JPS6154771B2 - - Google Patents

Info

Publication number
JPS6154771B2
JPS6154771B2 JP55051762A JP5176280A JPS6154771B2 JP S6154771 B2 JPS6154771 B2 JP S6154771B2 JP 55051762 A JP55051762 A JP 55051762A JP 5176280 A JP5176280 A JP 5176280A JP S6154771 B2 JPS6154771 B2 JP S6154771B2
Authority
JP
Japan
Prior art keywords
oxygen
catalyst
rhodium
titanium
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55051762A
Other languages
Japanese (ja)
Other versions
JPS56147730A (en
Inventor
Masaru Ichikawa
Koichi Shikakura
Kazuhiko Sekizawa
Kazuaki Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagami Chemical Research Institute
Original Assignee
Sagami Chemical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagami Chemical Research Institute filed Critical Sagami Chemical Research Institute
Priority to JP5176280A priority Critical patent/JPS56147730A/en
Priority to PT71476A priority patent/PT71476A/en
Priority to ES493024A priority patent/ES493024A0/en
Priority to BR8004156A priority patent/BR8004156A/en
Priority to DE8080302264T priority patent/DE3063879D1/en
Priority to AT80302264T priority patent/ATE3847T1/en
Priority to EP80302264A priority patent/EP0022358B1/en
Publication of JPS56147730A publication Critical patent/JPS56147730A/en
Priority to US06/387,265 priority patent/US4463105A/en
Publication of JPS6154771B2 publication Critical patent/JPS6154771B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は酸化炭素と水素とを含むガスをロジウ
ム系触媒と接触させる含酸素有機化合物(以下単
に含酸素化合物という)の製造方法に関する。更
に詳細には本発明は一酸化炭素及び(又は)二酸
化炭素と水素とを含むガスを特定のロジウム系触
媒と接触させて炭素原子1個及び2個を含む含酸
素化合物を選択的に製造する方法に関する。 従来、酸化炭素特に一酸化炭素と水素から炭化
水素又は含酸素有機化合物及び炭化水素を製造す
る方法(合成ガス法:フイツシヤー・トロプシユ
合成法)に関し広く研究され、工業的にも採用さ
れてきた。例えば、鉄族又は貴金属グループの金
属から成る水素化触媒により、150〜450℃の温度
及び1〜約700気圧の圧力下、一酸化炭素と水素
が4:1〜1:4の範囲内の合成ガスから種々の
含酸素有機化合物及び炭化水素を合成する方法が
知られている〔F.Fischer、H.Tropsch、Ber、
59、830、832、923(1926);H.Pichler、Adv.
Catalysis、、271(1952)〕。しかし、この方法
では生成物は炭素数1〜20個の含酸素化合物及び
炭化水素の混合物であり、生成物の分布に選択性
が乏しく、工業原料として有用な低炭素含酸素化
合物を効率よく製造することはできない。この方
法に関連するロジウム担体触媒を用いた一酸化炭
素と水素との混合ガス、すなわち合成ガスの反応
の選択性に関して、常圧下に合成ガスをシリカ又
はアルミナ担体に希釈担持したロジウム担持触媒
又はロジウム金属板に接触させることによりメタ
ン及び10%を超えない割合のC2〜C4炭化水素を
製造する方法が提案されている〔M.A.Vannice、
J.Catal.37、449(1975)、B.Sexton、G.A:
Somorjai、ibid、46、67(1977)参照)。又ロジ
ウム担体触媒を用いた合成ガスの反応において低
炭素含酸素化合物の選択性については35〜350気
圧、290〜325℃の条件下にCO/H2比を1より充
分に大にし、反応ガスの流量を103h-1のSV値以
上で反応を行なうことにより、含酸素化合物、特
に酢酸、アセトアルデヒド及びエタノールの混合
物を消費された一酸化炭素に対する炭素効率にし
て50%で製造する方法(Belgian Patent
No.824822号、DT2503233号及び特開昭51−
80806号公報参照)、ロジウムと鉄を含有するシリ
カ担持触媒を用いて50〜300気圧で103h-1以上の
流量で合成ガスの反応を行なうことにより略等し
い炭素効率でメタノール及びエタノールを製造す
る方法(Belgian Patent No.824823号、特開昭51
−80807号公報参照)が提案されている。しかし
ながらこれらの方法はメタノールとエタノールを
等モル比で生成するがメタンや炭素数2以上の炭
化水素の副生も著しく、プロセス化の為に有利な
低CO濃度合成ガス組成(CO/H2=1.0以下)や
低圧(1〜50気圧)あるいは低流量(103h-1以下
のSV値)の条件下では、炭化水素の副生が更に
増大する傾向にあり、工業原料として有用なエタ
ノール等炭素数1〜2個を持つ含酸素化合物の生
成選択性は著しく低下する。ロジウムにマンガン
を添加する触媒の改良法(特開昭52−14706号公
報参照)によればロジウム重量当りのCO転化率
の向上は見られるもののマンガンの添加により、
含酸素化合物生成の選択率はほとんど向上され
ず、過剰量のマンガン添加によるとむしろ炭化水
素生成の増大を引起こし、含酸素化合物の生成選
択率が減下することが指摘されている。 更に本発明者等により既に開示されたロジウム
クラスターや白金クラスターを周期律表第
ab、第ab及び第abから選ばれた少なくとも
一種の金属の酸化物上に担持した触媒を用いた場
合1〜50気圧、150〜300℃の条件下において合成
ガスからメタノールとエタノールの混合含酸素化
合物を製造する方法(特開昭54−41291号及び特
開昭54−44605号公報参照)も知られている。こ
の方法に用いる触媒は高活性であるものの、触媒
調製に当つては、特殊で高価な貴金属カルボニル
クラスター化合物を原料として用いること、調製
時に不活性雰囲気〔真空ないし不活性ガスの存在
下〕下での操作過程が含まれることなどから実用
化プロセスとしてまだ改良の余地が残されてい
る。 前記先行技術からみて緩和な低圧反応条件下に
おいて高い炭素効率で炭素原子1個及び2個を有
する含酸素化合物特にエタノールを主な生成物と
した含酸素化合物を選択的に生成するに適したロ
ジウム系触媒の開発は合成ガスからのメタノール
合成又はナフサ原料からのエチレン製造に代る技
術として要望されている。 本発明は前記現状に鑑みてなされたものであ
り、本発明者等は比較的に入手容易なロジウムを
主とし、これに組合せるいわゆる助触媒ないしは
担体について多角的に検討した結果、特定の成分
の複合触媒の存在で酸化炭素と水素とから炭素数
1〜2個の持つ含酸素化合物を高選択率で製造で
きる方法を知得し、本発明を完成するに到つたも
のである。 すなわち本発明の目的は酸化炭素と水素との触
媒反応により炭素数1〜2個を持つ含酸素化合物
を高選択率で製造する方法を提供することであ
る。 本発明の前記目的を達成する含酸素化合物の製
造方法は酸化炭素すなわち一酸化炭素及び(又
は)二酸化炭素と水素とを含有するガスを触媒に
接触させて含酸素化合物を製造するに当り(イ)ロジ
ウム、(ロ)酸化チタン並びに(ハ)シリカから成る触媒
を用いることを特徴とするものである。 本発明の触媒は基本的には担体としての(ハ)のシ
リカの表面に(ロ)の酸化チタンが物理的な混合物の
状態又は部分的にあるいは全体的に複合酸化物の
状態として存在するものである。更には(ロ)の原料
としてチタンの有機金属化合物を使用した場合、
これらとシリカ表面の水酸基との化学反応により
けい素とチタンが酸素を介して化学的に結合され
た固定化酸化物状態にある場合を含む。そして(イ)
のロジウムは酸化チタンとシリカから成る固形物
質上に実質的には金属状態で分散担持されると考
えられる。 (ロ)の成分は(イ)のロジウムに対して助触媒として
作用するか又は(ハ)のシリカと共に担体成分として
作用するかは必ずしも理論的に明らかでないが、
(ロ)の酸化チタンと(ハ)のシリカにより構成される複
合酸化物(以下担体という)はその表面積が10〜
1000m2/gであることが好ましい。(イ)のロジウム
と(ロ)の酸化チタンとの割合は重量比として10:1
〜1:10であることが好ましい。(ロ)の酸化チタン
と(ハ)のシリカとの割合は重量比として10:1〜
1:10が好ましい。そして(イ)の成分は触媒の重量
を基として0.01〜25重量%、更に望ましくは0.1
〜約10重量%である。 触媒の調製法としては担体を製造するため、チ
タンの無機又は有機金属化合物を水又は有機溶媒
に溶解した溶液に、所定の割合のシリカ(粉末
状、ペレツト状、塊状、顆粒状)を含浸せしめた
後、溶媒を除去し、空気中ないし不活性ガス
(N2、Ar、He又はCO2)雰囲気下で熱分解し、酸
化チタンをシリカに担持させ、場合により粉砕又
は造粒してもよい。 チタンの無機又は有機金属化合物の例としては
それらの無機又は有機金属塩例えば塩化物、硝酸
塩、炭酸塩、シユウ酸塩、酢酸塩、アセチルアセ
トナート、金属アルコキシド〔一般式M(OR)4
式中MはTi、RはCH3、C2H5、C3H7、C4H9等を
示す。〕、ジシクロペンタジエニル〔一般式
MCp2X2、式中MはTi、Cp2はジシクロペンタジ
エニル基、Xはハロゲン、水素及びCO等を示
す。〕、π−アリール金属錯体、アレン金属錯体等
を挙げることができる。そしてこれら化合物を更
に具体的に例示すると、硝酸チタニウム〔Ti
(NO34・6H2O〕、オキシ酢酸チタニウム〔TiO
(CH3COO)2〕、オキシ塩化チタニウム
(TiOCl2)、四塩化チタニウム(TiCl4)、酢酸チ
タニウム〔Ti(CH3COO)4〕、チタニウムエトキ
シド〔Ti(OEt)4〕、チタニウムイソプロポキシ
ド〔Ti(isoPrO)4〕、チタニウムn−プロポキシ
ド〔Ti(n−PrO)4〕、チタニウムプトキシド
〔Ti(n−OC4H94〕、ジシクロペンタジエニルチ
タニウムクロリド(Cp2TiCl2)、ジカルボニルジ
シクロペンタジエニルチタニウム〔CP2Ti
(CO)2〕、チタニウムアセチルアセトナート〔Ti
(acac)4〕などである。 そしてこれらのチタン化合物の溶解性に対応し
て溶媒としては水及び無極性又は極性有機溶媒例
えばメタノール、ヘキサン、ベンゼン、テトラヒ
ドロフラン等が適宜使用される。 前記担体に(イ)のロジウムを担持する方法はそれ
らの無機又は有機金属化合物を溶媒に溶解した溶
液に、所定の割合の担体を含浸せしめた後に溶媒
を除去し、次に水素ガス又は合成ガス雰囲気下の
加熱処理(例えば150゜〜500℃の温度で数時間な
いし数日間加熱する。)又は化学的環元処理を行
ない、前記(イ)のロジウムを金属状で担体表面に分
散担持させることにより行なわれる。前記の化学
的還元処理はホルムアルデヒド、ヒドラジン、ハ
イドライド塩例えばNaBH4、LiAlH4、NaH、KH
等により行なわれる。 (イ)のロジウムの無機又は有機金属化合物の例と
しては、無機又は有機金属塩例えば塩化物、硝酸
塩、シユウ酸塩、酢酸塩、アセチルアセトナート
塩、ジシクロペンタジエニル錯体、π−アリール
金属錯体、アレン金属錯体が挙げられる。そして
溶媒としては原料化合物に対応して、水及びメタ
ノール、エタノール等のアルコール、ヘキサン、
ベンゼン、テトラヒドロフラン等の無極性及び極
性有機溶媒が挙げられる。 前記の調製方法の外に、(ハ)のシリカに、(イ)及び
(ロ)の成分を逐次的又は同時的に添加含浸せしめ熱
分解後、又は直接に水素気流中の加熱水素還元処
理を施すことができる。 本発明の実施にあたつては閉鎖循環式反応器、
常圧及び加圧流通固定床式反応器に前記触媒を充
填し、酸化炭素及び水素の混合ガスを所定の混合
比で混合し、減圧又は加圧(1〜約150気圧)下
で導入後、空間速度10〜106(/h-1)好まし
くは102〜105h-1に於て接触させ、実質的には50
〜450℃、好ましくは100〜350℃の温度域で反応
させ、エタノールを主成物とする含酸素生成物を
捕集するものである。触媒の形状に応じて、溶媒
中に触媒を分散して行うバツチ式反応器にも適用
が可能である。酸化炭素の混合比は広く変動させ
ることができ、通常一酸化炭素:水素=20:1〜
1:20であり好ましくは5:1〜1:5の範囲内
である。これらの原料ガスは不活性ガスで希釈さ
れてもよい。 本発明における炭素数1〜2個を有する含酸素
化合物とはメタノール、エタノール、アセトアル
デヒド、酢酸等の化合物をいうものであるが、本
発明においてはエタノールを主体にした含酸素化
合物の製造を特徴としている。 本発明の方法で得られるエタノールを主生成物
とする混合含酸素化合物からエタノールを蒸留分
離することは容易でありエタノールを合成ガスか
ら製造するプロセスとして実用性があるだけでな
く、将来の代替燃料としてエタノールを主体にし
て製造される含酸素化合物を燃料ガスあるいはガ
ソリンにブレンドすることにより石油資源の節約
の大きな一助を成すと期待される。 次に本発明を実施例及び参考例並びにこれらに
関する表を示して具体的に説明するが、本発明は
これによりなんら限定されるものではない。 なお表中における用語の意味は下記のとおりで
ある。 SV:フイードガス(ml/h)/触媒(ml)〔h-1〕 Feed:フイードガス(ml/h) C1:CH4、C2:C2H4+C2H6、C3:C3H6+C3H8 C4:C4H8+C4H10 Tr:痕跡量 C.E:含酸素化合物の炭素効率
The present invention relates to a method for producing an oxygen-containing organic compound (hereinafter simply referred to as an oxygen-containing compound) in which a gas containing carbon oxide and hydrogen is brought into contact with a rhodium-based catalyst. More specifically, the present invention selectively produces oxygen-containing compounds containing 1 and 2 carbon atoms by contacting a gas containing carbon monoxide and/or carbon dioxide and hydrogen with a specific rhodium-based catalyst. Regarding the method. BACKGROUND ART Conventionally, methods for producing hydrocarbons or oxygen-containing organic compounds and hydrocarbons from carbon oxide, particularly carbon monoxide and hydrogen (synthesis gas method: Fischer-Tropsch synthesis method) have been widely studied and industrially adopted. For example, the synthesis of carbon monoxide and hydrogen in the range of 4:1 to 1:4 at a temperature of 150 to 450°C and a pressure of 1 to about 700 atmospheres using a hydrogenation catalyst consisting of a metal from the iron group or noble metal group. Methods for synthesizing various oxygen-containing organic compounds and hydrocarbons from gases are known [F. Fischer, H. Tropsch, Ber,
59 , 830, 832, 923 (1926); H. Pichler, Adv.
Catalysis, 271 (1952)]. However, in this method, the product is a mixture of oxygenated compounds with 1 to 20 carbon atoms and hydrocarbons, and the product distribution has poor selectivity, making it possible to efficiently produce low-carbon oxygenated compounds useful as industrial raw materials. I can't. Regarding the selectivity of the reaction of a mixed gas of carbon monoxide and hydrogen, that is, synthesis gas, using a rhodium-supported catalyst related to this method, the rhodium-supported catalyst or rhodium A method has been proposed for producing methane and C2 - C4 hydrocarbons in a proportion not exceeding 10% by contacting them with metal plates [MAVannice,
J. Catal. 37 , 449 (1975), B. Sexton, GA:
See Somorjai, ibid, 46 , 67 (1977)). In addition, regarding the selectivity of low carbon oxygen-containing compounds in the synthesis gas reaction using a rhodium-supported catalyst, the CO/H 2 ratio is made sufficiently larger than 1 under the conditions of 35 to 350 atm and 290 to 325°C. A method for producing oxygenated compounds, in particular a mixture of acetic acid, acetaldehyde and ethanol, with a carbon efficiency of 50% relative to the consumed carbon monoxide, by carrying out the reaction at a flow rate of at least 10 3 h -1 SV value ( Belgian Patent
No.824822, DT2503233 and JP-A-51-
(Refer to Publication No. 80806), methanol and ethanol are produced with approximately equal carbon efficiency by carrying out a synthesis gas reaction at a flow rate of 10 3 h -1 or more at 50 to 300 atmospheres using a silica-supported catalyst containing rhodium and iron. Method of
-Refer to Publication No. 80807) has been proposed. However, although these methods produce methanol and ethanol in equimolar ratios, they also produce significant by-products of methane and hydrocarbons with 2 or more carbon atoms, making it difficult to achieve a low CO concentration synthesis gas composition (CO/H 2 = 1.0 or less), low pressure (1 to 50 atm), or low flow rate (SV value of 10 3 h -1 or less), hydrocarbon by-products tend to further increase, and ethanol etc., which are useful as industrial raw materials, tend to increase. The selectivity for producing oxygen-containing compounds having 1 to 2 carbon atoms is significantly reduced. According to a catalyst improvement method in which manganese is added to rhodium (see JP-A-52-14706), although an improvement in the CO conversion rate per rhodium weight can be seen, the addition of manganese
It has been pointed out that the selectivity for oxygen-containing compound production is hardly improved, and that adding an excessive amount of manganese actually causes an increase in hydrocarbon production and reduces the selectivity for oxygen-containing compound production. Furthermore, rhodium clusters and platinum clusters already disclosed by the present inventors are added to the periodic table.
When using a catalyst supported on the oxide of at least one metal selected from ab, ab, and ab, a mixture of methanol and ethanol containing oxygen from synthesis gas under conditions of 1 to 50 atmospheres and 150 to 300°C. Methods for producing the compounds (see JP-A-54-41291 and JP-A-54-44605) are also known. Although the catalyst used in this method is highly active, the catalyst must be prepared using a special and expensive noble metal carbonyl cluster compound as a raw material, and must be prepared under an inert atmosphere (vacuum or in the presence of an inert gas). There is still room for improvement as a practical application process, as it involves the operation process. Rhodium is suitable for selectively producing oxygen-containing compounds having one or two carbon atoms, especially oxygen-containing compounds whose main product is ethanol, with high carbon efficiency under mild low-pressure reaction conditions in view of the prior art. The development of catalysts is desired as an alternative technology to methanol synthesis from synthesis gas or ethylene production from naphtha feedstock. The present invention has been made in view of the above-mentioned current situation, and as a result of multifaceted studies on the so-called co-catalysts or carriers to be combined with rhodium, which is relatively easily available, the present inventors have developed a specific component. The present invention was completed by learning a method of producing an oxygen-containing compound having 1 to 2 carbon atoms from carbon oxide and hydrogen with high selectivity in the presence of a composite catalyst. That is, an object of the present invention is to provide a method for producing an oxygen-containing compound having 1 to 2 carbon atoms with high selectivity through a catalytic reaction between carbon oxide and hydrogen. A method for producing an oxygen-containing compound that achieves the above object of the present invention involves producing an oxygen-containing compound by bringing a gas containing carbon oxide, ie, carbon monoxide, and/or carbon dioxide and hydrogen into contact with a catalyst. ) Rhodium, (b) titanium oxide, and (c) silica are used as catalysts. The catalyst of the present invention basically has (b) titanium oxide present on the surface of (c) silica as a carrier in the form of a physical mixture or partially or wholly in the form of a composite oxide. It is. Furthermore, when an organometallic compound of titanium is used as the raw material for (b),
This includes the case where silicon and titanium are in a fixed oxide state in which silicon and titanium are chemically bonded via oxygen due to a chemical reaction between these and the hydroxyl groups on the silica surface. And (a)
It is believed that rhodium is dispersed and supported in a substantially metallic state on a solid material consisting of titanium oxide and silica. Although it is not necessarily theoretically clear whether the component (b) acts as a cocatalyst for the rhodium in (a) or as a carrier component together with the silica in (c),
The composite oxide (hereinafter referred to as carrier) composed of (b) titanium oxide and (c) silica has a surface area of 10 to
Preferably it is 1000 m 2 /g. The ratio of rhodium (a) to titanium oxide (b) is 10:1 by weight.
The ratio is preferably 1:10 to 1:10. The ratio of titanium oxide (B) to silica (C) is 10:1 to 10:1 by weight.
1:10 is preferred. The component (a) is 0.01 to 25% by weight, more preferably 0.1% by weight based on the weight of the catalyst.
~10% by weight. The method for preparing the catalyst is to impregnate a solution of an inorganic or organic metal compound of titanium dissolved in water or an organic solvent with silica (powder, pellet, lump, or granule) in a predetermined proportion to produce a carrier. After that, the solvent is removed, and titanium oxide is supported on silica by thermal decomposition in air or an inert gas (N 2 , Ar, He or CO 2 ) atmosphere, and optionally pulverized or granulated. . Examples of inorganic or organometallic compounds of titanium include their inorganic or organometallic salts such as chlorides, nitrates, carbonates, oxalates, acetates, acetylacetonates, metal alkoxides [general formula M(OR) 4
In the formula, M represents Ti, R represents CH 3 , C 2 H 5 , C 3 H 7 , C 4 H 9 or the like. ], dicyclopentadienyl [general formula
MCp 2 X 2 , where M represents Ti, Cp 2 represents a dicyclopentadienyl group, and X represents halogen, hydrogen, CO, or the like. ], π-aryl metal complexes, arene metal complexes, and the like. To further specifically illustrate these compounds, titanium nitrate [Ti
(NO 3 ) 4・6H 2 O], titanium oxyacetate [TiO
(CH 3 COO) 2 ], titanium oxychloride (TiOCl 2 ), titanium tetrachloride (TiCl 4 ), titanium acetate [Ti(CH 3 COO) 4 ], titanium ethoxide [Ti(OEt) 4 ], titanium isopropoxy [Ti(isoPrO) 4 ], titanium n-propoxide [Ti(n-PrO) 4 ], titanium ptoxide [Ti(n-OC 4 H 9 ) 4 ], dicyclopentadienyl titanium chloride (Cp 2 TiCl 2 ), dicarbonyldicyclopentadienyl titanium [CP 2 Ti
(CO) 2 ], titanium acetylacetonate [Ti
(acac) 4 ] etc. Depending on the solubility of these titanium compounds, water and nonpolar or polar organic solvents such as methanol, hexane, benzene, and tetrahydrofuran are appropriately used as the solvent. The method of supporting rhodium (a) on the carrier is to impregnate a solution of the inorganic or organic metal compound in a solvent with a predetermined ratio of the carrier, remove the solvent, and then add hydrogen gas or synthetic gas. Performing a heat treatment in an atmosphere (for example, heating at a temperature of 150° to 500°C for several hours to several days) or a chemical ring-forming treatment to disperse and support the rhodium described in (a) above in a metallic form on the surface of the carrier. This is done by The chemical reduction treatment mentioned above can be performed using formaldehyde, hydrazine, hydride salts such as NaBH 4 , LiAlH 4 , NaH, KH
etc. Examples of inorganic or organometallic compounds of rhodium in (a) include inorganic or organometallic salts such as chlorides, nitrates, oxalates, acetates, acetylacetonate salts, dicyclopentadienyl complexes, π-aryl metal Examples include complexes and allene metal complexes. As a solvent, depending on the raw material compound, water, alcohol such as methanol and ethanol, hexane,
Non-polar and polar organic solvents such as benzene and tetrahydrofuran are mentioned. In addition to the above preparation method, (c) silica, (a) and
The component (b) can be added and impregnated sequentially or simultaneously, and after thermal decomposition, a heating hydrogen reduction treatment in a hydrogen stream can be performed directly. In carrying out the present invention, a closed circulation reactor,
After filling the above catalyst into a normal pressure and pressurized flow fixed bed reactor, mixing a mixed gas of carbon oxide and hydrogen at a predetermined mixing ratio, and introducing it under reduced pressure or increased pressure (1 to about 150 atmospheres), Contact is made at a space velocity of 10 to 10 6 (/h -1 ), preferably 10 2 to 10 5 h -1 , and substantially 50
The reaction is carried out in a temperature range of ~450°C, preferably 100~350°C, and an oxygen-containing product containing ethanol as a main component is collected. Depending on the shape of the catalyst, it can also be applied to a batch reactor in which the catalyst is dispersed in a solvent. The mixing ratio of carbon oxide can be varied widely, usually carbon monoxide:hydrogen = 20:1 ~
The ratio is 1:20, preferably within the range of 5:1 to 1:5. These source gases may be diluted with an inert gas. In the present invention, the oxygen-containing compound having 1 to 2 carbon atoms refers to compounds such as methanol, ethanol, acetaldehyde, acetic acid, etc., but the present invention is characterized by the production of oxygen-containing compounds mainly using ethanol. There is. It is easy to distill and separate ethanol from the mixed oxygenated compound whose main product is ethanol obtained by the method of the present invention, and it is not only practical as a process for producing ethanol from synthesis gas, but also a potential future alternative fuel. It is expected that blending oxygen-containing compounds produced mainly from ethanol into fuel gas or gasoline will greatly help conserve petroleum resources. EXAMPLES Next, the present invention will be specifically explained by showing Examples, Reference Examples, and tables related thereto, but the present invention is not limited thereto in any way. The meanings of the terms in the table are as follows. SV: Feed gas (ml/h)/catalyst (ml) [h -1 ] Feed: Feed gas (ml/h) C 1 : CH 4 , C 2 : C 2 H 4 +C 2 H 6 , C 3 : C 3 H 6 +C 3 H 8 C 4 :C 4 H 8 +C 4 H 10 Tr: Trace amount CE: Carbon efficiency of oxygenated compounds

【表】 〓含酸素化合物〓
含酸素化合物の空時収量〔STY〕(単位時間当
りの触媒Kgによる生成含酸素化合物重量)=生成
含酸素化合物重量(g)/触媒重量(Kg)/時間
(h) 実施例 1 チタンテトライソプロポキシドTi(O−iso−
Pr)45.3gをn−ヘキサン100mlに溶解し、その溶
液にシリカゲル(Davison#57)20gを加え浸漬
した。溶媒を留去したのち、空気中乾燥炉で初め
200℃、1.5時間、後500℃で終夜加熱処理した。
この担体10gを、塩化ロジウム1.2gを100mlメタ
ノールに溶解した溶液中に浸漬してロジウムを担
持した。ロータリーエバポレーターで溶媒を留去
し、乾固した後パイレツクスガラス製常圧流通式
反応器(φ18×500mm)に充填した。触媒層上下
は直径2mmのガラスビーズを満たした。H2(1
気圧)ガスを流通しながら室温から徐々に昇温さ
せ、最終的には350℃で一夜水素還元を行つた。
反応はHeで希釈したCOとH2の混合ガス(CO:
H2:He=20:40:20ml/min)を全圧1気圧で流
通反応させ、150〜250℃付近での含酸素化合物及
び炭化水素の生成量を調べた。 含酸素化合物はエタノールが主成分であり、他
はメタノール、アセトアルデヒド、酢酸エステ
ル、微量のプロピルアルコール及びブチルアルコ
ールである。次いで1時間毎、出口ガスを50mlの
蒸留水(捕集器)にバブルさせ、生成した含酸素
化合物を吸収トラツプした。生成物の定性及び定
量分析はポラパツクQ−カラム(4m、200℃、
N2ガスキヤリアー)を用いたFIDガスクロ分析器
(島津7A)により行つた。検量の為、アセトンを
内部標準物質に用いた。副生炭化水素の内、メタ
ン、CO2及びCOの分析は活性炭(1m、r・
t)カラムにより行い、C2〜C4炭化水素につい
てはAl2O3−DMF(38% wt担持)カラム(4
m、r・t)を用いたTCDガスクロ分析器(島
津4B)により定性及び定量分析を行つた。常圧
CO−H2反応における本触媒の性能は、下記表1
に示した生成物の全分析結果、CO転化率、転化
COベースでの含酸素化合物の炭素効率(選択
率)及び含酸素化合物中のエタノールの選択率に
よつて示された。 参考例 比較の為、塩化ロジウム1.2gをメタノール溶
液よりシリカゲル(Davison#57)10gに担持し
た以外は実施例1と同様な操作で水素還元した触
媒10gを用いて常圧CO−H2反応活性を調べ、そ
の結果を表1に併記した。
[Table] Oxygen-containing compounds
Space-time yield of oxygen-containing compound [STY] (weight of oxygen-containing compound produced by kg of catalyst per unit time) = weight of oxygen-containing compound produced (g) / weight of catalyst (Kg) / time (h) Example 1 Titanium tetraiso Propoxide Ti (O-iso-
5.3 g of Pr) 4 was dissolved in 100 ml of n-hexane, and 20 g of silica gel (Davison #57) was added and immersed in the solution. After distilling off the solvent, it is first dried in an air drying oven.
Heat treatment was performed at 200°C for 1.5 hours and then at 500°C overnight.
10 g of this carrier was immersed in a solution of 1.2 g of rhodium chloride dissolved in 100 ml of methanol to support rhodium. The solvent was distilled off using a rotary evaporator, and the mixture was dried and then filled into a Pyrex glass normal pressure flow reactor (φ18 x 500 mm). The top and bottom of the catalyst layer were filled with glass beads with a diameter of 2 mm. H 2 (1
The temperature was gradually raised from room temperature while flowing gas (atmospheric pressure), and finally hydrogen reduction was performed at 350°C overnight.
The reaction is carried out using a mixed gas of CO and H2 diluted with He (CO:
H 2 :He=20:40:20 ml/min) was reacted by flowing at a total pressure of 1 atm, and the amount of oxygen-containing compounds and hydrocarbons produced at around 150 to 250°C was investigated. The main oxygen-containing compound is ethanol, and the others are methanol, acetaldehyde, acetic acid ester, and trace amounts of propyl alcohol and butyl alcohol. The outlet gas was then bubbled into 50 ml of distilled water (collector) every hour to absorb and trap the oxygenated compounds produced. Qualitative and quantitative analysis of the product was carried out using a Polapack Q-column (4 m, 200°C,
The analysis was performed using an FID gas chromatography analyzer (Shimadzu 7A) using a N2 gas carrier). For calibration, acetone was used as an internal standard substance. Of the by-product hydrocarbons, methane, CO 2 and CO were analyzed using activated carbon (1 m, r.
t) column; for C2 - C4 hydrocarbons, an Al2O3 - DMF (38% wt loading) column (4
Qualitative and quantitative analyzes were performed using a TCD gas chromatography analyzer (Shimadzu 4B) using a 100-m, r-t). normal pressure
The performance of this catalyst in the CO-H 2 reaction is shown in Table 1 below.
Complete analysis results, CO conversion, and conversion of the products shown in
It was demonstrated by the carbon efficiency (selectivity) of oxygenates on a CO basis and the selectivity of ethanol among oxygenates. Reference Example For comparison, normal pressure CO-H 2 reaction activity was measured using 10 g of a hydrogen-reduced catalyst in the same manner as in Example 1, except that 1.2 g of rhodium chloride was supported on 10 g of silica gel (Davison #57 ) from a methanol solution. were investigated, and the results are also listed in Table 1.

【表】【table】

【表】 表1から明らかなように、酸化チタンを含むシ
リカ担持ロジウム触媒は、これを含まないシリカ
担持ロジウム触媒に比べ、顕著なCO転化活性の
増大、含酸素化合物選択性の向上、とりわけエタ
ノール選択率の向上がみられた。
[Table] As is clear from Table 1, the silica-supported rhodium catalyst containing titanium oxide has a marked increase in CO conversion activity and improved oxygen-containing compound selectivity, especially when compared to the silica-supported rhodium catalyst that does not contain titanium oxide. An improvement in selectivity was observed.

Claims (1)

【特許請求の範囲】[Claims] 1 酸化炭素と水素とを含有するガスを触媒に接
触させて含酸素化合物を製造するに当り、(イ)ロジ
ウム、(ロ)酸化チタン並びに(ハ)シリカから成る触媒
を用いることを特徴とする含酸素化合物の製造方
法。
1. In producing an oxygen-containing compound by contacting a gas containing carbon oxide and hydrogen with a catalyst, a catalyst comprising (a) rhodium, (b) titanium oxide, and (c) silica is used. Method for producing oxygen-containing compounds.
JP5176280A 1979-07-03 1980-04-21 Preparation of oxygen-containing compound Granted JPS56147730A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP5176280A JPS56147730A (en) 1980-04-21 1980-04-21 Preparation of oxygen-containing compound
PT71476A PT71476A (en) 1979-07-03 1980-07-01 Process for producing oxygen-containing hydrocarbon compounds
ES493024A ES493024A0 (en) 1979-07-03 1980-07-02 AN IMPROVED PROCEDURE FOR PRODUCING OUR OXYGEN-CONTAINING DURATED HYDROCARBON COMPOUNDS.
BR8004156A BR8004156A (en) 1979-07-03 1980-07-03 PERFECT PROCESS TO PRODUCE HYDROCARBON COMPOUNDS CONTAINING OXYGEN
DE8080302264T DE3063879D1 (en) 1979-07-03 1980-07-03 Process for producing oxygen-containing hydrocarbon compounds
AT80302264T ATE3847T1 (en) 1979-07-03 1980-07-03 PROCESSES FOR THE PRODUCTION OF OXYGEN-CONTAINING CARBON COMPOUNDS.
EP80302264A EP0022358B1 (en) 1979-07-03 1980-07-03 Process for producing oxygen-containing hydrocarbon compounds
US06/387,265 US4463105A (en) 1980-04-21 1982-06-09 Process for producing oxygen-containing hydrocarbon compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5176280A JPS56147730A (en) 1980-04-21 1980-04-21 Preparation of oxygen-containing compound

Publications (2)

Publication Number Publication Date
JPS56147730A JPS56147730A (en) 1981-11-16
JPS6154771B2 true JPS6154771B2 (en) 1986-11-25

Family

ID=12895952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5176280A Granted JPS56147730A (en) 1979-07-03 1980-04-21 Preparation of oxygen-containing compound

Country Status (1)

Country Link
JP (1) JPS56147730A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2664046B2 (en) * 1994-10-03 1997-10-15 通商産業省基礎産業局長 Method for producing alcohols from carbon dioxide
US9333491B2 (en) * 2012-03-07 2016-05-10 Sekisui Chemical Co., Ltd. Catalyst for oxygenate synthesis, oxygenate production apparatus, and method of producing oxygenate

Also Published As

Publication number Publication date
JPS56147730A (en) 1981-11-16

Similar Documents

Publication Publication Date Title
US4670472A (en) Fischer-Tropsch process
JPS6265747A (en) Metallic catalyst carried onto rutile titania and usage thereof
JPS6036430A (en) Conversion of dialkyl ether to homologous carboxylic acid ester and alcohol
CN111253258A (en) Method for synthesizing methyl propionate through homogeneous-phase hydroesterification of ethylene
CA1143748A (en) Methanol homologation using cobalt-ruthenium catalysts
JPS6118728A (en) Conversion of methanol to hydrocarbon
Braca et al. Carbonylation and homologation of methanol, methyl ethers and esters in the presence of ruthenium catalysts
US4463105A (en) Process for producing oxygen-containing hydrocarbon compounds
US4585897A (en) Process for preparation of fuel additives from acetylene
JPS6049617B2 (en) Method for producing oxygenated compounds such as ethanol
JPS6154771B2 (en)
EP0022358B1 (en) Process for producing oxygen-containing hydrocarbon compounds
Röper et al. Methanol homologation by cobalt-phosphine-iodine catalyst systems
JPS6125691B2 (en)
KR20000059743A (en) Hydrogenation catalyst for selectively converting a triple bonded, conjugated double bonded or allene-type hydrocarbon and method of preparing the same
JPS6119608B2 (en)
KR101468204B1 (en) The method for preparation of catalysts for the production of oxygenated carbon compound and production method of oxygenated carbon compound using thereof
JPS624373B2 (en)
JPS6032730A (en) Production of oxygen-containing compound composed mainly of ethanol
JPS6049616B2 (en) Method for producing oxygen-containing compounds containing ethanol as the main component
JPS6039655B2 (en) Method for producing oxygen-containing compound consisting of 2 carbon atoms
JPH0371417B2 (en)
Ichtkawa et al. Characterization of Surface Supported Rh, Pt and Ir Carbonyl Clusters and Their Catalytic Behaviors in the Syntheses of Methanol and Ethanol From CO and H2
JPS61227542A (en) Production of oxygen-containing compound
JPH01228555A (en) Composite metal cluster supporting catalyst