JPS6154704A - Microwave oscillator - Google Patents

Microwave oscillator

Info

Publication number
JPS6154704A
JPS6154704A JP59176411A JP17641184A JPS6154704A JP S6154704 A JPS6154704 A JP S6154704A JP 59176411 A JP59176411 A JP 59176411A JP 17641184 A JP17641184 A JP 17641184A JP S6154704 A JPS6154704 A JP S6154704A
Authority
JP
Japan
Prior art keywords
voltage
oscillation frequency
varactor diode
oscillator
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59176411A
Other languages
Japanese (ja)
Inventor
Yukio Sudo
幸夫 須藤
Shinobu Sakurai
忍 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Co Ltd filed Critical Tokyo Keiki Co Ltd
Priority to JP59176411A priority Critical patent/JPS6154704A/en
Publication of JPS6154704A publication Critical patent/JPS6154704A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/18Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance
    • H03B5/1841Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a strip line resonator
    • H03B5/1847Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a strip line resonator the active element in the amplifier being a semiconductor device
    • H03B5/1852Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a strip line resonator the active element in the amplifier being a semiconductor device the semiconductor device being a field-effect device

Abstract

PURPOSE:To remove the influence of variance among elements, to adjust an oscillation frequency to a constant value accurately, and to shorten an adjustment time greatly by applying the 1st bias voltage to one terminal of a varactor diode and applying the 2nd variable bias voltage to the other terminal, and varying the oscillation frequency. CONSTITUTION:When the oscillation frequency at a specific tuning voltage varies owing to the variance of the varactor diode 8, one of adjusting stubs formed previously is connected to a microstrip line 3 through a gold wire or gold bibbon 15 as a rough adjustment to suppress variances in oscillation frequency at the specific tuning voltage within a certain range. Then, the slider of a variable resistance 14 is adjusted to vary a voltage Va- applied to the anode side of the varactor diode 8. Thus, the voltage is adjusted through this variable resistance 14 to vary the reverse bias voltage applied between the anode and cathode of the varactor diode 8, namely, varying the junction capacity of the varactor diode 8, obtaining the specific oscillation frequency.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、バラクタダイオードを発振構成要素として備
えたマイクロ波発振器に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a microwave oscillator equipped with a varactor diode as an oscillation component.

(従来技術) 従来、この種のマイク[1波発振器は電気同調が必要と
される各種レーダ装置やマイクロ波装置に使用されてい
るが、例えばレーダ装置αを例に取ると、レーダアンテ
ナで受信されたマイクロ波信号は混合器において局部発
振器出力と混合検波されて中間周波数に変換されるが、
この局部発振器にマイクロ波発振器を使用している。
(Prior art) Conventionally, this type of microphone [single-wave oscillator] has been used in various radar devices and microwave devices that require electrical tuning. The generated microwave signal is mixed with the local oscillator output and detected in the mixer and converted to an intermediate frequency.
A microwave oscillator is used for this local oscillator.

このマイクロ波発振器は電気同調が可能な方式をとって
おり、同調電圧を変化させることで所望の中間周波数、
例えば45 M Hzを術るようにしている。
This microwave oscillator uses a method that allows electrical tuning, and by changing the tuning voltage, the desired intermediate frequency,
For example, I try to use 45 MHz.

同sl!I電圧によるマイクロ波発振器の周波数可変範
囲はレーダ送信器として使用されるマグネトロンとマイ
ク[]波発振器の周囲温度の変化にJ:る発振周波数の
変化に対応しながら常に45 M l−I Zの中間周
波数が1がられる範囲に決定されなければならない。
Same sl! The frequency variable range of the microwave oscillator using the I voltage is always 45 M l - I Z while responding to changes in the oscillation frequency due to changes in the ambient temperature of the magnetron and microphone wave oscillator used as radar transmitters. The intermediate frequency must be determined within a range of 1.

しかしながら、マイクロ波光振器に組み込まれるマイク
ロ波半導体素子にはバラツキがあるため、周囲湿度1゛
0における同調電圧VO1つまり所定の同調電圧での発
振周波数は発振器毎に異なったものとなり、限られた可
変電圧範囲の中での同調(よ困難であった。
However, because there are variations in the microwave semiconductor elements incorporated into microwave optical oscillators, the tuning voltage VO1 at an ambient humidity of 100, that is, the oscillation frequency at a predetermined tuning voltage, differs from oscillator to oscillator. Tuning within a variable voltage range (which was more difficult).

この理由を更に詳細に説明すると次のとうりである1゜ 第2図はマイクロ波発振器の同調電1F対発振周波数特
性を示したちので、説明の都合上周囲温度の影響は無視
している。
The reason for this will be explained in more detail as follows.1. Since Figure 2 shows the oscillation frequency characteristics versus the tuned current 1F of a microwave oscillator, the influence of ambient temperature is ignored for the sake of explanation.

即ち、発振器A、B、Cはそのバラツキにより奴なった
特性A0,80.Goをもっている。例えば発振器Aは
同調電圧V1.Vo 、V2で各々発振周波数f1.f
o、f2が1qられる。
That is, the oscillators A, B, and C have different characteristics A0, 80 . I have Go. For example, oscillator A has a tuning voltage V1. Vo, V2 each have an oscillation frequency f1. f
o, f2 are reduced by 1q.

一方、第3図はマグネトロン発振器の周囲温度に対する
光(辰周波数の関係を示したもので、周囲温度に対し略
直線的に変化する温度特性をもつ。
On the other hand, FIG. 3 shows the relationship between the light frequency and the ambient temperature of the magnetron oscillator, and has a temperature characteristic that changes approximately linearly with the ambient temperature.

そこで、マグネトロン発振器のみが第3図に示すように
温度依存性をもっていたと仮定すると、瀧 度 °丁 
1:T’o、T2(但 し 、  T  I  )−’
T O、・ T’  2  >の発振周波数はf ml
、 f mo、 f m2となり、このマグネ1−0ン
発振周波数とマイク[1波発振周波数との混合検波で得
られる中間周波数を例λば45 M[→2とした場合、
第2図に示すようにマスク「1波発振器のバラクタ同調
電圧を各々V1.Vo、V2に設定すれば、マグネト[
lン光振器の周囲温度が丁1.To、T2と変化しても
、l  fml−Nl 。
Therefore, if we assume that only the magnetron oscillator has temperature dependence as shown in Figure 3, then
1: T'o, T2 (however, TI)-'
The oscillation frequency of T O,・T' 2 > is f ml
, f mo, f m2, and if the intermediate frequency obtained by mixed detection of the magnet 1-0 oscillation frequency and the microphone [1-wave oscillation frequency] is, for example, λ45 M[→2,
As shown in FIG.
The ambient temperature of the optical oscillator is about 1. Even if To and T2 change, l fml-Nl.

I fmo−fo I 、 l fm2−f 21とし
て各々・一定の中・間層波数45MHzを(17ること
ができる1゜次に、特性が異なった発振器B、Cを見る
と、発振器へと同じ発振周波数を1?るために4;& 
、例えば発i&器Bを例にとると、発振周波数[1を1
516ためには同調電圧をVlから■1′に変え、発振
周波数fo/i−得るためには同調電圧をVOからVO
′に変え、更に発振周波数f2を得るためにはIi1調
電圧電圧2からV 2−に変えればよい。即ち、発振器
Aの同調電圧に対し高い方にずらした同調電圧V1−.
Vo′、V2−を設定1J°れば良い。
I fmo-fo I, l fm2-f 21 can each have a constant middle/interlayer wave number of 45 MHz (17 1゜Next, looking at oscillators B and C with different characteristics, the same oscillator 4 to increase the oscillation frequency to 1; &
, for example, taking oscillator i & generator B as an example, the oscillation frequency [1 is 1
To obtain 516, change the tuning voltage from Vl to ■1', and to obtain the oscillation frequency fo/i-, change the tuning voltage from VO to VO
', and in order to further obtain the oscillation frequency f2, it is sufficient to change the Ii1 adjustment voltage voltage 2 to V2-. That is, the tuning voltage V1-. is shifted higher than the tuning voltage of the oscillator A.
It is sufficient to set Vo' and V2- to 1J°.

この点は発振器Cについても同様であり、発振器Δと同
じ発振周波数f1.fo、f2を得るためには、同調電
圧V1.VO,V2をそれぞれ低い方の同調電圧V1″
、■o″、■2″に変えれば良い、。
This point also applies to oscillator C, which has the same oscillation frequency f1 as oscillator Δ. In order to obtain fo, f2, the tuning voltage V1. VO and V2 are each lower tuning voltage V1''
, ■o″, ■2″.

しかし、このようなバラクタ同m電圧の調整による発振
器A、B、’Cの特性バラツキを無くす方法には次の問
題がある。
However, this method of eliminating variations in the characteristics of the oscillators A, B, and 'C by adjusting the voltages of the varactors has the following problem.

まず第2図において調整可能なバラクタ同w4電圧の上
限と下限が決まっている。
First, in FIG. 2, the upper and lower limits of the adjustable varactor W4 voltage are determined.

第4図はバラクタダイオードの印加電圧に対する接合容
ffJの関係を示したもので、印加電圧対接合寄倒の関
係が略直線となる部分を使用することから、バラクタ同
調電圧の下限は略5V程度となる。一方、バラクタダイ
オードの耐圧は通常40〜50V程度であり、また発振
器のm源の関係から、ト限は例えば30Vとなる。従っ
て、第2図に示したマイク[1波発1辰器のバラツーV
を補止リーるIごめに使用できるバラクタ同1il電圧
の範囲は5〜30V程度に制限される。
Figure 4 shows the relationship between the junction capacitance ffJ and the applied voltage of the varactor diode. Since we use the part where the relationship between the applied voltage and the junction eccentricity is approximately a straight line, the lower limit of the varactor tuning voltage is approximately 5V. becomes. On the other hand, the withstand voltage of a varactor diode is usually about 40 to 50V, and the voltage limit is, for example, 30V due to the m source of the oscillator. Therefore, the microphone shown in FIG.
The range of varactor voltage that can be used to compensate for leakage is limited to approximately 5 to 30V.

その結果1.l二限に近い同W4電圧■2で発振周波@
f2を得ている発振器Aに発振器Bを合わせる時、同調
電圧■2より高い同調電圧V2′を設定しなければなら
ず、この同調電圧■2−が上限の30Vを越えた場合に
は、バラツギF!4整ができない。
The result 1. The same W4 voltage close to the l2 limit ■Oscillation frequency @2
When tuning oscillator B to oscillator A that obtains f2, it is necessary to set a tuning voltage V2' higher than tuning voltage ■2, and if this tuning voltage ■2- exceeds the upper limit of 30V, the variation will occur. F! I can't do the 4th order.

一方、下限に近い同vA電圧V1で発振周波数f1を得
ている発振器Aに発振=Cを合わせる時、同調電L[の
下限5Vを下回る同調電圧V1−の設定が必要となり、
第4図に示したように5V以下では電圧変化に対し接合
容1が急激な変化を起(1、同調電圧■1″の極めて微
妙な調整を必要と1〕、極めて困難な!J!l整となる
On the other hand, when adjusting oscillation = C to the oscillator A which obtains the oscillation frequency f1 with the same vA voltage V1 close to the lower limit, it is necessary to set the tuning voltage V1- below the lower limit of 5V for the tuning voltage L[,
As shown in Figure 4, below 5V, the junction capacitance 1 causes a sudden change in response to a voltage change (1, requiring extremely delicate adjustment of the tuning voltage 1''), making it extremely difficult! It becomes tidy.

以上の説明は、マイクロ波発振器のtFA度依存性を無
視した場合の説明であったが、実際には第5図に示すよ
うに、周囲温度T1.To、T2に対し異なった発振特
性をもっており、例えば周囲温度T・=T2で同調電圧
は下限の5Vに更に近づさ、一方、周囲温度T=T1で
は同調電圧の上限30Vに更に近づき、バラクタ同調電
圧の調整によるバラツキ調整は更に困難なものとなる。
The above explanation was based on the case where the tFA degree dependence of the microwave oscillator was ignored, but in reality, as shown in FIG. 5, the ambient temperature T1. For example, at ambient temperature T = T2, the tuning voltage approaches the lower limit of 5V, while at ambient temperature T = T1, the tuning voltage approaches the upper limit of 30V, and varactor tuning Adjusting the variation by adjusting the voltage becomes even more difficult.

本発明は、このような状況を背mになされたものである
が、第6図に示ずレーダ装置などに使用されている従来
のマイクロ波発振器の概略構成図を参照して更に詳細に
説明すると次のとうりである。
The present invention was developed in view of this situation, and will be explained in more detail with reference to a schematic diagram of a conventional microwave oscillator used in radar equipment, etc., which is not shown in FIG. Then, the following is true.

第6図において、1はマイクロ波集積回路基板(以下r
M I C1板」という)でマイクロ波帯で低誘電損失
を有するアルミナセラミックス、石英、テフロン等の誘
電体材料が用いられている。2は砒化ガリウム電界効果
トランジスタ(IX下rGaAsFE丁」という)であ
り、GaAsFET2のソース端子Sはマイクロストリ
ップ線路4に、ドレイン端子りはマイク[1ストリツプ
線路3に、またグー1〜喘子Gはマイクロストリップ線
路5(、−それぞれ接続されている。
In FIG. 6, 1 is a microwave integrated circuit board (hereinafter r
Dielectric materials such as alumina ceramics, quartz, and Teflon, which have low dielectric loss in the microwave band, are used in the MIC1 plate. 2 is a gallium arsenide field effect transistor (referred to as IX rGaAsFE), the source terminal S of GaAsFET 2 is connected to the microstrip line 4, the drain terminal is connected to the microphone [1] strip line 3, The microstrip lines 5 (, - are connected to each other.

マイクロストリップ線路5と7との間には直流阻止用コ
ンデンサ6が接続され、またマイクロストリップ線路9
と7との間にはバラクタダイオード8が接続され、バラ
クタダイオード8のアノード側は直流的に接地され、カ
ソード側と[裔続されたバイアス端子12には同調電圧
V1を加え、バラクタダイオード8を逆バイアス状態C
使用している。
A DC blocking capacitor 6 is connected between the microstrip lines 5 and 7, and a microstrip line 9 is connected between the microstrip lines 5 and 7.
The varactor diode 8 is connected between Reverse bias state C
I am using it.

またGaAsFET2のソース端子Sには電源電圧■S
が印加され、ドレイン端子りには抵抗11が接続されて
いる。
In addition, the source terminal S of GaAsFET2 has a power supply voltage S
is applied, and a resistor 11 is connected to the drain terminal.

とのような構成をもつマイクロ波発振器では、ゲートと
ドレイン間の内部帰還容n4によるGaAsFET2の
不安定化によって発振を起させ、発振出力はドレイン端
子りより線路3を介して取り出されている。
In the microwave oscillator having the above configuration, oscillation is caused by the destabilization of the GaAsFET 2 due to the internal feedback capacitance n4 between the gate and the drain, and the oscillation output is taken out from the drain terminal via the line 3.

ところが、このようなマイク[1波発振器においては、
バラクタダイオード8やG a A S F E T 
2などの素子に特性のバラツキがあるため、同調電圧と
発振周波数との関係が発振器ごとに異なったものとなる
。そこで発振周波数に寄与する箇所、例えばマイクロス
トリップ線路3及び9の近傍に予め調整用スタブ10を
形成しておき、この調整用スタブ10をマイクロストリ
ップ線路3や9に選択的に接続することで組み込み、素
、子のバラツキによる同調電圧対発振周波数特性のバラ
ツキを補正し、発振器が変っても同じ発振周波数が得ら
れるように入念に調整を行なっていた。
However, such a microphone [in a single wave oscillator,
Varactor diode 8 and GaASFET
Since there are variations in characteristics of elements such as 2, the relationship between the tuning voltage and the oscillation frequency differs from oscillator to oscillator. Therefore, an adjustment stub 10 is formed in advance at a location that contributes to the oscillation frequency, for example, near the microstrip lines 3 and 9, and this adjustment stub 10 is selectively connected to the microstrip lines 3 and 9 to incorporate it. In order to compensate for variations in the tuning voltage versus oscillation frequency characteristics due to variations in elements and elements, careful adjustments were made so that the same oscillation frequency could be obtained even if the oscillator was changed.

(発明が解決しようとする問題点) しかしながら、このような従来の調整用スタブを使用し
た発振周波数のバラツキ補正法は、スタブの選択的な接
続による周波数の粗調整は可能であるが、ステップ的な
調整であったため、所定の周波数への微調整がむずかし
く、仮に微調整でさたとしでも調整に手間がかかるとい
う問題点があった。
(Problem to be Solved by the Invention) However, in the conventional method of correcting oscillation frequency variations using adjustment stubs, although it is possible to roughly adjust the frequency by selectively connecting the stubs, it is difficult to adjust the frequency in steps. Since the adjustment was made in a number of steps, it was difficult to make fine adjustments to a predetermined frequency, and even if fine adjustments were made, the adjustment took time and effort.

更に加えてバラクタダイオードは木質的にての印加電圧
に対し、0〜5V位で最も接合容量変化が大きく、従っ
て同調電圧対周波数特性における周波数変化も大きい。
In addition, varactor diodes have the largest change in junction capacitance in the range of 0 to 5 V with respect to the applied voltage, and therefore the frequency change in the tuning voltage vs. frequency characteristic is also large.

それ故、同調電圧に対する周波数特性を比較的直線性の
良いところで使用したいときには問題が生ずる。即ち、
第4図の特性グラフが示すように、同調電圧として0=
5V位までは接合容量変化が急峻すぎて使えないことに
なり、実際に用いることのできる電圧は5〜30Vであ
る。このことは実用電圧範囲よりも5vも高い電源を用
意しなければならないことを意味し、不経済である。
Therefore, a problem arises when it is desired to use a frequency characteristic with relatively good linearity with respect to the tuning voltage. That is,
As the characteristic graph in Figure 4 shows, the tuning voltage is 0=
Up to about 5V, the junction capacitance changes are too steep to be used, and the voltage that can actually be used is 5 to 30V. This means that a power source that is 5V higher than the practical voltage range must be prepared, which is uneconomical.

(問題点を解決するだめの手段) 本発明は、このJ:うな従来の問題点に鑑みてなされた
もので、従来のようにバラクタダイA−ドの一方の9;
(1子を接地して用いるのではなく、バラクタダイオー
ドの一方の端子に第1のバイアス電圧、例えば一定の同
調電圧を印加し、他方の端子に第2のバイアス電圧を可
変する電圧調整手段を設番プ、この電圧調整手段により
バラクタダイオードにJ3ける逆バイアス電圧を調整し
て発振周波数を変化させるにうにしたものである。
(Means for Solving the Problems) The present invention has been made in view of the problems of the conventional J.
(Instead of using one terminal by grounding, a voltage adjustment means is used to apply a first bias voltage, for example, a constant tuning voltage, to one terminal of the varactor diode and vary a second bias voltage to the other terminal. This voltage adjusting means adjusts the reverse bias voltage across the varactor diode J3 to change the oscillation frequency.

即ち、第5図で示した同調電圧対発振周波数特性線BO
1COをAOに移行させるようにしたものである。
That is, the tuning voltage vs. oscillation frequency characteristic line BO shown in FIG.
1CO is transferred to AO.

(実施例) 第1図は本発明の一実施例を示した概略構成図である。(Example) FIG. 1 is a schematic diagram showing an embodiment of the present invention.

まず(荀成を説明すると、1゛はMIC基板であり、マ
イク[1波帯で低誘電損失を有するアルミナセラミック
ス、石英、ザファイヤ、テフロン等の誘電体材料が用い
られる。このMICυ板1上には蒸着、スパッタ、ある
いはスクリーン印刷等によりマイクロ波発振回路ダ構成
するマイクロストリップ線路3.4.5.7及び9等が
形成される。、2はGa As FETでソース端子S
をマイクロス1〜リツプ線路4に接続し、ドレイン端子
りを線路3に接続し、更にゲート端子Gをマイク[1ス
トリツプ線路5に接続している。マイクロストリップ線
路5と7との間には直流阻止用コンデンサ6が接続され
、またマイク[1ストリツプ線つと7の間にはバラクタ
ダイオード8が接続される。バラクタダイオード8のア
ノード側はMITI板のバイアス端子13に接続され、
カソード側はバイアス端子12に接続される。更にGa
 As FETのソース端子Sには電源電圧VSが印加
され、ドレイン端子りには抵抗11が接続されている。
First of all, 1 is a MIC board, and a dielectric material such as alumina ceramics, quartz, zaphire, Teflon, etc., which has low dielectric loss in the 1-wave band is used for the microphone. The microstrip lines 3, 4, 5, 7, 9, etc. that constitute the microwave oscillation circuit are formed by vapor deposition, sputtering, or screen printing, etc., 2 is a Ga As FET and the source terminal S
is connected to the microphone 1 to the strip line 4, the drain terminal is connected to the line 3, and the gate terminal G is connected to the microphone 1 strip line 5. A DC blocking capacitor 6 is connected between the microstrip lines 5 and 7, and a varactor diode 8 is connected between the microphone strip lines 5 and 7. The anode side of the varactor diode 8 is connected to the bias terminal 13 of the MITI board,
The cathode side is connected to the bias terminal 12. Furthermore, Ga
A power supply voltage VS is applied to the source terminal S of the As FET, and a resistor 11 is connected to the drain terminal.

発振はゲートとドレイン間の内部帰運容ΦによるQaΔ
5FETは不安定化に基因して起こり、発振出力はドレ
イン端子りよりマイクロストリップ線路3を介して外部
に取り出される。
The oscillation is QaΔ due to the internal return capacity Φ between the gate and drain.
This occurs due to instability in the 5FET, and the oscillation output is taken out from the drain terminal via the microstrip line 3.

一方、バラクタダイオード8のカソード側を接続した端
子12には図示していない電圧源より同調電圧Vtが印
加されており、またバラクタダイオード8のアノード側
を接続した他方の端子13には電圧調整手段として設け
た可変抵抗14の摺動子が接続され、この可変抵抗14
には一定の電圧vaが印加されており、摺動子の調整に
よりバイアス端子13に可変電圧Va−が加わるように
なっている。。
On the other hand, a tuning voltage Vt is applied from a voltage source (not shown) to a terminal 12 connected to the cathode side of the varactor diode 8, and a voltage adjustment means is applied to the other terminal 13 connected to the anode side of the varactor diode 8. The slider of the variable resistor 14 provided as
A constant voltage va is applied to the bias terminal 13, and a variable voltage Va- is applied to the bias terminal 13 by adjusting the slider. .

ここで、可変抵抗器14の電圧Vaと端子12の同調電
圧Vtとの間では、 Vt≧va の関係が成り立っており、こうすればVa>Va−であ
るからバラクタダイオード8は常に逆バイアスの状態で
使用されることになる。また可変抵抗器14の電圧Va
を−Vaとして印加してもVt≧−Va’、、−Vaの
関係が成り立っておればその作用は変わらない。
Here, the relationship of Vt≧va holds between the voltage Va of the variable resistor 14 and the tuning voltage Vt of the terminal 12, and since Va>Va-, the varactor diode 8 is always reverse biased. It will be used in the state. Also, the voltage Va of the variable resistor 14
Even if Vt is applied as -Va, the effect remains unchanged as long as the relationship of Vt≧-Va', . . . -Va holds true.

尚、バラクタダイオード8の向きとしては、マイクロス
トリップ線路9側にアノードを、マイクロストリップ線
路7側にカソードを接続し、同調電圧Vtをアノード側
に−Vtとして印加しても、この場合は−vt <va
≦’Jaの関係が成り立っておればその作用は変わらな
い。また、可変抵抗器14の電圧Vaを−Vaとして印
加しても、−Vt≦−Va <V(1’の関係が成り立
つでおればその作用は変わらない。即ち、同FAN圧V
tとバイアス電圧■aとの関係はバラクタダイオード8
が常に逆バイアスの状態となるように定められCいる。
In addition, regarding the direction of the varactor diode 8, even if the anode is connected to the microstrip line 9 side and the cathode is connected to the microstrip line 7 side, and the tuning voltage Vt is applied as -Vt to the anode side, in this case, -vt <va
If the relationship ≦'Ja holds true, the effect will not change. Furthermore, even if the voltage Va of the variable resistor 14 is applied as -Va, the effect remains unchanged as long as the relationship -Vt≦-Va<V (1') holds.In other words, the same FAN voltage V
The relationship between t and bias voltage ■a is the varactor diode 8
C is determined so that C is always in a reverse bias state.

また、第1図の実施例では発振周波数を粗調整する手段
として、発振周波数の変化に寄与する箇所、例えばマイ
クロストリップ線路3及び9の近傍に従来のマイクロ波
発振器におけると同様に調整用スタブ10を予め形成し
ている。
In addition, in the embodiment shown in FIG. 1, as a means for coarsely adjusting the oscillation frequency, an adjustment stub 10 is placed at a location that contributes to a change in the oscillation frequency, for example, near the microstrip lines 3 and 9, as in a conventional microwave oscillator. is formed in advance.

次に第1図の実施例の作用を説明すると、Ga△5FE
T2あるいはバラクタダイオード8のバラツキに、にり
所定の同調電圧にJ3りる発振周波数が変動したjB合
には、従来のマイクロ波発振器におけると同様に、まず
粗調性として予め形成しである調整用スタブ10の内の
いずれかをマイクロストリップ線路3あるいは9に金線
もしくは金リボン15で接続し、所定の同調電圧におけ
る発振周波数のバラツキをある範囲内に抑える。第1図
の実施例ではマイクロストリップ線路9に調整用スタブ
10の1つを金線もしくは金リボン15で接続している
Next, to explain the operation of the embodiment shown in FIG. 1, Ga△5FE
If the oscillation frequency at J3 changes to a predetermined tuning voltage due to variations in T2 or varactor diode 8, then, as in conventional microwave oscillators, first adjust the coarse tuning in advance. One of the stubs 10 is connected to the microstrip line 3 or 9 with a gold wire or gold ribbon 15 to suppress variations in oscillation frequency at a predetermined tuning voltage within a certain range. In the embodiment shown in FIG. 1, one of the adjustment stubs 10 is connected to the microstrip line 9 with a gold wire or gold ribbon 15.

このように調整用スタブ10の接続で粗調性をまず行な
い、次に可変抵抗14の1習動子を調整1ノ、バラクタ
ダイオード8のアノード側に対する印加電圧Va−を可
変する。この可変抵抗11による電圧調整でバラクタダ
イオード8のアノ−ドとカソード間に加わる逆バイアス
電圧を変化させ、つまりバラクタダイオード8の接合容
量を変えて、所定の発振周波数とすることが可能となる
In this way, coarse adjustment is first performed by connecting the adjustment stub 10, and then one stylus of the variable resistor 14 is adjusted to vary the voltage Va- applied to the anode side of the varactor diode 8. By adjusting the voltage using the variable resistor 11, it is possible to change the reverse bias voltage applied between the anode and cathode of the varactor diode 8, that is, to change the junction capacitance of the varactor diode 8, to obtain a predetermined oscillation frequency.

この方法ににれば、従来、Ga As FET12及び
バラク、タダイオード8にバシ゛ソ=rがあっても、可
変抵抗14の調整で所定の発掘周波数にすることができ
、また可変抵抗14にJこる微調整であることから従来
技術の如く調整用スタブのみで調整を行なったことに比
べ調整が極めて容易で速く、且つ確実に所定の発振周波
数を1!7ることができる。
According to this method, even if the GaAs FET 12, barac, and diode 8 have a basso = r, the predetermined excavation frequency can be set by adjusting the variable resistor 14. Since this is a fine adjustment, the adjustment is much easier and faster than in the prior art, in which adjustment is performed using only an adjustment stub, and the predetermined oscillation frequency can be reliably increased by 1:7.

また、同調電圧Vtとして、例えば0−・ト25Vを用
意し、可変抵抗14のl!!l FJJ子にかかる電圧
を一5Vぐらいに設定し素子のバラツキによる発振周波
数のバラツキを補正すると、同調電圧Vtの可変範囲内
では比較的直線性の良い特f[部分のみを使用し、なお
かつ素子のバラツギによる発振周波数のバラツキも補正
プ゛ることができ、また同調電圧Vtとしても、前述の
J:つな従来の+5〜+30■のように5■も高い電圧
を用意しくH)ればならないという不都合がなくなる。
Further, as the tuning voltage Vt, for example, 0-25V is prepared, and the l! of the variable resistor 14 is prepared. ! l If the voltage applied to the FJJ element is set to about 15 V and the variation in oscillation frequency due to variation in the element is corrected, it is possible to use only the characteristic f[portion with relatively good linearity within the variable range of the tuning voltage Vt, and It is also possible to correct variations in the oscillation frequency due to variations in oscillation frequency, and for the tuning voltage Vt, it is possible to prepare a voltage as high as 5 cm, like the conventional +5 to +30 cm described above. This eliminates the inconvenience of not being able to do so.

(発明の効果) 以上説明してきたように本発明においては、バラクタダ
イオードを備えたマイクロ波発振器において、バラクタ
ダイオードの一方の端子に第1のバイアス電圧を印加す
ると共に、他方の端子に第2の可変バイアス電圧を印加
して発振周波数を変化させる周波数調整手段を設けたた
め、マイクロ波発振索子としてのGaAsFETやバラ
クタダイオードにバラツキがあっても電圧調整手段によ
る発掘周波数の微調整で素子のバラツキの影響を取り除
き、一定の発振周波数に正確に調整することができる。
(Effects of the Invention) As described above, in the present invention, in a microwave oscillator equipped with a varactor diode, a first bias voltage is applied to one terminal of the varactor diode, and a second bias voltage is applied to the other terminal of the varactor diode. Since a frequency adjustment means is provided to change the oscillation frequency by applying a variable bias voltage, even if there are variations in the GaAsFET or varactor diode used as the microwave oscillator, the variation in the element can be eliminated by finely adjusting the excavation frequency using the voltage adjustment means. The effects can be removed and the oscillation frequency can be precisely adjusted to a constant value.

従って、本発明によれば例えばレーダ装置の局部発振器
において所定の同調電圧に対する発振周波数が発振器毎
にバラツクという不都合から生ずる検査、調整時間を大
幅に短縮でき、多大な経済的効果をもたらすことができ
る。
Therefore, according to the present invention, the inspection and adjustment time caused by the inconvenience that the oscillation frequency for a predetermined tuning voltage varies from oscillator to oscillator in the local oscillator of a radar device, for example, can be significantly reduced, and a great economic effect can be brought about. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示したマイクロ波発振器の
概略構成図、第2図はマイクロ波発振器の発振周波数が
温度で変化しないときの同調電圧対発成周波数特性を示
したグラフ図、第3図は周囲温度の変化に対するマグネ
1〜ロン発振周波数特性を示したグラフ図、第4図はバ
ラクタダイオードの印加電圧対接合容量特性を示したグ
ラフ図、第5図はマイクロ波発振器 及び7グネトロンの発掘周波数が周囲温度で変化す°る
ときの同調電圧対発振周波数時f’lどマグネ1−ロン
の発振周波数との関係を示したグラフ図、第6図は従来
例を示した概略構成図である。 1:マイクロ波集積回路基板(M[C基板)2:砒化ガ
リウム電界効果トランジスタ(Ga As FET) 3.4,5,7,9:マイク[1ストリップ線路6:直
流阻止用コンデンサ 8:バラクタダイオード 10:W4整用スタブ 11:抵抗 12,13:バイアス端子 14:可変抵抗 15:金線もしくは金リボン
Fig. 1 is a schematic configuration diagram of a microwave oscillator showing an embodiment of the present invention, and Fig. 2 is a graph showing the tuning voltage versus oscillation frequency characteristics when the oscillation frequency of the microwave oscillator does not change with temperature. , Fig. 3 is a graph showing the Magneto-Ron oscillation frequency characteristics with respect to changes in ambient temperature, Fig. 4 is a graph showing the applied voltage versus junction capacitance characteristics of a varactor diode, and Fig. 5 is a graph showing the characteristics of a microwave oscillator and a varactor diode. 7 A graph showing the relationship between the tuning voltage and the oscillation frequency of the magnetron when the excavation frequency changes with the ambient temperature. Figure 6 shows a conventional example. It is a schematic block diagram. 1: Microwave integrated circuit board (M [C board)] 2: Gallium arsenide field effect transistor (GaAs FET) 3.4, 5, 7, 9: Microphone [1 strip line 6: DC blocking capacitor 8: Varactor diode 10: W4 adjustment stub 11: Resistor 12, 13: Bias terminal 14: Variable resistor 15: Gold wire or gold ribbon

Claims (1)

【特許請求の範囲】 バラクタダイオードの接合容量を可変することによって
発振周波数を変化せしめる手段を備えたマイクロ波発振
器において、 前記バラクタダイオードの一方の端子に第1のバイアス
電圧を印加すると共に他端に第2のバイアス電圧を可変
して発振周波数を変化させる電圧調整手段を設けたこと
を特徴とするマイクロ波発振器。
[Claims] In a microwave oscillator equipped with means for changing the oscillation frequency by varying the junction capacitance of a varactor diode, a first bias voltage is applied to one terminal of the varactor diode, and a first bias voltage is applied to the other end of the varactor diode. A microwave oscillator characterized in that it is provided with voltage adjustment means that changes the oscillation frequency by varying the second bias voltage.
JP59176411A 1984-08-24 1984-08-24 Microwave oscillator Pending JPS6154704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59176411A JPS6154704A (en) 1984-08-24 1984-08-24 Microwave oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59176411A JPS6154704A (en) 1984-08-24 1984-08-24 Microwave oscillator

Publications (1)

Publication Number Publication Date
JPS6154704A true JPS6154704A (en) 1986-03-19

Family

ID=16013209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59176411A Pending JPS6154704A (en) 1984-08-24 1984-08-24 Microwave oscillator

Country Status (1)

Country Link
JP (1) JPS6154704A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6423113U (en) * 1987-07-30 1989-02-07
WO1992004764A1 (en) * 1990-09-07 1992-03-19 Matsushita Electric Industrial Co., Ltd. High frequency voltage controlled oscillator
US5457431A (en) * 1994-03-08 1995-10-10 Harris Corporation Electronic tuning circuit and method of manufacture
JP2006050580A (en) * 2004-06-29 2006-02-16 Kyocera Corp High-frequency oscillator,high-frequency send-receive apparatus and radar apparatus using it, radar apparatus mounting vehicle, and radar apparatus mounting small ship

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54140859A (en) * 1978-04-25 1979-11-01 Fujitsu Ltd Microwave phase synchronous oscillator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54140859A (en) * 1978-04-25 1979-11-01 Fujitsu Ltd Microwave phase synchronous oscillator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6423113U (en) * 1987-07-30 1989-02-07
WO1992004764A1 (en) * 1990-09-07 1992-03-19 Matsushita Electric Industrial Co., Ltd. High frequency voltage controlled oscillator
US5982244A (en) * 1990-09-07 1999-11-09 Matsushita Electric Industrial Co., Ltd. High-frequency voltage controlled oscillator
US5457431A (en) * 1994-03-08 1995-10-10 Harris Corporation Electronic tuning circuit and method of manufacture
JP2006050580A (en) * 2004-06-29 2006-02-16 Kyocera Corp High-frequency oscillator,high-frequency send-receive apparatus and radar apparatus using it, radar apparatus mounting vehicle, and radar apparatus mounting small ship

Similar Documents

Publication Publication Date Title
US5446306A (en) Thin film voltage-tuned semiconductor bulk acoustic resonator (SBAR)
US5130675A (en) Voltage-controlled oscillator
KR0184994B1 (en) Monolithic hbt active tuneable band-pass filter
US5097228A (en) Wideband oscillator with bias compensation
KR910002979B1 (en) Local oscilating circuit for tv set
US7330083B2 (en) Oscillator having voltage dividing circuit
US4187476A (en) SHF band oscillator circuit using FET
US5202649A (en) Microwave integrated circuit device having impedance matching
JPS6154704A (en) Microwave oscillator
US4063194A (en) Wide-band frequency-controlled crystal oscillator
US4011526A (en) Temperature compensated surface acoustic wave oscillator
US4751475A (en) Local oscillation apparatus
US4906947A (en) Millimeter wave microstrip voltage-controlled oscillator with adjustable tuning sensitivity
US4990865A (en) Transistor microwave oscillator having adjustable zone of potential instability
US4599581A (en) Temperature stabilizing microwave oscillator circuit
WO1998056112A2 (en) Oscillator frequency-drift compensation
US6087896A (en) Compensation technique using MOS capacitance
US6650196B2 (en) Multi-frequency band controlled oscillator
KR900009978Y1 (en) Voltage control oscillator with modulator
US4630008A (en) Direct FM crystal-controlled oscillator
JPH03258008A (en) Phase temperature compensation type high frequency amplifier
CA1310078C (en) Voltage controlled variable capacitor
KR950010314B1 (en) Dscillation circuit controlling ultra high frequency voltage
EP0267332A1 (en) Direct FM crystal-controlled oscillator
JPS6157731B2 (en)