JPS624373B2 - - Google Patents

Info

Publication number
JPS624373B2
JPS624373B2 JP59132291A JP13229184A JPS624373B2 JP S624373 B2 JPS624373 B2 JP S624373B2 JP 59132291 A JP59132291 A JP 59132291A JP 13229184 A JP13229184 A JP 13229184A JP S624373 B2 JPS624373 B2 JP S624373B2
Authority
JP
Japan
Prior art keywords
mmol
reaction
ethanol
ethylene glycol
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59132291A
Other languages
Japanese (ja)
Other versions
JPS6112636A (en
Inventor
Takashi Masuda
Akio Matsuda
Kazuhisa Murata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59132291A priority Critical patent/JPS6112636A/en
Publication of JPS6112636A publication Critical patent/JPS6112636A/en
Publication of JPS624373B2 publication Critical patent/JPS624373B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明は一酸化炭素および水素から液相反応に
よりエチレングリコールおよびエタノールを効率
よく製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for efficiently producing ethylene glycol and ethanol from carbon monoxide and hydrogen by liquid phase reaction.

エチレングリコールは、ポリエステルの原料、
有機溶媒、不凍剤などに利用され、またエタノー
ルは、溶媒、燃料、不凍剤および各種化学原料に
利用されるほかエチレン原料としての利用も考え
られ、いずれも工業的に重要な基礎化学品であ
る。
Ethylene glycol is a raw material for polyester,
Ethanol is used as an organic solvent, antifreeze agent, etc. Ethanol is used as a solvent, fuel, antifreeze agent, and various chemical raw materials, and can also be used as an ethylene raw material, all of which are industrially important basic chemicals. It is.

従来、これらの炭素数2のアルコール(C2
ルコール)は主として石油を原料として製造され
てきたが、石油価格の高騰、石油の重質化傾向な
どにより、石炭、天然ガス、重質油などの炭素源
から容易に得られる一酸化炭素、水素からこのよ
うなC2アルコールを製造する方法が重要な課題
となつている。
Conventionally, these two-carbon alcohols ( C2 alcohols) have mainly been produced from petroleum, but due to the rise in oil prices and the tendency for petroleum to become heavier, coal, natural gas, heavy oil, etc. An important issue is how to produce such C2 alcohols from carbon monoxide and hydrogen, which are easily obtained from carbon sources.

一酸化炭素と水素から液相反応によりエチレン
グリコールやエタノールのようなC2アルコール
を製造する方法としては、酢酸コバルトやCoF2
を触媒として使用する米国特許明細書第2534018
号、米国特許明細書第2636046号、またロジウム
触媒やルテニウム触媒を使用する方法(特開昭52
−42809号公報、特開昭55−11834号公報)、ルテ
ニウム触媒を用いる方法(特開昭56−123925号公
報)などが知られている。しかしなながら、これ
らの方法は反応に1400〜3000気圧の高圧を必要と
し、または、高価な貴金属を触媒として使用する
という欠点を有し、工業的に有利な方法でなかつ
た。
Cobalt acetate or CoF2 is a method for producing C2 alcohols such as ethylene glycol and ethanol from carbon monoxide and hydrogen through a liquid phase reaction.
U.S. Patent No. 2534018 using as a catalyst
No. 2,636,046, and a method using a rhodium catalyst or a ruthenium catalyst (JP-A-52
-42809, JP-A-55-11834), and a method using a ruthenium catalyst (JP-A-56-123925). However, these methods require a high pressure of 1,400 to 3,000 atmospheres for the reaction or use expensive noble metals as catalysts, and are not industrially advantageous.

また、コバルトカルボニル触媒を使用し、フエ
ノールおよび/またはアルキルフエノールの存在
下に一酸化炭素と水素から直接エチレングリコー
ルを製造する方法が特開昭58−90522号公報に提
案されているが、この方法では溶媒が水素化され
るという問題があるほかC2アルコールの選択率
の点で更に向上が求められている。
Furthermore, JP-A-58-90522 proposes a method for directly producing ethylene glycol from carbon monoxide and hydrogen in the presence of phenol and/or alkylphenol using a cobalt carbonyl catalyst; In addition to the problem of hydrogenation of the solvent, further improvement is required in terms of selectivity for C 2 alcohols.

本発明は、上記の問題を克服するため鋭意研究
を重ねた結果、一酸化炭素と水素をコバルトカル
ボニルの存在下、フエノールおよび/またはアル
キルフエノール中で反応させる際に、該溶媒に対
し1.5〜30Vol%の水を共存させることにより、溶
媒の水添を抑制することができることを見出し、
また従来法に比べ高いC2アルコール選択率が得
られることを見出し本発明をなすに至つた。
As a result of extensive research to overcome the above problems, the present invention has revealed that when carbon monoxide and hydrogen are reacted in the presence of cobalt carbonyl in phenol and/or alkylphenol, 1.5 to 30 Vol. It was discovered that hydrogenation of the solvent could be suppressed by coexisting % of water.
Furthermore, we have discovered that a higher C 2 alcohol selectivity can be obtained than in the conventional method, leading to the present invention.

即ち本発明は、一酸化炭素と水素をコバルトカ
ルボニルの存在下にフエノールおよび/またはア
ルキルフエノール中で反応させる際に、該溶媒に
対し1.5〜30Vol%の水を共存させることを特徴と
するエチレングリコールおよびエタノールのよう
なC2アルコールを製造する方法を提供するもの
である。
That is, the present invention provides ethylene glycol, which is characterized in that when carbon monoxide and hydrogen are reacted in phenol and/or alkylphenol in the presence of cobalt carbonyl, 1.5 to 30 Vol% of water is allowed to coexist with respect to the solvent. and a method for producing C2 alcohols such as ethanol.

本発明によれば合成ガスから液相反応により選
択率よくエチレングリコールやエタノールのよう
なC2アルコールを製造することができるので本
発明の意義は大きい。
According to the present invention, C 2 alcohols such as ethylene glycol and ethanol can be produced with high selectivity from synthesis gas by liquid phase reaction, so the present invention has great significance.

本発明で用いられる一酸化炭素と水素のモル比
は通常CO:H2=1:10〜3:1であるが、好ま
しくは1:4〜2:1の範囲である。この混合ガ
ス(合成ガス)圧力は200Kg/cm2〜200Kg/cm2、好
ましくは500Kg/cm2〜1200Kg/cm2の範囲である。
本発明で用いるアルキルフエノールの中ではクレ
ゾールが最も好ましい。本発明のフエノールおよ
びアルキルフエノールは適当な溶媒、好ましくは
トルエン、ナフタレン等の芳香族炭化水素溶媒で
希釈して用いることができるが、全溶媒中に占め
るフエノールおよび/またはアルキルフエノール
の割合は10〜100重量%の範囲が好ましい。
The molar ratio of carbon monoxide and hydrogen used in the present invention is usually CO: H2 = 1:10 to 3:1, preferably in the range of 1:4 to 2:1. The mixed gas (synthesis gas) pressure is in the range of 200 Kg/cm 2 to 200 Kg/cm 2 , preferably 500 Kg/cm 2 to 1200 Kg/cm 2 .
Among the alkylphenols used in the present invention, cresol is most preferred. The phenol and alkylphenol of the present invention can be used after being diluted with a suitable solvent, preferably an aromatic hydrocarbon solvent such as toluene or naphthalene, but the proportion of the phenol and/or alkylphenol in the total solvent is 10 to 10%. A range of 100% by weight is preferred.

水の使用量は、前記の溶媒に対し通常1.5〜
30Vol%である。過剰の水の使用は触媒活性の低
下をもたらし、また、水の使用量が上記の範囲よ
り少い場合は有効な効果が得られない。
The amount of water used is usually 1.5~
It is 30Vol%. Use of excessive water will result in a decrease in catalyst activity, and if the amount of water used is less than the above range, no effective effect will be obtained.

反応に用いるコバルト触媒は必ずしもコバルト
カルボニルに限定されるものではなく、反応条件
下でコバルトカルボニルを生成し得るコバルト化
合物、例えば酸化コバルト、炭酸コバルト、酢酸
コバルトあるいは金属コバルトなどを用いること
ができる。
The cobalt catalyst used in the reaction is not necessarily limited to cobalt carbonyl, and cobalt compounds capable of producing cobalt carbonyl under the reaction conditions, such as cobalt oxide, cobalt carbonate, cobalt acetate, or metallic cobalt, can be used.

反応溶媒中の触媒濃度は、金属コバルト換算で
0.03〜0.9g−atom/の範囲が好ましい。反応
は通常200〜280℃の範囲で行われる。
The catalyst concentration in the reaction solvent is calculated in terms of metallic cobalt.
The range of 0.03 to 0.9 g-atom/ is preferable. The reaction is usually carried out at a temperature of 200 to 280°C.

本発明の方法は、回分式、連続式のいずれの反
応様式によつても実施可能であり、また反応液か
らの生成物および触媒の分離は、蒸留、抽出等の
公知の方法により容易に行いうる。
The method of the present invention can be carried out in either batch or continuous reaction mode, and separation of the product and catalyst from the reaction solution can be easily carried out by known methods such as distillation and extraction. sell.

次に本発明を実施例および比較例によりさらに
詳細に説明する。
Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

比較例 1 ハステロイC−276製、内容積100mlの電磁上下
かきまぜ式オートクレーブに、メタクレゾール30
ml、ジコバルトオクタカルボニルCo2(CO)85ミ
リモル(Coとして10mg−atom)を仕込み、CO:
H2=1:1の混合ガスで反応器内の空気を置換
した後同組成の混合ガス圧入して240℃、1000
Kg/cm2の一定圧で1時間反応を行つた。反応後、
オートクレーブを冷却し、生成物をガスクロマト
グラフで分析した結果、メタノール23.04ミリモ
ル、ギ酸メチル6.30ミリモル、エタノール1.72ミ
リモル、エチレングリコール10.84ミリモルが得
られた。またメタクレゾールの水素添加物である
メチルシクロヘキサノール13.75ミリモルが検出
された。
Comparative Example 1 Metacresol 30 was placed in an electromagnetic vertical stirring autoclave made of Hastelloy C-276 and having an internal volume of 100ml.
ml, dicobalt octacarbonyl Co 2 (CO) 8 5 mmol (10 mg−atom as Co), CO:
After replacing the air in the reactor with a mixed gas of H 2 = 1:1, a mixed gas of the same composition was pressurized and heated at 240℃ and 1000 ℃.
The reaction was carried out for 1 hour at a constant pressure of Kg/cm 2 . After the reaction,
The autoclave was cooled, and the products were analyzed by gas chromatography. As a result, 23.04 mmol of methanol, 6.30 mmol of methyl formate, 1.72 mmol of ethanol, and 10.84 mmol of ethylene glycol were obtained. Additionally, 13.75 mmol of methylcyclohexanol, a hydrogenated product of metacresol, was detected.

実施例 1 溶媒としてメタクレゾール25ml、水5mlを用い
るほかは比較例1と同様の条件で反応を行つた結
果、メタノール16.18ミリモル、ギ酸メチル2.20
ミリモル、エタノール6.10ミリモル、エチレング
リコール11.15ミリモルが得られた。またメタク
レゾールの水素添加物であるメチルシクロヘキサ
ノール4.05ミリモルが検出された。
Example 1 A reaction was carried out under the same conditions as in Comparative Example 1 except that 25 ml of metacresol and 5 ml of water were used as solvents. As a result, 16.18 mmol of methanol and 2.20 mmol of methyl formate were used.
6.10 mmol of ethanol and 11.15 mmol of ethylene glycol were obtained. Additionally, 4.05 mmol of methylcyclohexanol, a hydrogenated product of metacresol, was detected.

比較例1と比べ、メタノールの生成量が減少
し、エタノール、エチレングリコールのC2アル
コールの生成量が増加していることがわかる。ま
た溶媒のメタクレゾールの水素添加物であるメチ
ルシクロヘキサノールの生成量が1/3以下に減少
した。
It can be seen that compared to Comparative Example 1, the amount of methanol produced is decreased, and the amount of C2 alcohols such as ethanol and ethylene glycol is increased. Furthermore, the amount of methylcyclohexanol produced, which is a hydrogenated product of the solvent metacresol, was reduced to less than one-third.

比較例 2 ジコバルトオクタカルボニルを12.2ミリモル使
用し、CO:H2=1:2の混合ガスを用いるほか
は比較例1と同様の条件で反応を行つた結果、メ
タノール44.29ミリモル、ギ酸メチル8.43ミリモ
ル、エタノール21.96ミリモル、エチレングリコ
ール20.77ミリモルが得られた。またメチルシク
ロヘキサノールが22.86ミリモル検出された。
Comparative Example 2 A reaction was carried out under the same conditions as Comparative Example 1 except that 12.2 mmol of dicobalt octacarbonyl was used and a mixed gas of CO:H 2 = 1:2 was used. As a result, 44.29 mmol of methanol and 8.43 mmol of methyl formate were obtained. , 21.96 mmol of ethanol and 20.77 mmol of ethylene glycol were obtained. Additionally, 22.86 mmol of methylcyclohexanol was detected.

実施例 2 メタクレゾール28ml、水2mlを用いるほかは比
較例2と同じ条件で反応を行つた結果、メタノー
ル36.61ミリモル、ギ酸メチル4.72ミリモル、エ
タノール44.25ミリモル、エチレングリコール
30.50ミリモルを得た。またメチルシクロヘキサ
ノールが10.44ミリモル検出された。比較例2と
比べ、メタノールの生成量が減少し、エタノー
ル、エチレングリコールのC2アルコールの生成
量が著しく増加していることがわかる。また溶媒
のメタクレゾールの水素添加物メチルシクロヘキ
サノールの生成量が1/2以下に減少した。
Example 2 A reaction was carried out under the same conditions as Comparative Example 2 except that 28 ml of metacresol and 2 ml of water were used. As a result, 36.61 mmol of methanol, 4.72 mmol of methyl formate, 44.25 mmol of ethanol, and ethylene glycol were obtained.
30.50 mmol was obtained. Additionally, 10.44 mmol of methylcyclohexanol was detected. It can be seen that compared to Comparative Example 2, the amount of methanol produced decreased, and the amount of C 2 alcohols such as ethanol and ethylene glycol produced increased significantly. In addition, the amount of methylcyclohexanol, a hydrogenated product of the solvent metacresol, was reduced to less than half.

実施例 3 反応温度を250℃とするほかは実施例1と同様
の条件で反応を行つた結果、メタノール22.70ミ
リモル、ギ酸メチル3.89ミリモル、エタノール
11.01ミリモル、エチレングリコール12.06ミリモ
ルが得られた。またメチルシクロヘキサノールが
5.48ミリモル検出された。
Example 3 A reaction was carried out under the same conditions as in Example 1 except that the reaction temperature was 250°C. As a result, 22.70 mmol of methanol, 3.89 mmol of methyl formate, and ethanol were obtained.
11.01 mmol and 12.06 mmol of ethylene glycol were obtained. Also, methylcyclohexanol
5.48 mmol was detected.

実施例 4 フエノール27ml、水3mlを用いるほかは実施例
2と同様の条件で反応を行つた結果、メタノー
ル、35.14ミリモル、ギ酸メチル4.36ミリモル、
エタノール48.74ミリモル、エチレングリコール
43.11ミリモルが得られた。
Example 4 A reaction was carried out under the same conditions as in Example 2 except that 27 ml of phenol and 3 ml of water were used. As a result, methanol, 35.14 mmol, methyl formate, 4.36 mmol,
Ethanol 48.74 mmol, ethylene glycol
43.11 mmol was obtained.

実施例 5 メタクレゾール28ml、水2ml、ジコバルトオク
タカルボニル5ミリモルを使用し、CO:H2
1:2、反応圧1000Kg/cm2、反応温度270℃の条
件で1時間反応を行つた結果、メタノール67.95
ミリモル、ギ酸メチル6.35ミリモル、エタノール
54.10ミリモル、エチレングリコール17.40ミリモ
ルが得られた。メチルシクロヘキサノールの生成
量は18.98ミリモルであつた。
Example 5 Using 28 ml of metacresol, 2 ml of water, and 5 mmol of dicobalt octacarbonyl, CO:H 2 =
1:2, reaction pressure 1000Kg/cm 2 , reaction temperature 270℃ for 1 hour, methanol 67.95
mmol, methyl formate 6.35 mmol, ethanol
54.10 mmol and 17.40 mmol of ethylene glycol were obtained. The amount of methylcyclohexanol produced was 18.98 mmol.

Claims (1)

【特許請求の範囲】[Claims] 1 一酸化炭素と水素をコバルトカルボニルの存
在下にフエノールおよび/またはアルキルフエノ
ール中で反応させる際に、該溶媒に対し1.5〜
30Vol%の水を共存させることを特徴とするエチ
レングリコールおよびエタノールの製造方法。
1. When reacting carbon monoxide and hydrogen in phenol and/or alkylphenol in the presence of cobalt carbonyl,
A method for producing ethylene glycol and ethanol, characterized by coexisting 30 Vol% water.
JP59132291A 1984-06-27 1984-06-27 Preparation of ethylene glycol and ethanol Granted JPS6112636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59132291A JPS6112636A (en) 1984-06-27 1984-06-27 Preparation of ethylene glycol and ethanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59132291A JPS6112636A (en) 1984-06-27 1984-06-27 Preparation of ethylene glycol and ethanol

Publications (2)

Publication Number Publication Date
JPS6112636A JPS6112636A (en) 1986-01-21
JPS624373B2 true JPS624373B2 (en) 1987-01-30

Family

ID=15077850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59132291A Granted JPS6112636A (en) 1984-06-27 1984-06-27 Preparation of ethylene glycol and ethanol

Country Status (1)

Country Link
JP (1) JPS6112636A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527975Y2 (en) * 1986-10-25 1993-07-16

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5513608A (en) * 1992-08-26 1996-05-07 Sanshin Kogyo Kabushiki Kaisha Two cycle engine lubricating system
RU2405625C1 (en) * 2009-06-16 2010-12-10 Общество с ограниченной ответственностью "ИНФРА Технологии" Catalyst for synthesis of hydrocarbons from co and h2 and method of preparing said catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527975Y2 (en) * 1986-10-25 1993-07-16

Also Published As

Publication number Publication date
JPS6112636A (en) 1986-01-21

Similar Documents

Publication Publication Date Title
EP0048918B1 (en) Process for the selective production of ethanol and methanol directly from synthesis gas
Bhasin et al. Synthesis gas conversion over supported rhodium and rhodium-iron catalysts
CN1024001C (en) Process for preparing carboxylic acids
CA1156209A (en) Process for producing alcohols
Knifton Syngas reactions: IX. Acetic acid from synthesis gas
KR960005497B1 (en) New catalyst for conversion methane or refined natural gas, its preparation and the process for producing ethylene by its use
EP0033212A2 (en) Process for the production of oxygenated hydrocarbons from synthesis gas
EP1080063A1 (en) Method of preparing alkyl carboxylic acids by carboxylation of lower alkanes methane
US4585897A (en) Process for preparation of fuel additives from acetylene
JPS624373B2 (en)
JPS58208240A (en) Synthesis of olefins from synthetic gas
CA1181100A (en) Manufacture of alkanols from synthesis gas
WO1994027722A1 (en) New method and supported catalysts for converting c1-c4 hydrocarbons to c2-olefinic hydrocarbons
US4315993A (en) Preparation of ethylene glycol
Holy et al. Ethanol and n-propanol from syngas
CA1192226A (en) Process for preparing ethylene glycol and lower monohydric alcohols from syngas using a novel catalyst system
JPS6139294B2 (en)
CA1195678A (en) Upgrading synthesis gas
KR0156272B1 (en) Catalyst for conversion of methane to ethylene preparation thereof and process for manufacturing ethylene using said catalyst
Cao et al. Catalytic behavior of silica-supported polyalumazane-Co-Ru bimetallic complex for the hydroformylation of cyclohexene
JP2005246261A (en) Catalyst for synthesizing formate and methanol and method for producing formate and methanol
JPH0136448B2 (en)
US3453278A (en) Preparation of hydrocarbon-substituted pyrazines and piperazines from alpha-nitro-ketones
Tang et al. Hydroformylation of styrene to 2-phenylpropionaldehyde catalyzed by silica-supported poly-γ-aminopropylsiloxane-ruthenium-cobalt bimetallic complex
EP0063105A1 (en) Process for producing ethyl acetate by homologation of methyl acetate

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term