JPH0371417B2 - - Google Patents

Info

Publication number
JPH0371417B2
JPH0371417B2 JP59265980A JP26598084A JPH0371417B2 JP H0371417 B2 JPH0371417 B2 JP H0371417B2 JP 59265980 A JP59265980 A JP 59265980A JP 26598084 A JP26598084 A JP 26598084A JP H0371417 B2 JPH0371417 B2 JP H0371417B2
Authority
JP
Japan
Prior art keywords
cobalt
catalyst
ruthenium
strontium
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59265980A
Other languages
Japanese (ja)
Other versions
JPS61143333A (en
Inventor
Kazuhiko Takeuchi
Takehiko Matsuzaki
Hironori Arakawa
Yoshihiro Sugi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59265980A priority Critical patent/JPS61143333A/en
Publication of JPS61143333A publication Critical patent/JPS61143333A/en
Publication of JPH0371417B2 publication Critical patent/JPH0371417B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、(イ)ルテニウム又は(ロ)ルテニウム及び
ストロンチウムにより改質されたコバルト触媒の
もとで、一酸化炭素と水素との反応により炭素数
2の含酸素化合物(C2含酸素化合物)を製造す
る方法に関する。 合成ガスより気相法によるエタノール、アセト
アルデヒド、酢酸及び酢酸エステル等のC2含酸
素化合物の製造法としては、一定の助触媒を伴う
ロジウム触媒が既に公知である(ドイツ国特許出
願公告第250,233、特開昭51−80806及び特開昭
52−14706)。しかし、この触媒はロジウムの価格
が高い上、地球上に少量しか存在しない貴重な資
源であり、多量に用いることができないロジウム
を用いるという欠点を有する。従つて、ロジウム
を用いない、より安価な触媒の開発が急務とされ
ている。 また、安価はコバルト触媒が気相法合成ガス反
応の際に使えることが知られている(フイツシヤ
ー−トロプシユ反応)が、この際の主要な生成物
は炭化水素であり、含酸素化合物の生成量は極め
て少ない。銅、クロム、亜鉛、アルカリ士類金
属、アルミニウム、稀士類又は鉄により改質され
たコバルト触媒(フランス国特許第4122110及び
ドイツ国特許出願公告第2748097)及び金及び/
又は銀及び/又はレニウムにより改質されたコバ
ルト触媒(欧州特許第0021330及び特開昭56−
25124)は含酸素化合物を生じさせるが、これら
の触媒は製造並びに運転に関して非常にデリケー
トである。それ故に、概ねそれらは触媒調製並び
に運転に関して特殊かつ高度な技術を必要とする
上に、得られた触媒の寿命も永くない。 従つて、調製が容易でかつ頑丈、長寿命で、か
つ高選択率で合成ガスからC2含酸素化合物を与
える触媒の開発が当該技術分野における課題であ
る。 本発明者らは、コバルトをルテニウムで改質す
ることによりC2含酸素化合物の選択率が本質的
に高められることを見出した。更に、助触媒とし
てルテニウムの他にストロンチウムを加えること
により、飛躍的にC2含酸素化合物・選択率が高
められることも見出した。従つて、本発明は、金
属状ルテニウムで改質されたコバルト触媒のもと
で気相法により一酸化炭素と水素を反応させるこ
とを特徴とする炭素数2の含酸素化合物を製造す
る方法である。 C2含酸素化合物の選択率が上述の元素の添加
により、著しく向上するという事実は実に驚くべ
きことであり、かつ予見され得ぬことであつた。
何故なら、ルテニウム触媒上での気相法による合
成ガス反応の主生成物は高級炭化水素であり、一
般に含酸素化合物は生成しないからである。 本発明で用いる触媒は、好ましくは触媒担体
に、コバルト化合物及びルテニウム化合物、更に
場合によりストロンチウム化合物の溶液を順次あ
るいは同時に浸漬し、ついで溶媒を除去して製造
される。これら化合物としては、可溶性のコバル
ト、ルテニウム、及びストロンチウムの化合物、
例えば、コバルトの酢酸塩、ルテニウムの塩化物
又はカルボニル化合物、更にストロンチウムの酢
酸塩等が適当である。上述の化合物は適当な溶媒
に溶解される。溶媒としては、例えば、水又はn
−へキサン等が挙げられる。担体としては、例え
ば、シリカゲル等が適当である。 本発明の触媒において、その組成比は、金属換
算で、コバルト1重量部に対し、ルテニウム1/100 〜30重量部、好ましくは1/10〜10重量部、ストロ ンチウム1/100〜30重量部、好ましくは1/10〜20重 量部である。 本発明の実施にあたつては、前記のようにして
得た触媒は、これを水素等の雰囲気中で還元処理
する。この還元処理により、触媒中のルテニウム
成分は金属状態(0価)に還元され、触媒活性を
示すようになる。触媒中のコバルト成分は一部金
属状態に還元される。触媒中にストロンチウム成
分が含まれる場合、このストロンチウム成分は実
質上還元されず、2価金属化合物の状態を示す。
原料の合成ガス中には一酸化炭素及び水素の他に
アルゴン等の不活性成分を含んでも良い。 本方法で特に主成分として生成するエタノー
ル、アセトアルデヒド、酢酸等の混合物は蒸留に
より容易に分離・精製できるので、これら製品の
製造プロセスとして実用性があり、更に石油資源
の節約の大きな一助を成すものと期待される。 以下に実施例及び比較例により本発明を更に詳
細に説明する。 実施例 1 市販シリカゲル担体(ダビソン0.57、比表面積
250〜350m2/g、細孔容積0.95〜1.20ml/g、見
掛比重0.35〜0.43g/ml)10gを、Co(OCOCH3
・4H2O2.11gの水溶液12mlで浸漬し、ロータリ
エバポレーターを用いて乾燥し、更に300℃で水
素処理してコバルト−シリカ触媒()を得た。
さらに、これをRuC3・nH2O0.60gの12ml水溶
液中に浸漬し、更にロータリエバポレーターを用
いて乾燥し、コバルト−ルテニウム−シリカ触媒
()を得た。このうち3mlを固定床式高圧流通
反応装置(SUS−316製、内径11mmφ)に充填
し、水素気流中450℃で3時間水素還元を行つた。
還元後、合成ガス(一酸化炭素:水素:アルゴン
=30:60:10)を20Kg/cm2で導入し、空間速度
2000/hで触媒に接触させた。生成物は全てガス
状のままガスクロマトグラフに導入して分析し
た。 実施例 2 実施例1と同様にコバルト−シリカ触媒()
を調製し、これをRu3(CO)120.21gの12mln−ヘ
キサン溶液中に浸漬し、更にロータリーエバポレ
ーターを用いて乾燥し、コバルト−ルテニウム−
シリカ触媒()を得た。前処理、反応及び分析
方法は実施例1と同様である。 実施例 3 実施例1と同様のシリカゲル担体10gを、Co
(OCOCH32・4H2O2.11g及びSr(OCOCH32
1/2H2O1.23gの水溶液12mlで浸漬し、ロータリー エバポレータを用いて乾燥し、更に300℃で水素
処理してコバルト−ストロンチウム−シリカ触媒
()を得た。更に、これをRuC3・nH2O0.24g
の12ml水溶液中に浸漬し、ロータリーエバポレー
タで乾燥し、コバルト−ルテニウム−ストロンチ
ウム−シリカ触媒()を得た。前処理、反応及
び分析方法は実施例1と同様である。 実施例 4 実施例3と同様にコバルト−ストロンチウム−
シリカ触媒()を調製し、これをRuC3
nH2O0.60gの12ml水溶液中に浸漬し、ロータリー
エバポレータで乾燥し、コバルト−ルテニウム−
ストロンチウム−シリカ触媒()を得た。前処
理、反応及び分析方法は実施例1と同様である。 実施例 5 実施例3と同様にコバルト−ストロンチウム−
シリカ触媒()を調製し、これをRu3(CO)12
0.23gの12mln−ヘキサン溶液中に浸漬し、ロー
タリーエバポレータで乾燥し、コバルト−ルテニ
ウム−ストロンチウム−シリカ触媒()を得
た。前処理、反応及び分析方法は実施例1と同様
である。 実施例 6 実施例3と同様にコバルト−ストロンチウム−
シリカ触媒()を調製し、これをRu3(CO)12
0.80gの12mln−ヘキサン溶液中に浸漬し、ロー
タリーエバポレータで乾燥し、コバルト−ルテニ
ウム−ストロンチウム−シリカ触媒()を得
た。前処理、反応及び分析方法は実施例1と同様
である。 比較例 1 実施例1と同様にコバルト−シリカ触媒()
を調製し、これをそのまま実施例1と同様の方法
で前処理、反応及び分析を行つた。 比較例 2 実施例3と同様にコバルト−ストロンチウム−
シリカ触媒()を調製し、これをそのまま実施
例1と同様の方法で前処理、反応及び分析を行つ
た。 比較例 3 実施例1と同様のシリカゲル担体10gを、Ru3
(CO)120.57gの12mln−ヘキサン溶液中に浸漬
し、ロータリーエバポレータを用いて乾燥し、ル
テニウム−シリカ触媒()を得た。これをその
まま実施例1と同様の方法で前処理、反応及び分
析を行つた。 次に前記実験結果を次表に示す。なお、表中に
示した各符号は次のことを示す。 (a) 反応条件;原料合成ガスAr/CO/H2=10/
30/60、圧力20Kg/cm2(ゲージ圧)、空間速度
2000/h。 (b) 一酸化炭素転化率(%) =(供給CO)モル−(未反応CO)モル/(供給CO)モ
ル×100 (c) 生成物炭素効率(%) =(各生成物へ転化した一酸化炭素)モル/(供給CO
)モル−(未反応CO)モル× 100 (d) その他の炭化水素としてはC2〜C20の炭化水
素からなる。 (e) C2含酸素化合物とはエタノール、アセトア
ルデヒド、酢酸及び酢酸エステルの和を表わ
す。
The present invention produces oxygen-containing compounds having 2 carbon atoms (C 2 oxygen-containing compounds) through the reaction of carbon monoxide and hydrogen under a cobalt catalyst modified with (a) ruthenium or (b) ruthenium and strontium. Relating to a method of manufacturing. Rhodium catalysts with certain cocatalysts are already known as a method for producing C2 oxygenated compounds such as ethanol, acetaldehyde, acetic acid and acetic esters using a gas phase method from synthesis gas (German Patent Application Publication No. 250, 233, JP-A-51-80806 and JP-A-Sho
52−14706). However, this catalyst has the disadvantage of using rhodium, which is expensive and cannot be used in large quantities because it is a precious resource that exists only in small amounts on the earth. Therefore, there is an urgent need to develop a cheaper catalyst that does not use rhodium. It is also known that inexpensive cobalt catalysts can be used in gas phase syngas reactions (Fitscher-Tropsch reaction), but the main products in this process are hydrocarbons, and the amount of oxygen-containing compounds produced is are extremely rare. Cobalt catalysts modified with copper, chromium, zinc, alkali metals, aluminum, rare metals or iron (French Patent No. 4122110 and German Patent Application No. 2748097) and gold and/or
or cobalt catalysts modified with silver and/or rhenium (European Patent No.
25124) yield oxygenates, but these catalysts are very sensitive in terms of manufacture and operation. Therefore, they generally require special and sophisticated techniques for catalyst preparation and operation, and the lifetime of the obtained catalyst is also short. Therefore, it is a challenge in the art to develop catalysts that are easy to prepare, robust, long-lived, and provide C2 oxygenates from synthesis gas with high selectivity. The inventors have found that by modifying cobalt with ruthenium, the selectivity for C2 oxygenates is substantially increased. Furthermore, it was discovered that by adding strontium in addition to ruthenium as a cocatalyst, the C 2 oxygen-containing compound selectivity could be dramatically increased. Therefore, the present invention provides a method for producing an oxygen-containing compound having 2 carbon atoms, which is characterized in that carbon monoxide and hydrogen are reacted by a gas phase method under a cobalt catalyst modified with metallic ruthenium. be. The fact that the selectivity of C 2 oxygenates is significantly improved by the addition of the above-mentioned elements was truly surprising and unexpected.
This is because the main products of the gas phase synthesis gas reaction over a ruthenium catalyst are higher hydrocarbons and generally no oxygenated compounds are produced. The catalyst used in the present invention is preferably produced by immersing a catalyst carrier in a solution of a cobalt compound, a ruthenium compound, and optionally a strontium compound sequentially or simultaneously, and then removing the solvent. These compounds include soluble cobalt, ruthenium, and strontium compounds;
For example, cobalt acetate, ruthenium chloride or carbonyl compound, and strontium acetate are suitable. The above-mentioned compounds are dissolved in a suitable solvent. As a solvent, for example, water or n
-hexane and the like. For example, silica gel is suitable as the carrier. In the catalyst of the present invention, the composition ratio is, in terms of metal, to 1 part by weight of cobalt, 1/100 to 30 parts by weight of ruthenium, preferably 1/10 to 10 parts by weight, 1/100 to 30 parts by weight of strontium, Preferably it is 1/10 to 20 parts by weight. In carrying out the present invention, the catalyst obtained as described above is subjected to a reduction treatment in an atmosphere of hydrogen or the like. Through this reduction treatment, the ruthenium component in the catalyst is reduced to a metallic state (zero valence) and exhibits catalytic activity. The cobalt component in the catalyst is partially reduced to a metallic state. When a strontium component is contained in the catalyst, this strontium component is not substantially reduced and exhibits the state of a divalent metal compound.
The raw material synthesis gas may contain inert components such as argon in addition to carbon monoxide and hydrogen. In particular, the mixture of ethanol, acetaldehyde, acetic acid, etc. that is produced as the main components in this method can be easily separated and purified by distillation, so it is a practical process for manufacturing these products, and it also contributes greatly to the conservation of petroleum resources. It is expected that The present invention will be explained in more detail below using Examples and Comparative Examples. Example 1 Commercially available silica gel carrier (Davison 0.57, specific surface area
250~ 350m2 /g, pore volume 0.95~1.20ml/g, apparent specific gravity 0.35~0.43g/ml) 10g, Co( OCOCH3 )
It was immersed in 12 ml of an aqueous solution of 2.11 g of 2.4H 2 O, dried using a rotary evaporator, and further treated with hydrogen at 300°C to obtain a cobalt-silica catalyst () .
Furthermore, this was immersed in a 12 ml aqueous solution of 0.60 g of RuC 3 .nH 2 O, and further dried using a rotary evaporator to obtain a cobalt-ruthenium-silica catalyst (). Of this, 3 ml was filled into a fixed bed type high pressure flow reactor (made of SUS-316, inner diameter 11 mmφ), and hydrogen reduction was performed at 450° C. for 3 hours in a hydrogen stream.
After reduction, synthesis gas (carbon monoxide: hydrogen: argon = 30:60:10) was introduced at 20 Kg/cm 2 to reduce the space velocity.
It was brought into contact with the catalyst at 2000/h. All the products were introduced into a gas chromatograph in a gaseous state and analyzed. Example 2 Cobalt-silica catalyst () as in Example 1
was prepared, immersed in a solution of 0.21 g of Ru 3 (CO) 12 in 12 ml of n-hexane, and further dried using a rotary evaporator to form cobalt-ruthenium-
A silica catalyst () was obtained. Pretreatment, reaction, and analysis methods were the same as in Example 1. Example 3 10 g of the same silica gel carrier as in Example 1 was coated with Co
(OCOCH 3 ) 2・4H 2 O2.11g and Sr(OCOCH 3 ) 2
It was immersed in 12 ml of an aqueous solution of 1.23 g of 1/2 H 2 O, dried using a rotary evaporator, and further treated with hydrogen at 300°C to obtain a cobalt-strontium-silica catalyst (). Furthermore, this is RuC 3・nH 2 O0.24g
The cobalt-ruthenium-strontium-silica catalyst (2) was obtained by immersing the cobalt-ruthenium-strontium-silica catalyst in a 12 ml aqueous solution of and drying it using a rotary evaporator. Pretreatment, reaction, and analysis methods were the same as in Example 1. Example 4 Similar to Example 3, cobalt-strontium-
Prepare a silica catalyst () and apply it to RuC3 .
The cobalt- ruthenium-
A strontium-silica catalyst () was obtained. Pretreatment, reaction, and analysis methods were the same as in Example 1. Example 5 Cobalt-strontium-
Prepare a silica catalyst () and combine it with Ru 3 (CO) 12
It was immersed in 0.23 g of 12 ml n-hexane solution and dried on a rotary evaporator to obtain a cobalt-ruthenium-strontium-silica catalyst (2). Pretreatment, reaction, and analysis methods were the same as in Example 1. Example 6 As in Example 3, cobalt-strontium-
Prepare a silica catalyst () and combine it with Ru 3 (CO) 12
It was immersed in 0.80 g of 12 ml n-hexane solution and dried on a rotary evaporator to obtain a cobalt-ruthenium-strontium-silica catalyst (). Pretreatment, reaction, and analysis methods were the same as in Example 1. Comparative Example 1 Cobalt-silica catalyst () as in Example 1
was prepared and subjected to pretreatment, reaction, and analysis in the same manner as in Example 1. Comparative Example 2 Same as Example 3, cobalt-strontium-
A silica catalyst (2) was prepared and pretreated, reacted, and analyzed in the same manner as in Example 1. Comparative Example 3 10 g of the same silica gel carrier as in Example 1 was mixed with Ru 3
It was immersed in a 12 ml n-hexane solution containing 0.57 g of (CO) 12 and dried using a rotary evaporator to obtain a ruthenium-silica catalyst (). This was subjected to pretreatment, reaction, and analysis in the same manner as in Example 1. Next, the experimental results are shown in the following table. In addition, each code shown in the table indicates the following. (a) Reaction conditions; raw material synthesis gas Ar/CO/H 2 = 10/
30/60, pressure 20Kg/cm 2 (gauge pressure), space velocity
2000/h. (b) Carbon monoxide conversion rate (%) = (supplied CO) mol - (unreacted CO) mol / (supplied CO) mol × 100 (c) Product carbon efficiency (%) = (converted to each product carbon monoxide) mol/(supplied CO
) mol - (unreacted CO) mol x 100 (d) Other hydrocarbons include C 2 to C 20 hydrocarbons. (e) C2 oxygenate refers to the sum of ethanol, acetaldehyde, acetic acid and acetic acid ester.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 金属状ルテニウムで改質されたコバルト触媒
のもとで気相法により一酸化炭素と水素を反応さ
せることを特徴とする炭素数2の含酸素化合物を
製造する方法。 2 金属状ルテニウム及びストロンチウム化合物
で改質されたコバルト触媒のもとで気相法により
一酸化炭素と水素を反応させることを特徴とする
炭素数2の含酸素化合物の製造方法。
[Scope of Claims] 1. A method for producing an oxygen-containing compound having 2 carbon atoms, which comprises reacting carbon monoxide and hydrogen by a gas phase method under a cobalt catalyst modified with metallic ruthenium. 2. A method for producing an oxygen-containing compound having 2 carbon atoms, which comprises reacting carbon monoxide and hydrogen by a gas phase method under a cobalt catalyst modified with metallic ruthenium and strontium compounds.
JP59265980A 1984-12-17 1984-12-17 Production of oxygen-containing 2c compound from synthetic gas Granted JPS61143333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59265980A JPS61143333A (en) 1984-12-17 1984-12-17 Production of oxygen-containing 2c compound from synthetic gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59265980A JPS61143333A (en) 1984-12-17 1984-12-17 Production of oxygen-containing 2c compound from synthetic gas

Publications (2)

Publication Number Publication Date
JPS61143333A JPS61143333A (en) 1986-07-01
JPH0371417B2 true JPH0371417B2 (en) 1991-11-13

Family

ID=17424691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59265980A Granted JPS61143333A (en) 1984-12-17 1984-12-17 Production of oxygen-containing 2c compound from synthetic gas

Country Status (1)

Country Link
JP (1) JPS61143333A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61249939A (en) * 1985-04-26 1986-11-07 Agency Of Ind Science & Technol Production of oxygen-containing 2c compound
JPS6344541A (en) * 1986-08-12 1988-02-25 Agency Of Ind Science & Technol Production of ethanol

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588026A (en) * 1981-07-02 1983-01-18 テキサコ・デイベロツプメント・コ−ポレ−シヨン Manufacture of alkanol from synthetic gas
JPS58167531A (en) * 1982-03-30 1983-10-03 Agency Of Ind Science & Technol Preparation of ethylene glycol
JPS59101430A (en) * 1981-10-29 1984-06-12 テキサコ・ブイベロツプメント・コ−ポレ−シヨン Manufacture of acetic acid, propionic acid and their esters

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588026A (en) * 1981-07-02 1983-01-18 テキサコ・デイベロツプメント・コ−ポレ−シヨン Manufacture of alkanol from synthetic gas
JPS59101430A (en) * 1981-10-29 1984-06-12 テキサコ・ブイベロツプメント・コ−ポレ−シヨン Manufacture of acetic acid, propionic acid and their esters
JPS58167531A (en) * 1982-03-30 1983-10-03 Agency Of Ind Science & Technol Preparation of ethylene glycol

Also Published As

Publication number Publication date
JPS61143333A (en) 1986-07-01

Similar Documents

Publication Publication Date Title
EP0147219A2 (en) Pd/Re Hydrogenation catalyst and process for making tetrahydrofuran and 1,4-butanediol
UA72617C2 (en) A method for the preparation of vinyl acetate
US4289710A (en) Process for producing methanol from synthesis gas with palladium-calcium catalysts
EP0031243A1 (en) Preparation of methanol from synthesis gas with promoted palladium catalysts
US4393144A (en) Method for producing methanol
JP2545734B2 (en) Hydrocarbon producing catalyst and hydrocarbon producing method
JPH0371417B2 (en)
JP2519976B2 (en) Method for producing oxygen-containing compound
JPS6039652B2 (en) Method for producing lower oxygen-containing organic compounds
JPS62102831A (en) Novel metal catalyst for reaction of carbon monoxide and hydrogen
JPS6341892B2 (en)
EP0171206B1 (en) Preparation of hydrocarbons and oxygenated hydrocarbons
JPS6341893B2 (en)
JPH01128948A (en) Production of oxygen-containing organic compound
JPS611630A (en) Production of lower alcohol
JPH0237329B2 (en)
JP2704165B2 (en) Method for preparing catalyst for producing organic oxygenated compound
JPS6319492B2 (en)
JPS63162639A (en) Production of ethanol
JPS6032730A (en) Production of oxygen-containing compound composed mainly of ethanol
JPS6238336B2 (en)
JPH0455409B2 (en)
JPS6154771B2 (en)
JPS6049612B2 (en) Method for producing oxygen-containing hydrocarbon compound
JPH01294641A (en) Production of unsaturated hydrocarbon

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term