JPS6139294B2 - - Google Patents

Info

Publication number
JPS6139294B2
JPS6139294B2 JP59176321A JP17632184A JPS6139294B2 JP S6139294 B2 JPS6139294 B2 JP S6139294B2 JP 59176321 A JP59176321 A JP 59176321A JP 17632184 A JP17632184 A JP 17632184A JP S6139294 B2 JPS6139294 B2 JP S6139294B2
Authority
JP
Japan
Prior art keywords
formaldehyde
ethylene glycol
present
mixed gas
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59176321A
Other languages
Japanese (ja)
Other versions
JPS6153235A (en
Inventor
Akio Matsuda
Takashi Masuda
Kazuhisa Murata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59176321A priority Critical patent/JPS6153235A/en
Publication of JPS6153235A publication Critical patent/JPS6153235A/en
Publication of JPS6139294B2 publication Critical patent/JPS6139294B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 本発明はエチレングリコールを効率よく製造す
る新規な方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for efficiently producing ethylene glycol.

エチレングリコールは、ポリエステルの原料、
有機溶媒、不揮発性不凍剤、又は冷却剤として工
業的に重要な基礎化学品である。
Ethylene glycol is a raw material for polyester,
It is an industrially important basic chemical as an organic solvent, non-volatile antifreeze, or coolant.

従来エチレングリコールは、エチレンを原料と
する石油化学法で製造されているが、石油価格の
高騰、石油の重質化傾向などにより、石炭、天然
ガス、重質油などから容易に得られる一酸化炭
素、水素、あるいは一酸化炭素、水素を原料とし
て製造されるメタノール、ホルムアルデヒドなど
の炭素数1(C1)化合物からの製造法が重要な課
題になつている。
Traditionally, ethylene glycol has been produced using a petrochemical method using ethylene as a raw material, but due to the soaring oil prices and the tendency for petroleum to become heavier, ethylene glycol has been produced using monoxide, which is easily obtained from coal, natural gas, heavy oil, etc. An important issue is the production method from carbon, hydrogen, or carbon monoxide (C 1 ) compounds such as methanol and formaldehyde, which are produced using carbon monoxide and hydrogen as raw materials.

その一つの方法として、ロジウム触媒の存在下
に合成ガスからエチレングリコールを製造する方
法(特開昭52―42809号公報)があるが、この方
法は高価なロジウムを触媒として使用するという
欠点を有する。また、ホルムアルデヒドを一酸化
炭素と反応させてグリコール酸を製造し、グリコ
ール酸ををエステル化してグリコール酸エステル
に変え、次いでグリコール酸をエステルを水素化
してエチレングリコールを得る方法(特開昭54―
106408号公報)が提案されているが、この方法の
根本的問題点は多くの複雑な工程を必要とするこ
とである。
One method is to produce ethylene glycol from synthesis gas in the presence of a rhodium catalyst (Japanese Unexamined Patent Publication No. 1983-42809), but this method has the disadvantage of using expensive rhodium as a catalyst. . In addition, a method of producing glycolic acid by reacting formaldehyde with carbon monoxide, esterifying the glycolic acid to convert it into a glycolic acid ester, and then hydrogenating the ester of glycolic acid to obtain ethylene glycol (Japanese Unexamined Patent Publication No. 1983-1999)
106408) has been proposed, but the fundamental problem with this method is that it requires many complicated steps.

更に、ホルムアルデヒドを合成ガスと反応させ
て1段でエチレングリコールを得る方法(特開昭
51―128903号公報、同53―53607号公報)が知ら
れているが、この方法はエチレングリコールの選
択性が低い欠点を有し、エチレングリコールのホ
ルムアルデヒドからの収率は40%以下にすぎなか
つた。
Furthermore, a method for obtaining ethylene glycol in one step by reacting formaldehyde with synthesis gas (Japanese Patent Application Laid-open No.
51-128903 and 53-53607), but this method has the drawback of low selectivity for ethylene glycol, and the yield of ethylene glycol from formaldehyde is only 40% or less. Ta.

本発明者らはすでに、ホルムアルデヒドと合成
ガスをコバルトカルボニル触媒及びフエノールの
存在下に合成ガスと反応させることにより、従来
法に比べて高成績でエチレングリコールが得られ
ることを見出している(特開昭58―90522号公
報)。しかしこの方法の問題点はエチレングリコ
ールのホルムアルデヒドからの収率を高く保つた
めには反応液中のホルムアルデヒド濃度を1重量
パーセント以下に保つ必要があり、ホルムアルデ
ヒドの濃度を1〜10重量パーセントに増加すると
エチレングリコールの収率が50%以下に低下する
ことであつた。
The present inventors have already discovered that by reacting formaldehyde and synthesis gas with synthesis gas in the presence of a cobalt carbonyl catalyst and phenol, ethylene glycol can be obtained with higher performance than conventional methods (JP Publication No. 58-90522). However, the problem with this method is that in order to maintain a high yield of ethylene glycol from formaldehyde, the formaldehyde concentration in the reaction solution must be kept below 1% by weight; The yield of ethylene glycol decreased to less than 50%.

本発明者らは、このようなこれまで知られてい
るエチレングリコール製造法の欠点、問題点を克
服するために鋭意検討を重ねた結果、触媒として
コバルトカルボニルの他に少量のルテニウムカル
ボニルを用いることにより従来法に比べて著しく
高成績でエチレングリコールが得られることを見
出し、本発明をなすに至つた。
The present inventors have conducted extensive studies to overcome the drawbacks and problems of the previously known ethylene glycol production methods, and as a result, have discovered that a small amount of ruthenium carbonyl can be used in addition to cobalt carbonyl as a catalyst. The inventors have discovered that ethylene glycol can be obtained with significantly better results than conventional methods, leading to the present invention.

即ち、本発明は一酸化炭素と水素の混合ガスを
コバルトカルボニル及びフエノールおよび/また
はアルキルフエノールの存在下にホルムアルデヒ
ドと反応させる際に、少量のルテニウムカルボニ
ルを共存させることを特徴とするエチレングリコ
ールの製造方法を提供するものである。
That is, the present invention relates to the production of ethylene glycol, which is characterized in that a small amount of ruthenium carbonyl is allowed to coexist when reacting a mixed gas of carbon monoxide and hydrogen with formaldehyde in the presence of cobalt carbonyl and phenol and/or alkylphenol. The present invention provides a method.

本発明に係る反応は次式で表わすことができ
る。
The reaction according to the present invention can be represented by the following formula.

CH2O+CO+2H2→HOCH2CH2OH またエチレングリコールの生成に伴う主な副生
成物はメタノールであり、次式により生成する。
CH 2 O+CO+2H 2 →HOCH 2 CH 2 OH Furthermore, the main by-product accompanying the production of ethylene glycol is methanol, which is produced according to the following formula.

CH2O+H2→CH3OH 本発明によれば合成ガスとホルムアルデヒドか
ら選択性よく、かつ容易にエチレングリコールを
製造することができるので本発明の意義は大き
い。
CH 2 O+H 2 →CH 3 OH According to the present invention, ethylene glycol can be easily produced from synthesis gas and formaldehyde with good selectivity, so the present invention has great significance.

本発明に用いられる混合ガスの一酸化炭素と水
素のモル比は通常CO:H2=1:1〜1:20であ
るが好ましくは1:2〜1:10の範囲である。圧
力は200〜1000Kg/cm2が好ましい。本発明に用い
るフエノール及び/またはアルキルフエノールの
中ではフエノール及びクレゾールが最も好まし
い。本発明のフエノールおよび/またはアルキル
フエノールは適当な溶媒、好ましくはトルエン、
ジフエニルメタン等の芳香族炭化水素溶媒でうす
めて用いることができ、全溶媒中に占めるフエノ
ールおよび/またはアルキルフエノールの割合
は、10〜100重量パーセントの範囲が好ましい。
The molar ratio of carbon monoxide and hydrogen in the mixed gas used in the present invention is usually CO:H 2 =1:1 to 1:20, but preferably in the range of 1:2 to 1:10. The pressure is preferably 200 to 1000 Kg/cm 2 . Among the phenols and/or alkylphenols used in the present invention, phenols and cresols are most preferred. The phenol and/or alkylphenol of the present invention can be prepared in a suitable solvent, preferably toluene,
It can be used diluted with an aromatic hydrocarbon solvent such as diphenylmethane, and the proportion of phenol and/or alkylphenol in the total solvent is preferably in the range of 10 to 100 weight percent.

本発明で使用するホルムアルデヒドはホルムア
ルデヒド水溶液またはパラホルムアルデヒドを用
いることができるが、工業的見地からはホルムア
ルデヒド水溶液が望ましい。
As the formaldehyde used in the present invention, an aqueous formaldehyde solution or paraformaldehyde can be used, but an aqueous formaldehyde solution is desirable from an industrial standpoint.

反応液中のホルムアルデヒドの濃度は1〜20重
量パーセントの範囲であるが、エチレングリコー
ルの選択性を高く保つためには1〜10重量パーセ
ントの範囲が好ましい。
The concentration of formaldehyde in the reaction solution is in the range of 1 to 20 percent by weight, but is preferably in the range of 1 to 10 percent by weight in order to maintain high selectivity to ethylene glycol.

本発明で使用するルテニウムカルボニルのコバ
ルトカルボニルに対するモル比はRu/Co比で1/1
00〜1/1の範囲であり、工業的には高価なルテニ
ウムの使用量は少ない方が有利であるが、エチレ
ングリコールの収率を高めるためには1/20〜1/5
の範囲が好ましい。コバルトカルボニルのホルム
アルデヒドに対する使用モル比はCoとして2〜
20モル%の範囲が好ましい。
The molar ratio of ruthenium carbonyl to cobalt carbonyl used in the present invention is 1/1 in Ru/Co ratio.
The range is from 1/20 to 1/1, and from an industrial perspective, it is advantageous to use a small amount of expensive ruthenium, but in order to increase the yield of ethylene glycol, it is from 1/20 to 1/5.
A range of is preferred. The molar ratio of cobalt carbonyl to formaldehyde used is 2 to 2 as Co.
A range of 20 mol% is preferred.

本発明の方法は回分式、連続式のいずれかの反
応様式によつても実施可能であり、また反応液か
ら生成物及び触媒の分離は蒸留、抽出等公知の方
法により容易に行いうる。
The method of the present invention can be carried out either batchwise or continuously, and the product and catalyst can be easily separated from the reaction solution by known methods such as distillation and extraction.

次に、本発明を実施例及び比較例により更に詳
細に説明する。
Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例 1 ハステロイC―276製、内容積100mlの電磁上下
かきまぜ式オートクレーブにフエノール10g、ト
ルエン10g、ホルムアルデヒド37%水溶液3.24g
(CH2Oとして40mmol)及びジコバルトオクタカ
ルボニルCo2(CO)8、0.855g(Coとして5mg―
atom)及びトリルテニウムドデカカルボニルRu3
(CO)120.107g(Ruとして0.5mg―atom)を仕込
み、CO:H2=1:4の混合ガスで反応器内の空
気を置換した後、同組成の混合ガスを圧入して
500Kg/cm2とし、昇温して210℃で2時間反応させ
た。この間最高圧力は620Kg/cm2に達した。反応
後オートクレーブを冷却し、生成物をガスクロマ
ト分析した結果、ホルムアルデヒドの反応率は
95.2%、反応したホルムアルデヒドからのエチレ
ングリコール及びメタノールの収率(選択率)は
それぞれ68.6%、11.5%であつた。
Example 1 10 g of phenol, 10 g of toluene, and 3.24 g of a 37% formaldehyde aqueous solution were placed in an electromagnetic vertical stirring autoclave made of Hastelloy C-276 and having an internal volume of 100 ml.
(40 mmol as CH 2 O) and dicobalt octacarbonyl Co 2 (CO) 8 , 0.855 g (5 mg as Co)
atom) and triruthenium dodecacarbonyl Ru 3
(CO) 12 0.107g (0.5mg-atom as Ru) was charged, and after replacing the air in the reactor with a mixed gas of CO:H 2 = 1:4, a mixed gas of the same composition was injected under pressure.
The pressure was adjusted to 500 Kg/cm 2 , and the temperature was raised to 210° C. for 2 hours. During this period, the maximum pressure reached 620Kg/cm 2 . After the reaction, the autoclave was cooled and the product was analyzed by gas chromatography. As a result, the reaction rate of formaldehyde was
The yields (selectivity) of ethylene glycol and methanol from the reacted formaldehyde were 68.6% and 11.5%, respectively.

比較例 1 Ru3(CO)12を用いなかつたほかは実施例1と
同様の条件で反応を行つた結果、ホルムアルデヒ
ドの反応率は99.1%、反応したホルムアルデヒド
からのエチレングリコール及びメタノールの収率
(選択率)はそれぞれ41.4%、4.6%であつた。
Comparative Example 1 A reaction was carried out under the same conditions as in Example 1 except that Ru 3 (CO) 12 was not used. As a result, the reaction rate of formaldehyde was 99.1%, and the yield of ethylene glycol and methanol from the reacted formaldehyde ( The selection rate) was 41.4% and 4.6%, respectively.

実施例 2 実施例1に記載したと同様なオートクレーブに
フエノール10g、トルエン10g、ホルムアルデヒ
ド37%水溶液3.24g(CH2Oとして40mmol)及
びジコバルトオクタカルボニル0.855g(Coとし
て5mg―atom)、及びトリルテニウムデドカカル
ボニル0.107g(Ruとして0.5mg―atom)を仕込
み、CO:H2=1:4の混合ガスで反応器内の空
気を置換した後、同組成の混合ガスを圧入して
400Kg/cm2とし、昇温して180℃で2時間反応させ
た。この間器内の最高圧力は500Kg/cm2に達し
た。
Example 2 In an autoclave similar to that described in Example 1, 10 g of phenol, 10 g of toluene, 3.24 g of a 37% formaldehyde aqueous solution (40 mmol as CH 2 O), and 0.855 g of dicobalt octacarbonyl (5 mg-atom as Co), After charging 0.107g of ruthenium dedocacarbonyl (0.5mg-atom as Ru) and replacing the air in the reactor with a mixed gas of CO:H 2 = 1:4, a mixed gas of the same composition was injected under pressure.
The pressure was adjusted to 400 Kg/cm 2 , and the temperature was raised to 180° C. for 2 hours. During this period, the maximum pressure within the vessel reached 500Kg/cm 2 .

実施例1と同様にして分析を行つた結果、ホル
ムアルデヒドの反応率は97.3%、反応したホルム
アルデヒドからのエチレングリコール及びメタノ
ールの収率(選択率)はそれぞれ65.3%、9.6%
であつた。
As a result of analysis conducted in the same manner as in Example 1, the reaction rate of formaldehyde was 97.3%, and the yields (selectivity) of ethylene glycol and methanol from the reacted formaldehyde were 65.3% and 9.6%, respectively.
It was hot.

実施例 3 CO:H2=1:5.25の混合ガスを用い、500Kg/
cm2に圧入した以外は、実施例2と同様の条件で反
応を行つた結果、器内の最高圧力は620Kg/cm2
達した。分析の結果、ホルムアルデヒドの反応率
は96.8%、反応したホルムアルデヒドからのエチ
レングリコール及びメタノールの収率(選択率)
はそれぞれ69.5%、4.3%であつた。
Example 3 Using a mixed gas of CO:H 2 = 1:5.25, 500Kg/
The reaction was carried out under the same conditions as in Example 2 , except that the pressure was injected into the vessel at a pressure of 620 kg/cm 2 . As a result of the analysis, the reaction rate of formaldehyde was 96.8%, and the yield (selectivity) of ethylene glycol and methanol from the reacted formaldehyde.
were 69.5% and 4.3%, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 一酸化炭素と水素の混合ガスをコバルトカル
ボニル及びフエノールおよび/またはアルキルフ
エノールの存在下にホルムアルデヒドと反応させ
る際に、ルテニウムカルボニルを共存させること
を特徴とするエチレングリコールの製造方法。
1. A method for producing ethylene glycol, which comprises allowing ruthenium carbonyl to coexist when reacting a mixed gas of carbon monoxide and hydrogen with formaldehyde in the presence of cobalt carbonyl and phenol and/or alkylphenol.
JP59176321A 1984-08-24 1984-08-24 Production of ethylene glycol Granted JPS6153235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59176321A JPS6153235A (en) 1984-08-24 1984-08-24 Production of ethylene glycol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59176321A JPS6153235A (en) 1984-08-24 1984-08-24 Production of ethylene glycol

Publications (2)

Publication Number Publication Date
JPS6153235A JPS6153235A (en) 1986-03-17
JPS6139294B2 true JPS6139294B2 (en) 1986-09-03

Family

ID=16011536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59176321A Granted JPS6153235A (en) 1984-08-24 1984-08-24 Production of ethylene glycol

Country Status (1)

Country Link
JP (1) JPS6153235A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192173U (en) * 1985-05-17 1986-11-29

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5731472A (en) * 1995-12-06 1998-03-24 Union Carbide Chemicals & Plastics Technology Corporation Metal-ligand complex catalyzed processes
EP2915584A1 (en) * 2014-03-05 2015-09-09 Basf Se Ruthenium-phenol catalysts for transfer hydrogenation reactions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192173U (en) * 1985-05-17 1986-11-29

Also Published As

Publication number Publication date
JPS6153235A (en) 1986-03-17

Similar Documents

Publication Publication Date Title
JPH0625031A (en) Method of synthesizing oxygenated acetyl compound
US4556744A (en) Process for the production of ethanol and/or acetaldehyde by the metal catalysed liquid phase reaction of methanol, carbon monoxide and hydrogen in the presence of a solvent
EP0078616A2 (en) Process for preparing ethylene glycol
JPS6139294B2 (en)
CA1184203A (en) Preparation of ethylene glycol
EP0146291B1 (en) Process for the production of carboxylic acids and/or esters thereof
CA1192226A (en) Process for preparing ethylene glycol and lower monohydric alcohols from syngas using a novel catalyst system
EP0151822B1 (en) Process for the preparation of 1,4-butanediol
AU558487B2 (en) Process for the production of dihydrocarbyl oxalates
US4423257A (en) Process for producing ethanol
US4433178A (en) Process for preparing acetaldehyde from methanol and synthesis gas using a novel catalyst composition
EP0075952A1 (en) Hydrogenolysis process for the production of monoethylene glycol monomethyl ether, monoethylene glycol and ethanol
EP0036724A1 (en) Process for the production of ethanol by the liquid phase hydrocarbonylation of methanol
JPS624373B2 (en)
CA1192227A (en) Process for preparing ethylene glycol and lower monohydric alcohols from syngas using a novel catalyst system
US4433177A (en) Process for preparing acetaldehyde from methanol and synthesis gas using a novel catalyst composition
US4283582A (en) Pre-pressuring methanol-cobalt with carbon monoxide in homologation of methanol
US4661643A (en) Hydrogenolysis process for the production of monoethylene glycol monomethyl ether, monoethylene glycol and ethanol
JP3756537B2 (en) Dimethyldecandial and process for producing the same
US4351907A (en) Preparation of ethylene glycol
JPS6048940A (en) Manufacture of ethanol from methanol and synthetic gas
JPS599529B2 (en) Ethanol manufacturing method
JPS6139292B2 (en)
EP0076461A1 (en) Hydrogenolysis of polyalkylene glycols to produce monoethylene glycol monoalkyl ethers, monoethylene glycol and ethanol
JPS606929B2 (en) Manufacturing method of ethylene glycol

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term