JPS6155560B2 - - Google Patents

Info

Publication number
JPS6155560B2
JPS6155560B2 JP54127371A JP12737179A JPS6155560B2 JP S6155560 B2 JPS6155560 B2 JP S6155560B2 JP 54127371 A JP54127371 A JP 54127371A JP 12737179 A JP12737179 A JP 12737179A JP S6155560 B2 JPS6155560 B2 JP S6155560B2
Authority
JP
Japan
Prior art keywords
absorption
tower
hydrogen sulfide
oxygen
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54127371A
Other languages
Japanese (ja)
Other versions
JPS5650994A (en
Inventor
Akira Nokimura
Yasuo Aikawa
Fumio Yamagata
Hiroyuki Suganuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Kasei Chemicals Ltd
Original Assignee
Kawasaki Kasei Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Kasei Chemicals Ltd filed Critical Kawasaki Kasei Chemicals Ltd
Priority to JP12737179A priority Critical patent/JPS5650994A/en
Publication of JPS5650994A publication Critical patent/JPS5650994A/en
Publication of JPS6155560B2 publication Critical patent/JPS6155560B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、燃料ガスとくにコークス炉ガスの脱
硫に関する。さらに詳しくは硫化水素及びシアン
化水素を含有する燃料ガスをタカハツクス法、フ
マツクス法及びストレツトフオード法などのレド
ツクス触媒を用いる湿式脱硫法により脱硫するプ
ロセスの改良に関するものである。 従来のレドツクス触媒を用いる湿式脱硫法、例
えばタカハツクス法は主として硫化水素含有ガス
から硫化水素を吸収する吸収塔及び吸収液を酸化
する再生塔から、成り立つている。 燃料ガス中の硫化水素及びシアン化水素などの
酸性ガスを吸収する向流式の吸収塔において酸性
ガスを吸収するにつれて吸収液中に水硫化物及び
シアン化物が蓄積し、吸収塔下方においては酸性
ガスの吸収速度が著しく低下するため吸収塔は比
較的大型化し、さらに再生塔においては酸性ガス
を吸収した吸収液を空気等の酸素含有ガスで酸化
して硫化物を元素状硫黄および硫黄酸に、シアン
化物をロダン塩に変換するが、再生塔においては
空気の拡散律速のため気液接触に要する時間が或
程度必要であり、再生塔は比較的大型になり設備
コストが大きくなつた。その上、従来の再生塔は
下部から空気等の酸素含有ガスを供給し、上部か
ら排ガスを大気に放出する方式のため、吸収され
た硫化水素が再放出され、またアルカリ源として
アンモニアを用いる方式においてはアンモニアが
排気に同伴され、二次公害の恐れがあつた。 本発明者等は従来のレドツクス触媒を用いる湿
式脱硫方法における上記の欠点を克服する方法に
ついて鋭意検討した。 その結果、再生塔の排気ガスに含まれる酸素を
利用することを思いつき、再生塔の排気ガスを吸
収塔に供給したところ、吸収塔においても水硫化
物の酸化が行なわれ、シアン化物も速やかにロダ
ン塩に変り、燃料ガス中の酸性ガスの吸収を阻害
する因子が取除かれて吸収能率が向上することが
わかつた。 しかも、再生塔からの大気中へ放出されるガス
が全くなくなり悪臭などの二次公害の恐れも全く
消失する一挙両得の方法を見出し本発明を完成し
た。 本発明は、硫化水素及びシアン化水素を含有す
る燃料ガスを吸収塔に供給し、レドツクス触媒を
含有するアルカリ性吸収液によつて硫化水素及び
シアン化水素を吸収し、該吸収液を再生塔に供給
し酸素含有ガスと接触させ、硫化水素を硫黄若し
くは硫黄酸化物およびシアン化水素をロダン化物
として除去する燃料ガスの脱硫及び脱シアン化水
素法において再生塔からの排出ガスを、燃料ガス
に含有される硫化水素に対して燃料ガスに含有さ
れる酸素を加えた全酸素量が2.0〜10モル倍にな
るように調節しながら、吸収塔に導入し、同時に
吸収塔に供給される燃料ガスと共に吸収液と接触
させることによつて硫化水素及びシアン化水素の
吸収を促進することを特徴とする湿式吸収および
湿式酸化による燃料ガスの脱硫及び脱シアン化水
素方法に存する。 以下、本発明を図面に基づいて詳細に説明す
る。 第1図は、上部に吸収液を散布するスプレーノ
ズル4を備えた充填塔型式の吸収塔3、吸収液を
酸化再生する気泡塔形式の再生塔11、及び析出
した硫黄を過する過機18からなる本発明の
実施態様である。 硫化水素及びシアン化水素等の酸性ガス並びに
アンモニアを含有する燃料ガス(例えばコークス
炉ガス)Aは、再生塔11からの所定量の酸素を
含有した排出ガスBと共に吸収塔3の下部の導入
管1から吸収塔11へ供給され、吸収塔3の上部
のスプレーノズル4から散布された吸収液Cと向
流的に接触して酸性ガスを吸収したのち、吸収塔
3の塔頂導出管6から排出され燃料ガスとして供
される。 燃料ガスA中の酸性ガス及びアンモニアは吸収
液に水硫化アンモニウム、シアン化アンモニウ
ム、水酸化アンモニウムとして吸収されると共に
ガス中に一定量含まれる酸素と吸収液中に含まれ
るレドツクス触媒の作用を受け、相当量元素硫
黄、チオ硫酸アンモニウム及びロダン酸アンモニ
ウムに変化し吸収塔排出液Dとして導出管7を経
て吸収塔排出液受槽8に溜められ、さらにポンプ
9により導入管10を経て再生塔11に供給され
る。 再生塔11の下部からは、酸素含有ガス、通常
空気Eを導入管12より供給し、吸収塔排出液D
に含まれる硫化物を硫黄等に酸化せしめ、かつレ
ドツクス触媒を再生する。再生された吸収液は導
出管13を経て吸収液受槽14に貯留され、析出
した元素状硫黄を濃縮し、上澄液を吸収液Cとし
てポンプ15により導入管5から吸収塔3に供給
する。元素硫黄が濃縮された吸収液の一部は、ポ
ンプ17により導出管16から抜き出され過機
18で過され液Fは吸収液受槽14に循環さ
れる。元素硫黄ケーキGは受器20を経て回収さ
れる。 系内の水及び触媒の不足分については補給水H
は導入管21から及び触媒Jは導入管22から吸
収塔排出液受槽8に供給される。又、必要ならば
消泡剤Kは導入管23より吸収液受槽14に供給
される。吸収液中の塩類濃度を増加させないため
には液の一部を排出管24より系外へ排出し、
必要により液中燃焼し硫酸アンモニウムとして有
効成分を回収することもできる。 本発明の方法における吸収塔としては、スプレ
ー塔、充填塔、気泡塔、等が使用できる。しか
し、対象ガスがコークス炉ガスである場合は、処
理ガス量が大きいので、圧力損失の特に大きな気
泡塔は不適当であろう。 また気液接触効率の低いスプレー塔は大型にな
りやすいので、設備を小型化するという本発明の
主旨に合致しない。したがつて充填塔が最も適し
ていると云える。充填物としては空隙率の大きい
合成樹脂製充填物が適する。 また液流の偏りとデツドスペースの形成を防止
するための層高は小さくする一方、段数を多く
し、望ましくは各段の間に吸収液再分散装置を設
け、また各段を連続または断続的に洗浄できるよ
うな構造とするのが望ましい。 洗浄液としては、吸収塔から出た吸収液Dまた
は、再生吸収液の上澄液Cが適当である。 一般に、コークス炉ガスなどの燃料ガス中に
は、硫化水素の他に可成の量のシアン化水素が含
まれ、これらの酸性ガスは吸収液に吸収されると
水硫化イオン及びシアンイオンを生成する。水硫
化イオンは触媒の存在下に混合ガス中の酸素によ
つて酸化されて硫黄となり、この発生直後の微細
硫黄が水硫化イオンと容易に反応して多硫化硫黄
を経て硫黄酸に転化し、一方、シアンイオンとも
反応してロダン塩を生成する。 このように、比較的強い酸の塩類が存在すると
硫化水素の吸収率は次第に低下する。例えば、直
径1.5cm、長さ1.5cmの磁製ラシヒリングを、内径
10cmのガラス製吸収塔に層長1mまで充填し、塔
の下部からアンモニア1容量%、硫化水素0.3容
量%及び残量窒素の混合ガスを1500N/hrで送
入し、塔頂からは30℃の吸収液3種類(第2図に
おいて、P線は水、Q線はNH4OH 400モル/m3
+NH4SCN 500モル/m3の水溶液、R線は
NH4OH 400モル/m3+NH4SCN2000モル/m3
水溶液を吸収液として用いた)を75/hrの割合
で供給した。その結果は第2図で示したように、
吸収液の塩(ロダンアンモニウム)濃度を高くす
ると脱硫率は水硫化イオン濃度が高くなるにつれ
て大巾に低下する傾向にある。従つて、脱硫率を
高く保持するには、コークス炉ガス等の燃料ガス
ではロダン塩の生成は不可避である以上、できる
だけ吸収塔内における水硫化イオン濃度を常に低
く保持することが必要である。そのために、本発
明のように燃料ガスに一定量以上の酸素を存在さ
せると、吸収液が硫化水素等を吸収しつつ吸収塔
内を流下し、吸収と同時に生成する水硫化イオン
は燃料ガス中の酸素により酸化されその濃度は常
に低く保たれるので、吸収塔全域においてロダン
酸塩等が存在しているにもかかわらず硫化水素吸
収率は高く保たれる。その結果、吸収塔の容積を
従来よりも小型にすることができる。 燃料ガスとして代表的なコークス炉ガス中に
は、硫化水素が約0.3容量%及び酸素が約0.3容量
%含まれている。しかしながら、後記の実験例に
示すように酸素量が含有硫化水素に対して2倍以
下(0.6容量%)では硫化水素の吸収率、換言す
れば吸収速度は極めて遅いことが示されているか
ら、通常のコークス炉ガスにおいては当然、酸素
含有ガスを補給しなければならない。そのために
は、再生塔においてまず酸素含有ガス、典型的に
は空気、を供給し残留する硫化物を酸化し、触媒
を再生したのちそこから排出される排出ガスを吸
収塔に供給し、吸収塔の酸素源として補給すれ
ば、環境上も好都合である。その場合、酸素含有
ガスの供給量は燃料ガスに含有される硫化水素に
対して酸素として2.0モル倍以上、好ましくは2.5
〜10モル倍さらに好ましくは3〜4モル倍になる
ように調節すればよい。それにより、上記した代
表的なコークス炉ガスの硫化水素濃度である0.3
容量%を基準にすれば吸収塔に供給する酸素含有
ガスの濃度は全ガス量に対して約0.6好ましくは
0.75〜3.0容量%が実質的に保持される。 酸素濃度が少ない(0.75容量%以下)と実験例
に示したように硫化水素の吸収速度が低下し、脱
硫率が悪くなり、一方過剰であつても効果はそれ
ほど変らないばかりでなく、経済的ではないの
で、工業的には好ましくない。 なお、上記の酸素濃度範囲であるならば、通常
のコークス炉ガス(たとえば、水素56%、メタン
27%、低級炭化水素3%及び一酸化炭素8%等)
では爆発のおそれはない。 本発明においても、再生塔では吸収塔から排出
される吸収液に存在する水硫化イオン(又は硫化
物)が酸化され、元素状硫黄又は硫黄酸に転換
し、レドツクス触媒は還元型から酸化型に再生さ
れる。 しかしながら、吸収塔で再生反応の大半が済ん
でいるので、従来の脱硫方式における再生塔より
負荷は小さい。一般に、レドツクス触媒を用いる
湿式脱硫法では硫化水素を元素状硫黄として回収
するか又は硫黄として取出さずに硫黄酸として回
収する方法があるが、本発明は前者はもちろん後
者の方式でも公知の条件を適用することにより実
施しうる。 再生塔としては気泡塔および充填塔のいずれも
使用しうる。いずれの場合も水硫化物とレドツク
ス触媒との反応には一定の時間を要するので、水
硫化物と触媒の濃度によつて系全体のホールドア
ツプを決定する必要がある。 例えば、レドツクス触媒として1・4−ナフト
キノン−2−スルホン酸アンモニウムを用い、そ
の濃度が3モル/m3のときは水硫化物の半減期は
約3分、ほぼ全量が消失する時間は約20分であ
る。さらに、同触媒にオキシカルボン酸の鉄キレ
ート、例えばリンゴ酸鉄アンモニウムのような助
触媒が0.02モル/m3共存すれば、所要時間は前記
の1/3になる。 レドツクス触媒としては、公知の触媒が用いら
れる。例えば、1・4−ナフトキノン−2−スル
ホン酸塩などのナフトキノン誘導体(タカハツク
ス法)、アントラキノン−2・7−ジスルホン酸
などのアントラキノン誘導体(スレツトフオード
法)、ピクリン酸及びその誘導体(フマツクス
法)並びに鉄塩又はこれらの触媒に鉄キレート化
合物などの錯体を助触媒として共存させてもよ
い。 本発明によれば、吸収塔及び再生塔の容量を小
型化することが可能であり、再生塔の排ガスを吸
収塔に供給するので従来問題となつていた再生塔
廃ガスの臭気問題を同時に解決することができ
る。 以下本発明を実験例及び実施例に基いて、さら
に具体的に説明する。 実験例 内径20cm、高さ150cmで、途中に2枚の気泡分
散網を備えた気泡塔に、塔底から吸収液をポンプ
によつて40/hrの割合で供給し、高さ130cmのノ
ズルから溢流させ、過器を通したのち、再び気
泡塔に供給した。また、塔底のグラスフイルター
(直径4.5cm。2個)を通して体積比でCO22.5%、
NH31.0%、H2S0.3%、O20〜2.8%、および残余
はN2から成る混合ガスを1000/hrの割合で供給
した。吸収液の温度は25℃、PHは9であつた。 また、吸収液にはあらかじめ1あたり3×
10-3モルの1・4−ジヒドロキシナフタリン−2
−スルホン酸アンモニウム(NQS)と0.2×10-3
モルの酒石酸鉄ナトリウム(Fe−Tと略す)と
を加えた。 O22.8%を含む上記混合ガスを約20時間吹き込
んで、初期の触媒劣化生成物を析出させ、イオウ
と共に除去した。その後触媒の劣化はつぎの10時
間においてはほぼ無視できるまで少なくなつた。
このときの触媒濃度は吸収液1あたりNQS1.7
×10-3モル、Fe−T0.17×10-3モルであつた。 混合ガス中の各種O2濃度について10時間ずつ
脱硫運転を行なつて、H2S吸収率、硫化物(主と
してSH-)反応率をしらべた。 第1表はその結果であつて、ガス中のO2濃度
が0.6とくに約0.8%以上のとき、H2S吸収率が顕
著に増加することを示している。
The present invention relates to the desulfurization of fuel gases, particularly coke oven gases. More specifically, the present invention relates to an improvement in a process for desulfurizing a fuel gas containing hydrogen sulfide and hydrogen cyanide by a wet desulfurization method using a redox catalyst such as the Takahakus method, the Fumax method, and the Stretchford method. A conventional wet desulfurization method using a redox catalyst, such as the Takahaks method, mainly consists of an absorption tower that absorbs hydrogen sulfide from a hydrogen sulfide-containing gas and a regeneration tower that oxidizes the absorbed liquid. Hydrosulfide and cyanide accumulate in the absorption liquid as the acid gas is absorbed in a countercurrent type absorption tower that absorbs acidic gases such as hydrogen sulfide and hydrogen cyanide in fuel gas. Since the absorption rate is significantly reduced, the absorption tower becomes relatively large.Furthermore, in the regeneration tower, the absorption liquid that has absorbed the acidic gas is oxidized with an oxygen-containing gas such as air, and the sulfide is converted into elemental sulfur and sulfuric acid. However, in the regeneration tower, a certain amount of time is required for gas-liquid contact due to air diffusion rate limiting, and the regeneration tower becomes relatively large and the equipment cost increases. Furthermore, conventional regeneration towers supply oxygen-containing gas such as air from the bottom and release exhaust gas into the atmosphere from the top, so absorbed hydrogen sulfide is re-released, and ammonia is used as an alkali source. Ammonia was entrained in the exhaust gas and there was a risk of secondary pollution. The inventors of the present invention have conducted intensive studies on methods for overcoming the above-mentioned drawbacks in conventional wet desulfurization methods using redox catalysts. As a result, we came up with the idea of using the oxygen contained in the exhaust gas from the regeneration tower, and when we supplied the exhaust gas from the regeneration tower to the absorption tower, the hydrogen sulfide was oxidized in the absorption tower as well, and the cyanide was also quickly removed. It was found that by changing to Rodan salt, the factors that inhibit the absorption of acid gas in fuel gas were removed and the absorption efficiency was improved. Moreover, they have found a method that achieves both goals at once, in which no gas is released into the atmosphere from the regeneration tower, and the fear of secondary pollution such as bad odors is completely eliminated, and the present invention has been completed. The present invention supplies a fuel gas containing hydrogen sulfide and hydrogen cyanide to an absorption tower, absorbs the hydrogen sulfide and hydrogen cyanide with an alkaline absorption liquid containing a redox catalyst, and supplies the absorption liquid to a regeneration tower containing oxygen. In the fuel gas desulfurization and dehydrocyanation method, which removes hydrogen sulfide as sulfur or sulfur oxides and hydrogen cyanide as rhodanide, the exhaust gas from the regeneration tower is used to remove hydrogen sulfide contained in the fuel gas from the hydrogen sulfide contained in the fuel gas. By introducing the gas into the absorption tower while adjusting the total amount of oxygen including the oxygen contained in the gas to be 2.0 to 10 times the amount by mole, the gas is brought into contact with the absorption liquid together with the fuel gas supplied to the absorption tower at the same time. The present invention relates to a method for desulfurizing and dehydrocyanating fuel gas by wet absorption and wet oxidation, which is characterized by promoting the absorption of hydrogen sulfide and hydrogen cyanide. Hereinafter, the present invention will be explained in detail based on the drawings. FIG. 1 shows a packed column-type absorption tower 3 equipped with a spray nozzle 4 for dispersing the absorption liquid at the top, a bubble column-type regeneration tower 11 for oxidizing and regenerating the absorption liquid, and a filter 18 for filtering precipitated sulfur. This is an embodiment of the present invention consisting of: Fuel gas (e.g. coke oven gas) A containing acidic gases such as hydrogen sulfide and hydrogen cyanide and ammonia is fed from the inlet pipe 1 at the bottom of the absorption tower 3 together with the exhaust gas B containing a predetermined amount of oxygen from the regeneration tower 11. The acid gas is supplied to the absorption tower 11 and comes into contact with the absorption liquid C sprayed from the spray nozzle 4 at the top of the absorption tower 3 in a countercurrent manner to absorb the acid gas, and then is discharged from the top outlet pipe 6 of the absorption tower 3. Provided as fuel gas. Acidic gas and ammonia in fuel gas A are absorbed by the absorption liquid as ammonium bisulfide, ammonium cyanide, and ammonium hydroxide, and are also affected by the action of a certain amount of oxygen contained in the gas and a redox catalyst contained in the absorption liquid. , an equivalent amount of elemental sulfur, ammonium thiosulfate, and ammonium rhodanate are converted into absorption tower effluent D through the outlet pipe 7 and stored in the absorption tower effluent receiving tank 8, and further supplied to the regeneration tower 11 via the inlet pipe 10 by the pump 9. be done. From the lower part of the regeneration tower 11, oxygen-containing gas, normal air E, is supplied through the introduction pipe 12, and the absorption tower effluent D
oxidizes the sulfides contained in the water to sulfur, etc., and regenerates the redox catalyst. The regenerated absorption liquid is stored in the absorption liquid receiving tank 14 via the outlet pipe 13, the precipitated elemental sulfur is concentrated, and the supernatant liquid is supplied as absorption liquid C to the absorption tower 3 from the introduction pipe 5 by the pump 15. A part of the absorption liquid enriched with elemental sulfur is extracted from the outlet pipe 16 by the pump 17 and passed through the filter 18, and the liquid F is circulated to the absorption liquid receiving tank 14. Elemental sulfur cake G is recovered via receiver 20. If there is a shortage of water or catalyst in the system, use make-up water H.
is supplied from the introduction pipe 21 and the catalyst J is supplied from the introduction pipe 22 to the absorption tower discharge liquid receiving tank 8. Further, if necessary, the antifoaming agent K is supplied to the absorption liquid receiving tank 14 from the introduction pipe 23. In order not to increase the salt concentration in the absorption liquid, a part of the liquid is discharged from the system through the discharge pipe 24,
If necessary, the active ingredient can be recovered as ammonium sulfate by submerged combustion. As the absorption tower in the method of the present invention, a spray tower, a packed tower, a bubble tower, etc. can be used. However, when the target gas is coke oven gas, the amount of gas to be processed is large, so a bubble column with a particularly large pressure loss would be inappropriate. Furthermore, since a spray tower with low gas-liquid contact efficiency tends to be large in size, it does not meet the purpose of the present invention, which is to downsize the equipment. Therefore, it can be said that a packed column is the most suitable. As the filler, a synthetic resin filler with a high porosity is suitable. In order to prevent the unevenness of the liquid flow and the formation of dead spaces, the bed height should be reduced, while the number of stages should be increased, preferably an absorbing liquid redispersion device should be provided between each stage, and each stage should be connected continuously or intermittently. It is desirable to have a structure that can be cleaned. As the cleaning liquid, the absorption liquid D discharged from the absorption tower or the supernatant liquid C of the regenerated absorption liquid is suitable. In general, a fuel gas such as coke oven gas contains a considerable amount of hydrogen cyanide in addition to hydrogen sulfide, and when these acidic gases are absorbed into an absorption liquid, they generate hydrosulfide ions and cyanide ions. Hydrosulfide ions are oxidized to sulfur by oxygen in the mixed gas in the presence of a catalyst, and the fine sulfur immediately after generation easily reacts with the hydrosulfide ions to convert into polysulfur sulfur and sulfur acid. On the other hand, it also reacts with cyanide ions to produce rhodan salt. Thus, when relatively strong acid salts are present, the absorption rate of hydrogen sulfide gradually decreases. For example, a porcelain Raschig ring with a diameter of 1.5 cm and a length of 1.5 cm is
A 10cm glass absorption tower is filled to a bed length of 1m, and a mixed gas of 1% by volume of ammonia, 0.3% by volume of hydrogen sulfide, and the remaining nitrogen is fed from the bottom of the tower at 1500N/hr, and from the top of the tower at 30°C. Three types of absorption liquid (in Figure 2, the P line is water and the Q line is NH 4 OH 400 mol/m 3
+NH 4 SCN 500 mol/m 3 aqueous solution, R line is
An aqueous solution of 400 mol/m 3 of NH 4 OH and 2000 mol/m 3 of NH 4 SCN was used as the absorption liquid) at a rate of 75/hr. The results are as shown in Figure 2.
When the salt (rhodan ammonium) concentration of the absorption liquid is increased, the desulfurization rate tends to decrease significantly as the hydrosulfide ion concentration increases. Therefore, in order to maintain a high desulfurization rate, it is necessary to maintain the hydrosulfide ion concentration in the absorption tower as low as possible at all times, since the production of Rodan salt is inevitable in fuel gases such as coke oven gas. For this reason, when a certain amount or more of oxygen is present in the fuel gas as in the present invention, the absorption liquid flows down the absorption tower while absorbing hydrogen sulfide, etc., and the hydrogen sulfide ions generated at the same time as absorption are absorbed into the fuel gas. is oxidized by oxygen and its concentration is always kept low, so the hydrogen sulfide absorption rate is kept high despite the presence of rhodanates and the like throughout the absorption tower. As a result, the volume of the absorption tower can be made smaller than before. Coke oven gas, which is a typical fuel gas, contains about 0.3% by volume of hydrogen sulfide and about 0.3% by volume of oxygen. However, as shown in the experimental example below, it has been shown that when the amount of oxygen is less than twice the amount of hydrogen sulfide contained (0.6% by volume), the absorption rate of hydrogen sulfide, in other words, the absorption rate, is extremely slow. In the case of ordinary coke oven gas, oxygen-containing gas must naturally be replenished. To do this, the regenerator first supplies an oxygen-containing gas, typically air, to oxidize the remaining sulfides, regenerates the catalyst, and then supplies the exhaust gas from there to the absorption tower. It is also environmentally friendly if it is supplied as an oxygen source. In that case, the amount of oxygen-containing gas supplied is at least 2.0 times, preferably 2.5 times, the amount of oxygen as oxygen per mole of hydrogen sulfide contained in the fuel gas.
The amount may be adjusted to 10 times by mole, more preferably 3 to 4 times by mole. As a result, the concentration of hydrogen sulfide in the typical coke oven gas mentioned above is 0.3.
On a volume % basis, the concentration of oxygen-containing gas supplied to the absorption tower is preferably about 0.6 with respect to the total gas amount.
0.75-3.0% by volume is substantially retained. As shown in the experimental example, if the oxygen concentration is low (0.75% by volume or less), the absorption rate of hydrogen sulfide decreases and the desulfurization rate deteriorates, while even if the oxygen concentration is excessive, the effect not only does not change much, but it is also economically Therefore, it is not desirable from an industrial perspective. In addition, if the oxygen concentration range is above, normal coke oven gas (for example, 56% hydrogen, methane
27%, lower hydrocarbons 3%, carbon monoxide 8%, etc.)
There is no danger of explosion. Also in the present invention, in the regeneration tower, hydrosulfide ions (or sulfides) present in the absorption liquid discharged from the absorption tower are oxidized and converted to elemental sulfur or sulfur acid, and the redox catalyst changes from the reduced type to the oxidized type. will be played. However, since most of the regeneration reaction is completed in the absorption tower, the load is smaller than that of the regeneration tower in the conventional desulfurization system. Generally, in the wet desulfurization method using a redox catalyst, hydrogen sulfide is recovered as elemental sulfur or as sulfuric acid without being extracted as sulfur, but the present invention can be used in the former method as well as in the latter method under known conditions. This can be done by applying. As the regeneration column, either a bubble column or a packed column can be used. In either case, a certain amount of time is required for the reaction between the hydrosulfide and the redox catalyst, so it is necessary to determine the holdup of the entire system based on the concentrations of the hydrosulfide and the catalyst. For example, when ammonium 1,4-naphthoquinone-2-sulfonate is used as a redox catalyst and its concentration is 3 mol/ m3 , the half-life of hydrosulfide is about 3 minutes, and the time it takes for almost the entire amount to disappear is about 20 minutes. It's a minute. Furthermore, if 0.02 mol/m 3 of a cocatalyst such as an iron chelate of oxycarboxylic acid, for example iron ammonium malate, coexists with the same catalyst, the required time will be reduced to one-third of the above time. A known catalyst is used as the redox catalyst. For example, naphthoquinone derivatives such as 1,4-naphthoquinone-2-sulfonate (Takahakus method), anthraquinone derivatives such as anthraquinone-2,7-disulfonic acid (Thretford method), picric acid and its derivatives (Fumax method) Additionally, iron salts or complexes such as iron chelate compounds may coexist with these catalysts as co-catalysts. According to the present invention, it is possible to downsize the capacity of the absorption tower and the regeneration tower, and since the exhaust gas from the regeneration tower is supplied to the absorption tower, the problem of odor from the regeneration tower waste gas, which has been a problem in the past, can be solved at the same time. can do. The present invention will be explained in more detail below based on experimental examples and examples. Experimental example A bubble column with an inner diameter of 20 cm and a height of 150 cm, equipped with two bubble dispersion nets in the middle, was supplied with the absorption liquid from the bottom of the column by a pump at a rate of 40/hr, and from a nozzle with a height of 130 cm. After overflowing and passing through a filter, it was again fed to the bubble column. In addition, 2.5% CO 2 by volume is passed through glass filters (diameter 4.5 cm, 2 pieces) at the bottom of the tower.
A mixed gas consisting of 1.0% NH3 , 0.3% H2S , 0-2.8% O2 , and the balance N2 was supplied at a rate of 1000/hr. The temperature of the absorption liquid was 25°C and the pH was 9. In addition, the absorption liquid should be filled with 3×
10 -3 mol of 1,4-dihydroxynaphthalene-2
−Ammonium sulfonate (NQS) and 0.2×10 -3
mol of sodium iron tartrate (abbreviated as Fe-T) was added. The above gas mixture containing 2.8% O 2 was blown for about 20 hours to precipitate early catalyst deterioration products and remove them together with sulfur. Thereafter, the deterioration of the catalyst decreased to almost negligible over the next 10 hours.
The catalyst concentration at this time is NQS1.7 per 1 absorption liquid.
×10 -3 mol, Fe-T 0.17 × 10 -3 mol. Desulfurization was performed for 10 hours at various O 2 concentrations in the mixed gas, and the H 2 S absorption rate and sulfide (mainly SH - ) reaction rate were examined. Table 1 shows the results and shows that when the O 2 concentration in the gas is 0.6% or more, especially about 0.8% or more, the H 2 S absorption rate increases significantly.

【表】 実施例 内径10cm高さ160cmの充填塔の内部に1.5cm×
1.5cmのラシヒリングを1mの高さに充填した吸
収塔の塔底部より硫化水素0.3容量%、シアン化
水素0.1容量%、アンモニア1.0容量%及び酸素0.3
容量%を含む混合ガス2Nm3/hr並びに再生塔の
塔頂からの排出ガス(酸素濃度約20容量%)0.1
Nm3/hrを同時に供給し、また、吸収液として
1・4−ナフトキノン−2−スルホン酸アンモニ
ウム3モル/m3、酒石酸鉄ナトリウム0.2モル/
m3、ロダン化アンモニウム2000モル/m3を含むア
ンモニア性水溶液(PH9)を0.1m3/hrの割合で吸
収塔上部より供給して気液接触せしめた。 吸収塔の下部から排出された吸収液は一旦吸収
塔排出受槽に留めたのち、ポンプで内径20cm液深
120cmの気泡塔型の再生塔下部に供給し、同時に
導入した0.1Nm3/hrの空気と接触させて酸化反応
を行なわせたのち、再生塔上部から抜き出して貯
槽に受け、過機で硫黄を除去したのち、ポンプ
で再び吸収塔に供給した。 この間に析出硫黄が充填物に付着して吸収塔の
能率を低下させるので、数時間毎に水と空気で塔
内を洗浄した。実験は室温(25℃)で行なつた。
その結果、100時間の運転中脱硫率は90〜100%、
脱シアン率は90〜95%であつた。 これに対して再生塔排ガスを循環しなかつた場
合は脱硫率は平均約80%に低下した。
[Table] Example: Inside a packed tower with an inner diameter of 10 cm and a height of 160 cm, a 1.5 cm ×
0.3% by volume of hydrogen sulfide, 0.1% by volume of hydrogen cyanide, 1.0% by volume of ammonia, and 0.3% by volume of oxygen from the bottom of an absorption tower packed with 1.5cm Raschig rings to a height of 1m.
2Nm 3 /hr of mixed gas containing % by volume and exhaust gas from the top of the regeneration tower (oxygen concentration approximately 20% by volume) 0.1
Nm 3 /hr was simultaneously supplied, and as absorption liquids, ammonium 1,4-naphthoquinone-2-sulfonate 3 mol/m 3 and sodium iron tartrate 0.2 mol/m 3 were added.
An ammoniacal aqueous solution (PH9 ) containing 2000 mol/m 3 of ammonium rhodanide was supplied from the upper part of the absorption tower at a rate of 0.1 m 3 /hr to bring about gas-liquid contact. The absorption liquid discharged from the bottom of the absorption tower is temporarily stored in the absorption tower discharge receiving tank, and then pumped to a depth of 20 cm inside diameter.
It is supplied to the lower part of a 120cm bubble column type regeneration tower, and brought into contact with air of 0.1Nm 3 /hr introduced at the same time to cause an oxidation reaction.Then it is extracted from the upper part of the regeneration tower and placed in a storage tank, where the sulfur is removed by a filter. After removal, it was supplied to the absorption tower again using a pump. During this time, precipitated sulfur adhered to the packing and reduced the efficiency of the absorption tower, so the inside of the tower was washed with water and air every few hours. Experiments were conducted at room temperature (25°C).
As a result, the desulfurization rate during 100 hours of operation was 90-100%,
The cyanide removal rate was 90-95%. On the other hand, when the regeneration tower exhaust gas was not circulated, the desulfurization rate decreased to about 80% on average.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法の実施態様を示す線図的
系統図、第2図は、硫化水素の吸収に与える各水
硫化イオン濃度における吸収液中に存在するロダ
ン酸アンモニウムの影響を示すグラフ図。縦軸は
硫化水素吸収率(%)、横軸は吸収液中の水硫化
イオン濃度(モル/m3)。グラフ中、Pは水、Q
はNH4OH400モル/m3及びNH4SCN500モル/m3
を含む吸収液並びにRはNH4OH400モル/m3及び
NH4SCN2000モル/m3を含む吸収液。
FIG. 1 is a diagrammatic system diagram showing an embodiment of the method of the present invention, and FIG. 2 is a graph showing the influence of ammonium rhodanate present in the absorption liquid at each hydrogen sulfide ion concentration on the absorption of hydrogen sulfide. figure. The vertical axis is the hydrogen sulfide absorption rate (%), and the horizontal axis is the hydrogen sulfide ion concentration in the absorption liquid (mol/m 3 ). In the graph, P is water, Q
are NH4OH400mol / m3 and NH4SCN500mol / m3
and R is NH 4 OH400 mol/m 3 and
Absorption liquid containing 2000 mol/m 3 of NH 4 SCN.

Claims (1)

【特許請求の範囲】 1 硫化水素及びシアン化水素を含有する燃料ガ
スを吸収塔に供給し、レドツクス触媒を含有する
アルカリ性吸収液によつて硫化水素及びシアン化
水素を吸収し、該吸収液を再生塔に供給し酸素含
有ガスと接触させ、硫化水素を硫黄若しくは硫黄
酸化物及びシアン化水素をロダン化物として除去
する燃料ガスの脱硫及び脱シアン化水素法におい
て 再生塔からの排出ガスを、燃料ガスに含有され
る硫化水素に対して燃料ガスに含有される酸素を
加えた全酸素量が2.0〜10モル倍になるように調
節しながら、吸収塔に導入し、同時に吸収塔に供
給される燃料ガスと共に吸収液と接触させること
によつて硫化水素及びシアン化水素の吸収を促進
することを特徴とする湿式吸収及び湿式酸化によ
る燃料ガスの脱硫及び脱シアン化水素方法。 2 再生塔に供給する酸素の量が、燃料ガスに含
有される酸素の量を加えた全酸素量で該燃料ガス
に含有される硫化水素に対し2.5〜10モル倍にな
るように調節することを特徴とする特許請求の範
囲第1項記載の方法。 3 吸収液のアルカリ性を燃料ガスに含まれるア
ンモニアの吸収によつて保持することを特徴とす
る特許請求の範囲第1項記載の方法。 4 レドツクス触媒が1・4−ナフトキノン−2
−スルホン酸塩又は該触媒と助触媒としての遷移
金属錯体とから成る混合物であることを特徴とす
る特許請求の範囲第1項記載の方法。
[Scope of Claims] 1. Fuel gas containing hydrogen sulfide and hydrogen cyanide is supplied to an absorption tower, hydrogen sulfide and hydrogen cyanide are absorbed by an alkaline absorption liquid containing a redox catalyst, and the absorption liquid is supplied to a regeneration tower. In the fuel gas desulfurization and dehydrocyanation method, which removes hydrogen sulfide as sulfur or sulfur oxide and hydrogen cyanide as rhodanide by contacting it with an oxygen-containing gas, the exhaust gas from the regeneration tower is converted into hydrogen sulfide contained in the fuel gas. While adjusting the total amount of oxygen including the oxygen contained in the fuel gas to be 2.0 to 10 times the amount by mole, the mixture is introduced into the absorption tower and brought into contact with the absorption liquid along with the fuel gas supplied to the absorption tower at the same time. A process for desulfurization and dehydrocyanation of fuel gases by wet absorption and wet oxidation, characterized in that the absorption of hydrogen sulfide and hydrogen cyanide is promoted. 2. Adjust the amount of oxygen supplied to the regeneration tower so that the total amount of oxygen, including the amount of oxygen contained in the fuel gas, is 2.5 to 10 times the mole of hydrogen sulfide contained in the fuel gas. A method according to claim 1, characterized in that: 3. The method according to claim 1, wherein the alkalinity of the absorption liquid is maintained by absorbing ammonia contained in the fuel gas. 4 The redox catalyst is 1,4-naphthoquinone-2
2. The method according to claim 1, wherein the sulfonate is a sulfonate or a mixture of said catalyst and a transition metal complex as a cocatalyst.
JP12737179A 1979-10-04 1979-10-04 Removal of sulfur and hydrogen cyanide from fuel gas Granted JPS5650994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12737179A JPS5650994A (en) 1979-10-04 1979-10-04 Removal of sulfur and hydrogen cyanide from fuel gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12737179A JPS5650994A (en) 1979-10-04 1979-10-04 Removal of sulfur and hydrogen cyanide from fuel gas

Publications (2)

Publication Number Publication Date
JPS5650994A JPS5650994A (en) 1981-05-08
JPS6155560B2 true JPS6155560B2 (en) 1986-11-28

Family

ID=14958311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12737179A Granted JPS5650994A (en) 1979-10-04 1979-10-04 Removal of sulfur and hydrogen cyanide from fuel gas

Country Status (1)

Country Link
JP (1) JPS5650994A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5406769B2 (en) 2010-03-26 2014-02-05 パナソニック株式会社 Electric razor
CN102585917B (en) * 2012-02-17 2014-06-25 南京工业大学 Technology and system for cooling-absorbing coupling deep-removing tar from biomass gas
CN107051190A (en) * 2017-03-20 2017-08-18 浙江澳蓝环保科技有限公司 A kind of wet desulphurization equipment of sulphur-containing exhaust gas

Also Published As

Publication number Publication date
JPS5650994A (en) 1981-05-08

Similar Documents

Publication Publication Date Title
US4002727A (en) Desulfurization process for hydrogen sulfide-containing gases
US4076621A (en) Chelate oxidation of hydrogen sulfide in sour water
CA1086921A (en) Exhaust gas scrubbing process
CN101274208B (en) Method for simultaneously removing sulfur dioxide and nitrogen oxide in exhaust air
US5200160A (en) Process for removing sulfur dioxide and nitrogen oxides from flue gases
CN105854560A (en) Flue gas desulfurization and denitration method
CN106362573A (en) Desulfurizer and desulphurising process for mixed gas containing sulfides in diversified forms
CN101091869A (en) Method for cleansing exhaust gas of sulfureted hydrogen in low concentration
US4892718A (en) Decontamination of gases by scrubbing
JP3248956B2 (en) Exhaust gas treatment method
CA1142327A (en) Recovery of salts of anthraquinone disulfonic acid in the stretford process
CN111495160A (en) Desulfurization and denitrification system and method by using ozone oxidation in cooperation with ammonia process
JPS6155560B2 (en)
CN104190227B (en) Synchronization denitrating system based on flue gas wet ammonia process desulfurizing
JPH06228573A (en) Treatment of tail gas in coal gasification plant
CN212492355U (en) Ozone oxidation is SOx/NOx control system of ammonia process in coordination
CN211987967U (en) Sintering flue gas desulfurization and denitrification system
JPS5814933A (en) Method and apparatus for desulfurizing and denitrating exhaust gas in dry system
EP1156867B1 (en) Method for conversion of hydrogen sulfide to elemental sulfur
JPH02277522A (en) Process for removing sox from gas mixture
JPH05317646A (en) Waste gas treating method
CN108970353B (en) Comprehensive desulfurization and denitrification method for catalytic flue gas and ammonia-containing acid gas
CN106345250A (en) Ultralow emission process for catalytic cracking smoke
CN113786811B (en) Adsorption desulfurizing agent capable of being thermally regenerated and having COS hydrolysis function, preparation method and application thereof
JPS5841893B2 (en) Hiengasu Shiyorihouhou