発明の特徴となる部分のこの構成要
素は第5図図示のcpσ25の中のシステム構成によっ
て達成可能であるが、ここでは主にブロック構成図とフ
ローチャートを用いてその内容を説明する。
Figures 5 to 14 show the basic idea of the present invention and some
An example is shown below. Although this component, which is a feature of the present invention, can be achieved by the system configuration in cpσ25 shown in FIG. 5, its contents will be explained here mainly using a block configuration diagram and a flowchart.

第5図及び第6図は本発明に用いられる測距センサに対
する撮影視野の配置図を示すもので、第5図は従来装置
の撮影画面サイズ35とその中で測距のための情報を取
シ出している部分、所謂測距センサーが配置されている
測距視、野の占める位置56を示す。この測距視野の長
さは前述従来例の説明で述べた小レンズ2のピッチ及び
個数光学系18の焦点距離等によシ決定される。
Figures 5 and 6 show the arrangement of the photographing field of view for the distance measuring sensor used in the present invention, and Figure 5 shows the photographing screen size 35 of the conventional device and information for distance measurement within it. The exposed part shows a position 56 occupied by a distance measurement field where a so-called distance measurement sensor is arranged. The length of this distance measuring field of view is determined by the pitch of the small lenses 2 and the focal length of the multi-lens optical system 18, etc., as described in the description of the prior art example.

第6図は、第5図で示したごとく測距エリヤ−1即ち測
距視野をn等分し、それぞれの領域で測距を行なう可く
、測距エリヤ−を3分割して用いる例について図示した
ものである。即ちこの例では従来の測距視野36を仮に
37〜39のQ=3領域に分割し測距結果として、夫々
の3エリヤ−から測距情報を取シ出すものでおる。
Figure 6 shows an example in which the distance measurement area 1, that is, the distance measurement field of view, is divided into n equal parts as shown in Figure 5, and distance measurement can be performed in each area, and the distance measurement area is divided into three parts. This is what is illustrated. That is, in this example, the conventional distance measurement field of view 36 is temporarily divided into Q=3 areas 37 to 39, and distance measurement information is extracted from each of the three areas as the distance measurement results.

測距視野の分割数が増えれば多点の距離情報が得られる
が逆にそれぞれの測距精度は劣化してくる。よってno
数値はこの方式を採用する撮影系ルンズのスペックや設
計をする上での考え方にもよる。以下の実施例ではn=
3として実施例を述べる。
As the number of divisions in the distance measurement field of view increases, distance information from multiple points can be obtained, but conversely, the accuracy of each distance measurement deteriorates. Therefore, no
The numerical value depends on the specs of the camera lens that uses this method and the way of thinking when designing it. In the following examples, n=
Example 3 will be described below.

第7図は、本発明の第1の実施例を示すためのブロック
構成図である。同図に於いてセンサ19よシ被写体寄p
の構成要素は第5図と同一につき省略した。同図に於い
て、センサ19から得られた信号はAμ変換器24にて
デジタル信号化され、ゲート40にて1画素を5つのメ
そり41〜43に振シ分ける。仮にセンナの小レンズを
横から数えて厘1〜1624と名付けるとA1〜4 B
はメモリ41に、/169〜7F616はメモリ42に
、/l617〜7524はメモリ43にストックされ、
44〜4603つの演算器でそれぞれの領域のHpfが
算出される。仮にA61〜I68が第6図の57の位置
腐9〜魔16が38の位置7617〜7g624が59
の位置の画素情報でちったとすると44での演算結果は
37の位置の距離情報、同様に45は38.46は39
の位置の距離情報を示すこととなる。演算器44〜46
では上述のとと< Hfがゼロクロスするkを求めてい
る。従来はこのkを元に撮影レンズの焦点距離からすぐ
に撮影レンズのうちで焦点調節作用に開耳するレンズ群
の移動方向と移動量が算出されそ一ターが駆動するが、
第7図の方法ではまず得られた距離情報、例えばkを回
路47〜49で差を求める。44〜46で得られたk 
t−に44+に45+に46とすると回路47ではに4
4−に45、回路48ではに44−に46s回路49で
はに4s、−に46が計算される。一方深度演算回路5
1では絞υメータ(不図示)よシ得られる絞シ情報とエ
ンコーダ等によシ得られる撮影レンズ系の焦点距離情報
fを元にその撮影状況下での深度をkの巾として算出す
る。同実施形態によっては、深度演算を行なわず代表的
なkの巾と比較することでもよい。又ここで云う深度と
は設計意図によシその数式を自在に設定できる。
FIG. 7 is a block diagram showing the first embodiment of the present invention. In the same figure, the sensor 19 is closer to the subject than p.
The constituent elements are the same as in FIG. 5 and are omitted. In the figure, a signal obtained from a sensor 19 is converted into a digital signal by an Aμ converter 24, and a gate 40 divides one pixel into five mesolis 41-43. If we count Senna's small lenses from the side and name them Rin 1-1624, they are A1-4 B.
are stored in the memory 41, /169 to 7F616 are stored in the memory 42, /1617 to 7524 are stored in the memory 43,
Hpf of each area is calculated by three computing units 44 to 460. If A61-I68 is at 57 in Figure 6, 9-16 is at 38, and 7617-7g624 is at 59.
If we calculate the pixel information at position 44, the calculation result at 44 is the distance information at position 37, and similarly, 45 is 38, and 46 is 39.
This will show the distance information of the position. Arithmetic units 44 to 46
Now, we are looking for k at which the above and < Hf cross zero. Conventionally, based on this k, the direction and amount of movement of the lens group in the photographic lens that is open to the focusing action is calculated immediately from the focal length of the photographic lens, and that lens is driven.
In the method shown in FIG. 7, the difference between the obtained distance information, for example k, is first determined by circuits 47-49. k obtained in 44-46
If t- is 44+, 45+ is 46, in circuit 47, it is 4
The circuit 48 calculates 45 for 4-, the circuit 49 calculates 4s for 44-, and the circuit 49 calculates 46 for -. On the other hand, depth calculation circuit 5
In step 1, the depth under the photographing situation is calculated as the width of k based on the aperture information obtained from an aperture υ meter (not shown) and the focal length information f of the photographing lens system obtained from an encoder or the like. Depending on the embodiment, comparison may be made with a representative width of k without performing depth calculation. Also, the depth referred to here can be freely set according to the design intention.

比較回路50ではこのkとl ksa −に4s l 
l k44−に4611 k4s−ka61との比較が
行なわれる。その結果l k44−に4sl ll k
at−に461 r l k4s−に461の全てかに
以下であれば画面内の3領域の被写体距離の全てが深度
内であると判断されるし逆にkを越える場合は5領域内
全てに合焦することができない所領遠近競合被写体でち
ると判断がなされる。この場合は警告回路55にて・円
らかの警告が発せられる。
In the comparator circuit 50, 4s l is added to this k and l ksa -.
A comparison is made to l k44- with 4611 k4s-ka61. As a result l k44-4sl ll k
at- is 461 r l k4s- is all 461 or less, all of the subject distances in the three areas in the screen are determined to be within the depth of field, and conversely, if it exceeds k, all of the subject distances in the five areas are It is determined that there is a conflicting subject in terms of distance and distance that cannot be focused on. In this case, the warning circuit 55 issues a round warning.

警告の手段としては従来公知の各種の方法がある(例え
ばファインダー内でLEDを点灯させる、発音ブザーで
知らせる等)。
There are various known warning methods (for example, lighting an LED in the viewfinder, sounding a buzzer, etc.).

一方Hpf演算回路で得られた3つの距離情報に44 
+ k45 r k46は平均化回路52で平均化され
る。
On the other hand, the three distance information obtained by the Hpf calculation circuit are 44
+ k45 r k46 is averaged by the averaging circuit 52.

5w56がつながると演算回路57で焦点距離情報F、
f等によシ、レンズの必要移動量が算出されモータが駆
動される。
When 5w56 is connected, the arithmetic circuit 57 outputs focal length information F,
The required movement amount of the lens is calculated based on f, etc., and the motor is driven.

同3つの距離情報に44〜に46内のバラツキが深度外
であった時、警告を発するが、その時のレンズの制御と
してはロックをしておいてもあるいは警告を発しながら
も8w56がつながる様にしてもよいう 又、ここで述べた測距視野の分割を行う主旨を遠近競合
の検知だけに用いてもよい。この場合測距動作は、通常
の1ゾーンで常に行なうものである。
When the variation in the distance information of the same three ranges from 44 to 46 is outside the depth, a warning will be issued, but at that time, the lens control will be such that the 8w56 will be connected even if it is locked or even if the warning is issued. Alternatively, the purpose of dividing the distance measurement field of view described here may be used only for detecting near and far conflicts. In this case, the distance measuring operation is always performed in one normal zone.

第8図は本発明のIrf徴である測距視野のn分割を用
いた別の実施例を示している。第8図の実施例の特徴と
するところは二分割された測距視野のうち任意の測距視
野を撮影者が自分の意志で選択可能とするもので、その
為の視野設定をブロック58にて行なう。これはカメラ
外部に設けられた操作つまみ等によって達成される例え
ばM6図の様に、測距視野を3分割した場合で左側の測
距視野37を選んだ場合にはその部分の信号、仮にセン
サーが7161〜A24の小レンズ群からなる時は1g
 i〜扁8の信号のみがゲート40を通過しメモリ59
にストックされる。
FIG. 8 shows another embodiment using the Irf characteristic of the present invention, in which the field of view for distance measurement is divided into n. The feature of the embodiment shown in FIG. 8 is that the photographer can select any one of the two divided distance measurement fields according to his/her will, and the field of view setting for this purpose is set in block 58. Let's do it. This is achieved by an operation knob etc. provided on the outside of the camera.For example, as shown in figure M6, if the distance measurement field of view is divided into three and the left distance measurement field of view 37 is selected, the signal of that part, if the sensor is 1g when it consists of small lens groups from 7161 to A24.
Only the signals from i to 8 pass through the gate 40 and are stored in the memory 59.
will be stocked in

又視野設定手段58は、このようなn分割の他に被写体
の大きさに分わせて任意の位置長さは指定することも可
能である。
In addition to such division into n, the field of view setting means 58 can also designate arbitrary position lengths depending on the size of the subject.

第9図は、本発明の他の特徴である測距視野のn分割を
用いた更に別の実施例を示しているこの実施例では得ら
れた3つの被写体距離のうちで、最も至近距離の演算結
果をもってレンズ停止位置を決定する方式である。
FIG. 9 shows yet another embodiment using the n-division of the distance measuring field, which is another feature of the present invention. This method determines the lens stop position based on the calculation results.

即ち遠近競合被写体の場合の多くは撮影したい被写体は
よシ至近側にちる。(例えば風景の中に被写体でちる人
がいる時などを考えるとよい。) メモリ41、メモリ42、メモリ43には第7図の実施
例と同様に測距視野の左側、中央、右側、の3つの情報
がそれぞれ取り込まれていζ色 る。演算回路44〜46ではHでが計算され、結果ゼロ
ク四スのに値が求まる比較回路62及び63ではこのに
値が1(g次比較され、この比奴の結果最も至近よシの
被写体距離を選び出し演算回路61に伝達される。演算
回路61では従来例で説明した様に焦点距離情報54か
ら焦点ズレの方向と量が算出される。その結果はMo−
Drive回路26に伝わり、レンズ駆動用のモータ2
7が駆動するものでちる。
In other words, in the case of competing subjects, the subject to be photographed is often located on the near side. (For example, consider when there is a person who is a subject in a landscape.) The memory 41, memory 42, and memory 43 contain data for the left, center, and right sides of the distance measurement field of view, as in the embodiment shown in FIG. Each of the three pieces of information is captured in a different color. The arithmetic circuits 44 to 46 calculate H, and the comparator circuits 62 and 63, which calculate the value of zero x 4, compare this value to 1 (g), and as a result of this, the closest object distance is calculated. is selected and transmitted to the arithmetic circuit 61.The arithmetic circuit 61 calculates the direction and amount of focus shift from the focal length information 54 as explained in the conventional example.The result is Mo-
The signal is transmitted to the drive circuit 26, and the motor 2 for driving the lens
7 is the one that drives it.

第10図は第7図で述べた深度演算を焦点調節動作の判
断とする考えを含んだ別の実施例であり、深度範囲内に
全ての被写体距離がある時は、通常動作を、また、nヶ
の測距結果のバラツキが所定の深度を越えている時は最
至近の被写体距離合焦位置にレンズを停止すべくそ一タ
ーを駆動するものである。
FIG. 10 shows another embodiment that includes the idea of using the depth calculation described in FIG. 7 as a judgment for focus adjustment operation, and when all subject distances are within the depth range, normal operation is performed, and When the dispersion of the n distance measurement results exceeds a predetermined depth, the lens is driven to stop the lens at the closest subject distance focusing position.

第7図の実施例と同様、比較回路50では深度演算回路
の結果と各測距視野から算出された距離間でのバラツキ
が比較されその結果3ゾーン、(各回路の増設によυn
ゾーンとするととができる)の測距結果が全て深度内の
時は5w64がONLセンサー全域を1ゾーンとした通
常の測距動作が行なわれる。又バラツキが深度外の時に
は演算回路61では41〜43のメモリから最至近距離
の結果を得ている信号を取シ出し焦点距離情報から測距
方向とズレ量を算出しモータ27を駆動するものである
Similar to the embodiment shown in FIG.
When all distance measurement results are within the depth range, 5w64 performs normal distance measurement operation with the entire ONL sensor area as one zone. When the variation is outside the depth, the arithmetic circuit 61 extracts the signal from the memories 41 to 43 that indicates the closest distance, calculates the distance measurement direction and the amount of deviation from the focal length information, and drives the motor 27. It is.

第11図は第10図で示した本発明の実施例のシステム
のフローチャートを示し、ステップ65では各ゾーンで
のHpfが計算される。この例においてはセンサーを3
分割した例を示し右側C1,l中央、左側をそれぞれR
,M、Lとするとステップ65では即ちHpfR、Hp
fM 、 HpfLが算出される。ステップ66ではこ
の各ゾーンのHpfからHpfがゼロクロスする時のに
値を求める。ステップ67ではこの例ではこのに値と焦
点距離情報から各測距ゾーン毎の被写体距離を求めそれ
をピント面位置として算出しているが、これは比較上の
パラメータを揃えるだめのものでステップ69における
深度算出をkの巾として算出する時には、ステップ67
は不用となる。ステップ68ではステップ67で算出さ
れた各焦点面位置の差の絶対値を求め、ステップ69で
算出される焦点深度中E(多くはE=2.8・Fここで
、δ;錯乱円形)と各ゾーンでの差り、〜D、の9ちで
M△Xを示しているDIZlaXはステップ70で比較
される(M2O図に於ける比較回路50に当たる部ゆで
ある)。ステップ70での判定の結果、DIllaXが
Eよυも小さければ遠近競合被写体ではないと判断され
るため自動焦点調節はセンサー全域を1ゾーンとした通
常の測距動作を行う。一方DmaXがy4.l:J)も
大きい時はステップ71において3シー/中最も至近距
離のものを選び出しステップ72でモータを回転させる
ためO具体的な演算を行う。以降ステップ73〜75で
所定の七−夕の駆動が行なわれる・ 第12図は遠近競合被写体を検出した後、そのnヶの測
距結果から単純に最至近の結果を優先させず、絞υ装置
等から被写体の輝度情報を知シこれをもとに最至近のも
のと最遠方のものを選ぶ等の選択をさせる場合の他の変
形例を示すもので、輝度情報検知76の結果から演算回
路61にとシ込む測距視野位置を選び出している。
FIG. 11 shows a flowchart of the system according to the embodiment of the present invention shown in FIG. 10, and in step 65, Hpf in each zone is calculated. In this example, we use 3 sensors.
Showing an example of division, the right side is C1, l center, and the left side is R, respectively.
, M, L, in step 65, that is, HpfR, Hp
fM and HpfL are calculated. In step 66, a value is calculated from the Hpf of each zone when Hpf crosses zero. In this example, in step 67, the subject distance for each distance measurement zone is determined from this value and the focal length information, and this is calculated as the focal plane position, but this is only to align the parameters for comparison, so step 69 When calculating the depth in the width k, step 67
becomes unnecessary. In step 68, the absolute value of the difference between the focal plane positions calculated in step 67 is calculated, and the depth of focus E (mostly E=2.8・F, where δ is a circle of confusion) calculated in step 69 is calculated. DIZlaX showing M.DELTA.X at the 9th point of the difference .about.D in each zone is compared in step 70 (this is the portion corresponding to the comparison circuit 50 in the M2O diagram). As a result of the determination in step 70, if DIllaX is smaller than E and υ, it is determined that the object is not a conflicting object, so the automatic focus adjustment performs a normal distance measurement operation with the entire sensor area as one zone. On the other hand, DmaX is y4. When l:J) is also large, in step 71 the one closest to the 3 seas is selected and in step 72 specific calculations are performed to rotate the motor. Thereafter, a predetermined Tanabata drive is performed in steps 73 to 75. Figure 12 shows that after detecting a competing object near and far, the aperture υ is changed without simply prioritizing the closest result from the n distance measurement results. This shows another modification example in which the brightness information of the subject is learned from a device etc. and based on this information, the user is asked to select the nearest object and the farthest object. The distance measuring field position to be entered into the circuit 61 is selected.

第13図は$10.11図で述べた実施例において遠近
競合を検知した後K、輝度情報検知76の結果から例え
ば、輝度が定められた閾値によシ明るいか暗いかによυ
明るい時は戸外に於いて遠方の被写体を撮影する確率が
高いので最遠方の測距結果(構成によっては中間のもの
)を又暗い時には最至近の測距結果を用いる変形例を示
すものである。
FIG. 13 shows the result of the brightness information detection 76 after detecting the conflict between far and near in the embodiment described in FIG.
When it is bright, there is a high probability of photographing a distant subject outdoors, so this is a modified example in which the farthest distance measurement result (or an intermediate one depending on the configuration) is used, and when it is dark, the closest distance measurement result is used. .

第14図は第13図で述べた実施例の動作をフローチャ
ートで示したものでステップ70での遠近判断結果がN
O”即ち遠近競合被写体である場合にはステップ78に
おいて輝度が定められたしきい値によシ明るいか暗いか
を検知している。この判断の結果、暗い場合ステップ7
1で最至近の測距結果が選ばれるし、明るい場合この例
では最遠方の測距結果がステップ79で選ばれる。以下
は上記実施例と同様の動きとなるものである。
FIG. 14 is a flow chart showing the operation of the embodiment described in FIG.
In other words, if the object is a conflicting object, it is detected in step 78 whether the brightness is bright or dark according to a predetermined threshold value.If the result of this judgment is that it is dark, step 7
1, the closest distance measurement result is selected, and if it is bright, in this example, the farthest distance measurement result is selected in step 79. The following operations are similar to those in the above embodiment.

以上説明した様に本発明に於いてはセンサーの測距エリ
ヤを必要に応じてn分割してそれぞれの領域から被写体
距離を知る様に構成したために、遠近競合被写体等の警
告を行ったり、また測距視野の選択することにより、遠
近競合被写体の近距離の優先、輝度情報等により優先距
離の選択をするなど、特に動画撮影用のカメラ等におい
てその測距粒度を格段に向上することが出来るようにな
シ、自動焦点調節装置として極めて有効である。
As explained above, in the present invention, the distance measurement area of the sensor is divided into n parts as necessary, and the subject distance can be determined from each area. By selecting the distance measurement field of view, it is possible to significantly improve the granularity of distance measurement, especially in cameras for video shooting, such as prioritizing short distances for competing subjects, and selecting priority distances based on brightness information, etc. As such, it is extremely effective as an automatic focus adjustment device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明を適用する従来の自動焦点検出装置の
原理図、 第2図はf41図示装置の信号波形図、第6図は第1図
示装置を適用した、ビデオカメラの自動焦点調節装置の
全体講成 図、 第4図は第1図示装置に用いられる検出信号波形図、 第5図は撮影視野中の測距エリヤを示す説明図、 第6図は第5図示説明図の動作説明図、第7図は本発明
に係る自動焦点調節装置の全体構成ブロック図、 第8図は第7図示装置変形例図、 第9図は第7図示装置の他の変形実施例図、第10図は
第7図示装置の更に他の変形例図、第11図は第10図
示装置の動作フローチャート図、 第12図は第7図示装置の更に他の変形例図、第13図
は第7図示装置の更に他の変形例図、第14図は第13
図示装置の動作70−チャ−ト 図 、 19 ・・・測距センサー 40・・・分割エリヤを設定するゲート41.42.4
3・・・各エリヤの距離情報メモ+7−44.45.4
6・・・演算回路 特許出願人  キャノン株式会社 溶1図 慕2図 ハw、Ijtl 、//        tb            
57第8図 第9図 第13図
FIG. 1 is a principle diagram of a conventional automatic focus detection device to which the present invention is applied, FIG. 2 is a signal waveform diagram of the F41 illustrated device, and FIG. 6 is an automatic focus adjustment of a video camera to which the first illustrated device is applied. Figure 4 is a diagram showing the detection signal waveform used in the device shown in Figure 1. Figure 5 is an explanatory diagram showing the ranging area in the photographic field of view. Figure 6 is the operation of the diagram shown in Figure 5. 7 is a block diagram of the overall configuration of the automatic focusing device according to the present invention, FIG. 8 is a diagram showing a modification of the device shown in FIG. 7, and FIG. 9 is a diagram of another modification of the device shown in FIG. 10 is a diagram of still another modification of the device shown in FIG. 7, FIG. 11 is an operation flow chart of the device shown in FIG. 10, FIG. 12 is a diagram of still another modification of the device shown in FIG. Still another modification of the illustrated device, FIG. 14 is the thirteenth
Operation 70-chart of the illustrated device Fig. 19...Distance sensor 40...Gate 41.42.4 for setting divided areas
3...Distance information memo for each area +7-44.45.4
6...Arithmetic circuit patent applicant: Canon Co., Ltd.
57Figure 8Figure 9Figure 13

Claims (2)

【特許請求の範囲】[Claims] (1)測距エリア内の信号を用いて一つの被写体距離を
演算する場合と測距エリア内をn分割してnヶの被写体
距離を演算する場合とを切換え又は同時に使用すること
のできる測距装置。
(1) A measurement system that can switch between calculating one object distance using signals within the distance measurement area and calculating n object distances by dividing the distance measurement area into n parts, or use them simultaneously. range device.
(2)nヶの測距結果の差がある定められた条件下では
警告装置が働くことを特徴とする特許請求の範囲第(1
)項記載の測距装置。
(2) Claim No. 1 (1) characterized in that the warning device operates under a defined condition in which there is a difference between n distance measurement results.
) Distance measuring device described in item 2.
JP17905784A 1984-08-27 1984-08-27 Automatic focusing device Pending JPS6155620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17905784A JPS6155620A (en) 1984-08-27 1984-08-27 Automatic focusing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17905784A JPS6155620A (en) 1984-08-27 1984-08-27 Automatic focusing device

Publications (1)

Publication Number Publication Date
JPS6155620A true JPS6155620A (en) 1986-03-20

Family

ID=16059355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17905784A Pending JPS6155620A (en) 1984-08-27 1984-08-27 Automatic focusing device

Country Status (1)

Country Link
JP (1) JPS6155620A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370814A (en) * 1986-09-12 1988-03-31 Fuji Photo Film Co Ltd Automatic focusing method
JPH01232315A (en) * 1988-03-14 1989-09-18 Chinon Ind Inc Automatic variable power device for zoom lens of camera
JPH0312573U (en) * 1989-06-20 1991-02-07
US5041859A (en) * 1988-10-04 1991-08-20 Nikon Corporation Automatic focusing detection device for cameras
WO2015080164A1 (en) * 2013-11-26 2015-06-04 株式会社ニコン Focal point detection device, and imaging device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370814A (en) * 1986-09-12 1988-03-31 Fuji Photo Film Co Ltd Automatic focusing method
JPH01232315A (en) * 1988-03-14 1989-09-18 Chinon Ind Inc Automatic variable power device for zoom lens of camera
US5041859A (en) * 1988-10-04 1991-08-20 Nikon Corporation Automatic focusing detection device for cameras
JPH0312573U (en) * 1989-06-20 1991-02-07
WO2015080164A1 (en) * 2013-11-26 2015-06-04 株式会社ニコン Focal point detection device, and imaging device
US10122910B2 (en) 2013-11-26 2018-11-06 Nikon Corporation Focus detection device and image-capturing apparatus
US10291840B2 (en) 2013-11-26 2019-05-14 Nikon Corporation Focus detection device and image-capturing apparatus

Similar Documents

Publication Publication Date Title
JPS61279829A (en) Photometric device for camera
WO2011004686A1 (en) Focus detection apparatus
JP2605282B2 (en) Automatic focusing device
JPS6155618A (en) Automatic focusing device
JPH11190816A (en) Optical device and focusing point selecting method
JP2003029135A (en) Camera, camera system and photographic lens device
JPH1125263A (en) Object feature point detector, focus adjusting device, exposure controller and camera
JPH10160410A (en) Range finder
JP2000180709A (en) Range-finding device
JPH0439635A (en) Photometry device
JPH10186460A (en) Range-finding device for camera
US6636699B2 (en) Focus detection device and distance measurement device
JPH03132611A (en) Automatic power varying device for camera zoom lens
JPH1138313A (en) Optical device and camera
JPS6155620A (en) Automatic focusing device
JP4542126B2 (en) Focus detection device
JP3630965B2 (en) Focus detection apparatus, camera, and focus detection method
US5721977A (en) Distance measuring apparatus of camera improved in measuring process
JPH11337814A (en) Optical device
US7027726B2 (en) Camera having proper exposure controlling function
JP4497567B2 (en) Focus detection device, distance measuring device and optical instrument
JP6234094B2 (en) Focus detection apparatus and imaging apparatus
JP4391637B2 (en) camera
JPS6155619A (en) Automatic focusing device
JPS6153614A (en) Automatic focusing device