JPS6154165A - Manufacture of chargable electrochemical device - Google Patents

Manufacture of chargable electrochemical device

Info

Publication number
JPS6154165A
JPS6154165A JP59175901A JP17590184A JPS6154165A JP S6154165 A JPS6154165 A JP S6154165A JP 59175901 A JP59175901 A JP 59175901A JP 17590184 A JP17590184 A JP 17590184A JP S6154165 A JPS6154165 A JP S6154165A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
lithium metal
current collector
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59175901A
Other languages
Japanese (ja)
Other versions
JPH0821424B2 (en
Inventor
Yoshinori Toyoguchi
▲吉▼徳 豊口
Junichi Yamaura
純一 山浦
Toru Matsui
徹 松井
Takashi Iijima
孝志 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59175901A priority Critical patent/JPH0821424B2/en
Publication of JPS6154165A publication Critical patent/JPS6154165A/en
Publication of JPH0821424B2 publication Critical patent/JPH0821424B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To improve the charge and discharge characteristic of a chargable electrochemical device by bringing a metallic lithium plate into contact with a negative electrode which is not pulverized even when it abosrbs lithium until its electric potential becomes equal to that of metallic lithium and making these parts touch the liquid electrolyte. CONSTITUTION:First, a negative electrode 1 which is not pulverized even after absorbing lithium is prepared by subjecting a mixture principally composed of TiO2 to pressure molding. Next, after the negative electrode 1 is pressed and fixed to a sealing plate 4, a metallic lithium plate 2 is pressed and fixed to the sealing plate 4. And also, the negative electrode 1 and the lithium plate 2 are connected to a sealing plate 4 working as a current collector for both of these parts. After that, the thus obtained body is combined with a positive electrode 5 principally composed of MnO2, a separator 7 and a liquid electrolyte principally composed of LiClO4, thereby assembling a chargable battery. In this battery where the negative electrode 1 and the lithium plate 2 touch the electrolyte while contacting with each other, lithium can be completely absorbed into the negative electrode 1. Accordingly, it is possible to minimize impedance and increase the amount of charge and discharge.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高エネルギー密度を有する再充電可能な電気
化学装置の製造法、とくに負極に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing rechargeable electrochemical devices with high energy density, in particular negative electrodes.

従来例の構成とその問題点 リチウムを負極活物質とし、正極活物質としてフッ化炭
素、二酸化マンガンなどを用いた非水電解質−次電池は
、既に実用化され、各種電子機器の電源として、広く用
いられている。この種のリチウムを負極とする非水電解
質電池は、高電圧で、高エネルギー密度を有することを
特徴としている0従って、二次電池についても開発が活
発に進められている。しかし、現在のところまだ実用化
されていない。その主な理由は、充放電寿命が短く、ま
た充放電の効率が低いことである。この原因は負極によ
るところが大きい。
Structure of conventional examples and their problems Non-aqueous electrolyte secondary batteries that use lithium as a negative electrode active material and carbon fluoride, manganese dioxide, etc. as positive electrode active materials have already been put into practical use and are widely used as power sources for various electronic devices. It is used. This type of non-aqueous electrolyte battery using lithium as a negative electrode is characterized by high voltage and high energy density. Therefore, development of secondary batteries is also actively progressing. However, it has not yet been put into practical use. The main reason for this is that the charging/discharging life is short and the charging/discharging efficiency is low. This is largely due to the negative electrode.

すなわち、−次電池に用いられているのと同じように、
ニッケルなどのスクリーン状の集電体に板状の金属リチ
ウムを圧着して構成したリチウム負極では、放電によっ
て電解質中へ溶解したリチウムを充電によって、元の板
状のリチウムとして析出させることが困難である。例え
ば、充電によってリチウムは不規則にデンドライト状に
析出し、これが極板より離脱して活物質として利用され
なくなったり、デンドライト状に析出したリチウムが、
セパレータを貫通し、正極と接して短絡したりする。
In other words, in the same way as used in -order batteries,
In a lithium negative electrode constructed by pressing a plate-shaped metallic lithium onto a screen-shaped current collector such as nickel, it is difficult to deposit the lithium dissolved into the electrolyte during discharge into the original plate-shaped lithium during charging. be. For example, due to charging, lithium is irregularly precipitated in the form of dendrites, which is separated from the electrode plate and is no longer used as an active material, or lithium precipitated in the form of dendrites
It penetrates the separator and contacts the positive electrode, causing a short circuit.

このようなリチウム負極の欠点を改良するため、従来か
ら各種試みられている。その中で、充電により電解質中
のリチウムイオンを吸蔵してリチウムとの合金を形成し
、放電によりリチウムをイオンとして電解質中へ放出す
る機能を有するある種の金属または合金を負極材料に用
いる方法が最も有望と考えられる。
Various attempts have been made to improve these drawbacks of lithium negative electrodes. Among these methods, there is a method of using a certain type of metal or alloy as the negative electrode material, which has the function of absorbing lithium ions in the electrolyte during charging to form an alloy with lithium, and releasing lithium as ions into the electrolyte during discharge. considered the most promising.

この種の負極材料として、アルミニウム(USP3.6
07,413 )、銀(特開昭56−7386゜US 
P4,31e、777、、USP4,330,601 
)、鉛(特開昭rs−r−141869)、錫、錫−鉛
合金などが知られている。これらの材料は、充電により
リチウムの吸蔵量を増すと、負極材料の微粉化が起こり
、電極の形状を維持できなくなる欠点がある。
Aluminum (USP 3.6
07,413), silver (JP-A-56-7386゜US
P4,31e, 777, USP4,330,601
), lead (Japanese Unexamined Patent Application Publication No. 2006-141869), tin, tin-lead alloy, etc. are known. These materials have the disadvantage that when the amount of lithium absorbed by charging increases, the negative electrode material becomes pulverized, making it impossible to maintain the shape of the electrode.

前記のように、負極金属とリチウムとを電解質中で接触
させた場合には、負極と電解質及びリチウムと接触して
いる限られた範囲で反応が生じる。
As described above, when the negative electrode metal and lithium are brought into contact with each other in the electrolyte, a reaction occurs within a limited range where the negative electrode is in contact with the electrolyte and lithium.

負極金属としてアルミニウムを用いた場合、前記三者の
接触部で微粉化したLiAlが生成するので、負極金属
は崩壊し、電極としての機能を発揮できなくなる。
When aluminum is used as the negative electrode metal, pulverized LiAl is generated at the contact portion between the three, so the negative electrode metal collapses and cannot function as an electrode.

本発明では、電解質中においてリチウム金属の電位と等
しい電位になるまでリチウムを吸蔵しても微粉化しない
合金を負極に用いる。
In the present invention, an alloy is used for the negative electrode that does not become pulverized even when lithium is occluded until the potential becomes equal to the potential of lithium metal in the electrolyte.

リチウム金属と等電位になるまでリチウムを吸蔵しても
微粉化しない負極合金は、例えば次のような実験によっ
て確認することができる。
A negative electrode alloy that does not become pulverized even when lithium is occluded until the potential becomes equal to that of lithium metal can be confirmed by, for example, the following experiment.

試験しようとする合金の電極と、前記合金に吸蔵される
量よりも多いリチウムを有するリチウム電極とを非水電
解質、例えば1モル/lの過塩素酸リチウム(L L 
ClO4)を溶解したプロピレンカーボネート中に浸漬
し、前記両電極の端子を負荷、例えばIKDの抵抗を介
して接続する。この状態で放置すると、リチウム電極か
らリチウムが溶解し、電解質中のリチウムイオンは合金
に吸蔵される反応が進行し、負荷には電流が流れる。こ
うして、負荷に電流が流れない状態、すなわち合金電極
の電位がリチウム電極の電位と等しくなるまで放置し、
合金電極の変化を観察するのである。
Electrodes of the alloy to be tested and lithium electrodes containing more lithium than can be occluded in said alloy are charged with a non-aqueous electrolyte, for example 1 mol/l lithium perchlorate (L L
ClO4) is immersed in dissolved propylene carbonate, and the terminals of the two electrodes are connected via a load, for example a resistor of IKD. If left in this state, lithium will dissolve from the lithium electrode, a reaction will proceed in which lithium ions in the electrolyte will be occluded by the alloy, and current will flow through the load. In this way, the load is left in a state where no current flows, that is, until the potential of the alloy electrode becomes equal to the potential of the lithium electrode,
The purpose is to observe changes in the alloy electrode.

このように、負極中にリチウムを吸蔵しても、微粉化の
起らないことが、電池の負極としての大前提であること
は言うまでもない。
As described above, it goes without saying that a major premise for a negative electrode for a battery is that even if lithium is occluded in the negative electrode, pulverization does not occur.

リチウムを吸蔵しても微粉化の起らない負極として、特
開昭55−166871号公報、66−136462号
公報、56−147368号公報には、それぞれ、Cu
O2TiO2,Nb2O6などの酸化物と、導電剤とし
ての黒鉛、結着剤としてのフッ素樹脂を混合、加圧成型
した負極が記載されている。
JP-A-55-166871, JP-A No. 66-136462, and JP-A No. 56-147368 disclose Cu as a negative electrode that does not cause pulverization even when lithium is occluded.
A negative electrode is described in which an oxide such as O2TiO2 or Nb2O6, graphite as a conductive agent, and a fluororesin as a binder are mixed and pressure molded.

さら忙本発明者らは、カドミウム及び/又は亜鉛を必須
成分とし、さらに鉛、錫、インジウム及びビスマスより
なる群から選んだ少くとも1種を含む合金は、リチウム
の吸蔵量も大きく、しかも充放電の可逆性にも優れてお
り、再充電可能な負極として非常に有望であることを提
案した。
Furthermore, the present inventors have found that an alloy containing cadmium and/or zinc as an essential component and at least one selected from the group consisting of lead, tin, indium, and bismuth has a large lithium storage capacity and is We proposed that it has excellent discharge reversibility and is very promising as a rechargeable negative electrode.

これらの、リチウムを吸蔵しても微粉化しない負極を用
いて、電池を構成する場合、最も簡便な方法、は、’l
!l開昭56−136462号公報に記載されているよ
うに、負極とリチウム金属とを圧着した負極組立体を、
正極、セパレータとともに電槽中に入れて、その後電解
液を注入し、封口するという方法である0これにより、
電槽中で、負極とリチウム金属は短絡状態となり、自然
に負極中にリチウムが吸蔵されるはずである。
When constructing a battery using these negative electrodes that do not become pulverized even when lithium is occluded, the simplest method is 'l
! As described in Japanese Patent Publication No. Sho 56-136462, a negative electrode assembly in which a negative electrode and lithium metal are bonded together,
This method involves placing the positive electrode and separator together in a battery container, then injecting electrolyte and sealing the container.
In the battery case, the negative electrode and lithium metal become short-circuited, and lithium should naturally be inserted into the negative electrode.

しかし、この方法でも、以下に述べる問題点があった。However, this method also has the following problems.

すなわち、負極とリチウム金属を圧着し、電解液を注入
しても、リチウムは完全に負極中に吸蔵されなかった。
That is, even when the negative electrode and lithium metal were pressure-bonded and the electrolyte was injected, lithium was not completely occluded into the negative electrode.

第1図の(イ)は、負極1′に用いたT iO2または
合金と、リチウム金属2′を圧着した時の模式図である
。この状態で、負極とリチウム金属を電解液中におくと
、第1図←)のように、1部のリチウムは、負極中に吸
蔵される(図中3′は、負極のうちリチウムを吸蔵した
部分)が、一部は吸蔵されずに、負極より離れてしまっ
た。これは、負極とリチウム金属の圧着した面のわずか
のすき間に、電解液が浸入し、このすき間部分では負極
とリチウム金属の間隔がきわめて小さいため、電解液の
抵抗も小さく、この圧着した部分より、リチウム金属の
溶解、負極中へのリチウムの吸蔵と言った反応が起る。
FIG. 1(A) is a schematic diagram when TiO2 or an alloy used for the negative electrode 1' and lithium metal 2' are pressed together. In this state, when the negative electrode and lithium metal are placed in an electrolytic solution, some of the lithium is occluded in the negative electrode, as shown in Figure 1←) (3' in the figure indicates that lithium in the negative electrode is occluded). However, some of them were not occluded and were separated from the negative electrode. This is because the electrolyte infiltrates into the small gap between the crimped surfaces of the negative electrode and lithium metal, and because the gap between the negative electrode and lithium metal is extremely small in this gap, the resistance of the electrolyte is also small, making it stronger than the crimped area. Reactions such as dissolution of lithium metal and occlusion of lithium into the negative electrode occur.

そしてついには、負極にくっついていたリチウムまでも
が反応すると、負極とリチウム金属との間には、電子伝
導性がなくなるため、未反応のリチウム金属は、負極に
吸蔵されずに残ってしまう。
Eventually, when even the lithium attached to the negative electrode reacts, there is no electronic conductivity between the negative electrode and the lithium metal, so the unreacted lithium metal remains without being occluded by the negative electrode.

このように、単に負極とリチウム金属とを圧着した場合
には、リチウムは完全に吸蔵されずに、未反応のままで
残った。この未反応のリチウムが存在するために、電池
の充放電容量が低下した。
In this way, when the negative electrode and lithium metal were simply pressed together, lithium was not completely occluded and remained unreacted. Due to the presence of this unreacted lithium, the charge/discharge capacity of the battery decreased.

また、正極と対向した負極上にリチウム金属を圧着して
おくと、未反応のリチウムは正極と負極との間での電解
液中のイオンの移動に対して障害となり、電池のインピ
ーダンスの増加の原因にもなった。
Additionally, if lithium metal is pressed onto the negative electrode facing the positive electrode, unreacted lithium will become an obstacle to the movement of ions in the electrolyte between the positive and negative electrodes, resulting in an increase in battery impedance. It was also the cause.

リチウムを正極と対向していない負極の面に置くことも
考えられるが、後述するように、この方法では、電池の
十分な充放電特性は得られない。
It is also conceivable to place lithium on the surface of the negative electrode that is not facing the positive electrode, but as will be described later, this method does not provide sufficient charge/discharge characteristics of the battery.

このため、リチウムは正極に対向した負極面に置く必要
がある。
For this reason, lithium must be placed on the negative electrode surface facing the positive electrode.

さらに、負極とリチウム金属を圧着した負極組立体と正
極とセパレターをスパイラル状に巻き込んで作る電池の
場合には、巻き込む曲率が負極組立体の内側と外側で異
るため、圧着してあったリチウム金属がはずれるという
問題もあった。
Furthermore, in the case of a battery made by spirally winding a negative electrode assembly with a negative electrode and lithium metal crimped together, a positive electrode, and a separator, the curvature of the winding is different on the inside and outside of the negative electrode assembly, so the crimped lithium There was also the problem of the metal coming off.

発明の目的 本発明の目的は、再充電可能な電気化学装置の製造法に
関し、とくにそれの負極の組立体に関するものであり、
充放電量の大きい、またインピーダンスの小きい電気化
学装置の製造法を提供するとともに、信頼性の高い製造
法を示すことである。
OBJECTS OF THE INVENTION The objects of the invention relate to a method for manufacturing a rechargeable electrochemical device, in particular to an assembly of the negative electrode thereof;
It is an object of the present invention to provide a method for manufacturing an electrochemical device with a large charge/discharge capacity and low impedance, and to demonstrate a highly reliable manufacturing method.

発明の構成 本発明は、可逆性正極と、リチウムイオンを含む非水電
解質と、充電により電解質中のリチウムイオンを吸蔵し
てリチウムとの化合物を形成し、放電によりリチウムを
イオンとして電解質中へ放出する負極とを有する再充電
可能な電気化学装置の製造法であって、前記負極にその
電位がリチウム金属と等電位になるまでリチウムを吸蔵
しても微粉化しないものを用い、かつ負極の正極に対向
した面に、リチウム金属を置き、この負極の集電体と、
リチウム金属の集電体との間で電子伝導性を有するよう
にして、この負極とリチウム金属を電気化学装置内に組
み入れ、前記装置内において負極及びリチウム金属に電
解液を接触させるようにしたことを特徴としている。
Composition of the Invention The present invention comprises a reversible positive electrode, a non-aqueous electrolyte containing lithium ions, a compound that occludes lithium ions in the electrolyte upon charging to form a compound with lithium, and releases lithium as ions into the electrolyte upon discharging. A method for manufacturing a rechargeable electrochemical device having a negative electrode that does not become pulverized even when lithium is occluded until the potential of the negative electrode becomes equal to that of lithium metal, and a positive electrode of the negative electrode. Place lithium metal on the surface facing the negative electrode current collector,
The negative electrode and the lithium metal are incorporated into an electrochemical device so as to have electron conductivity with a lithium metal current collector, and the electrolyte is brought into contact with the negative electrode and the lithium metal in the device. It is characterized by

実施例の説明 〔実施例1〕 負極として、重量比で100部のTiO2,20部の黒
鉛、2部部のポリ47ノ化エチレンよりなる合剤を直径
iawn厚さo、smに加圧成型したものを用いた。第
2図のボタン型電池の断面図に示すように、この負@1
を電池の5USsoaを用いた封口板4に圧着し、さら
に、この上よシ、直径16咽厚さ0.12Mのリチウム
金属板2をリチウム金属板の1部がボタン型電池の封口
板と接続されるように加圧圧着した。この時、負極とり
チウム金属板は共通の集電体として、ボタン型電池の封
口板を使用したことになる。
Description of Examples [Example 1] As a negative electrode, a mixture consisting of 100 parts of TiO2, 20 parts of graphite, and 2 parts of poly(47-ethylene) by weight was pressure-molded to a diameter of iawn and a thickness of o and sm. I used the one I made. As shown in the cross-sectional view of the button-type battery in Figure 2, this negative @1
A lithium metal plate 2 with a diameter of 16mm and a thickness of 0.12M is bonded to the sealing plate 4 of the battery using 5US SOA, and a part of the lithium metal plate is connected to the sealing plate of the button type battery. It was crimped with pressure so that it would fit. At this time, the sealing plate of a button-type battery was used as a common current collector for the negative electrode and the lithium metal plate.

正極5には、重量比で100部のMnO2と20部のア
セチレンブラックと20部のポリ4フツ化エチレンより
なる合剤を直径20mm厚さ0.7.に加圧成型した極
板を用いてケース6に入れた。ポリプロピレン製の不織
布を使ったセパレータ7を用い、1モル/lのL z 
ClO4を体積比で1:1のプロピレンカーボネートと
ジメトキシエタンの混合溶媒に溶解したものを電解液と
して注液した後、封口した。この時の負極に用いたT 
102の充放電可能な電気量は50mAh であり、圧
着したリチウム金属の電気量はs o mAh 、正極
の充放電可能な電気量は100 mAh であった。こ
のような配合比にしたのは、電池の電気量が負極により
決まり、負極の特性を明確に出すためである。
For the positive electrode 5, a mixture consisting of 100 parts of MnO2, 20 parts of acetylene black, and 20 parts of polytetrafluoroethylene in a weight ratio of 20 mm in diameter and 0.7 mm in thickness was used. A pressure-molded electrode plate was used and placed in case 6. Using a separator 7 made of a nonwoven fabric made of polypropylene, L z of 1 mol/l
After injecting ClO4 dissolved in a mixed solvent of propylene carbonate and dimethoxyethane at a volume ratio of 1:1 as an electrolyte, the chamber was sealed. T used for the negative electrode at this time
The amount of electricity that can be charged and discharged in No. 102 was 50 mAh, the amount of electricity that the press-bonded lithium metal could have was so mAh, and the amount of electricity that could be charged and discharged for the positive electrode was 100 mAh. The reason why such a compounding ratio was adopted is that the amount of electricity in the battery is determined by the negative electrode, so that the characteristics of the negative electrode can be clearly expressed.

封口後3日放置したのち、2mAの放電を、電池電圧が
1vになるまで行い、次に2mAで電池電圧が2vにな
るまで充電した。同様の条件で充放電をくり返した。放
電時の平均電圧は1.2vであった。
After being left for 3 days after sealing, the battery was discharged at 2 mA until the battery voltage reached 1 V, and then charged at 2 mA until the battery voltage reached 2 V. Charge and discharge were repeated under the same conditions. The average voltage during discharge was 1.2v.

封口後、3日放置する間に1 リチウム金属は全て、負
極であるTlO2中に吸蔵されるはずである。
After sealing, all of the 1 lithium metal should be occluded in TlO2, which is the negative electrode, during the period of 3 days.

この本発明の負極とリチウム金属に共通の集電体として
封口板を使用した電池の封口直後の開路電圧は3・4V
、インピーダンスは32Ωであった。
The open circuit voltage of a battery using a sealing plate as a common current collector for the negative electrode of the present invention and lithium metal is 3.4V immediately after sealing.
, the impedance was 32Ω.

3日放置後では、15V、32Ωであシ、封口直後にお
いては正極のM n O2と、集電体に圧着したリチウ
ム金属の電位差が表われるが、3日放督告では、M n
 O2と、負極のリチウムを吸蔵したTiO2との電位
差が表われていることになる。またインピーダンスに変
化がなかったのは、リチウム金属が全て負極中に吸蔵さ
れたためである。
After being left for 3 days, a potential difference of 15 V and 32 Ω appears between the positive electrode M n O2 and the lithium metal crimped to the current collector immediately after sealing.
This represents the potential difference between O2 and the negative electrode, TiO2, which occludes lithium. Furthermore, the reason why there was no change in impedance was because all of the lithium metal was occluded in the negative electrode.

一方、従来例として第3図に示したように、負極上にリ
チウム金属を単に圧着しただけの電池をも構成した。な
お第2図と共通する素子には同一番号を付した。ただリ
チウム金属板3は形状が違うので第3図においては3′
とした。本発明の電池をAとし、従来の構成の電池をB
とする。Bの電池の負極、リチウム金属、正極などは全
てAの電池と同一のものである。このBの電池の封口直
後の開路電圧は3.4v、インピーダンスは32ρとA
の電池と同じである。しかし、3日放置し負極中にリチ
ウムを吸蔵させた後の電圧は1.5vと本発明の電池と
同じであるが、インピーダンスは136Qであった。電
池を分解すると、本発明のAの電池では、リチウムは完
全に負極中に吸蔵されているのに対して、Bの従来の構
成の電池では一部リチウム金属が未反応の状態で残って
おり、このリチウム金属は負極と接しておらず浮いたよ
うな状態になっていた。このためインピーダンスの増加
になったと思う。
On the other hand, as a conventional example, as shown in FIG. 3, a battery was also constructed in which lithium metal was simply crimped onto the negative electrode. Note that elements common to those in FIG. 2 are given the same numbers. However, since the lithium metal plate 3 has a different shape, it is 3' in Figure 3.
And so. The battery of the present invention is designated as A, and the battery with the conventional configuration is designated as B.
shall be. The negative electrode, lithium metal, positive electrode, etc. of battery B are all the same as those of battery A. The open circuit voltage of this B battery immediately after sealing is 3.4V, and the impedance is 32ρ and A
It is the same as the battery. However, after being left for 3 days and lithium was occluded in the negative electrode, the voltage was 1.5V, the same as the battery of the present invention, but the impedance was 136Q. When the battery is disassembled, it is found that in the battery A of the present invention, lithium is completely occluded in the negative electrode, whereas in the battery B with the conventional configuration, some lithium metal remains in an unreacted state. , this lithium metal was not in contact with the negative electrode and appeared to be floating. I think this is why the impedance has increased.

また充放電サイクルをくり返した時の放電容量は、第5
サイクル目で、Aの電池の42 mAhに対して、Bの
電池は17 mAhであった。これはAの電池では、当
初電池中に充てんしたリチウムのは)7go%が充放電
に使われているのに対して、Bの電池では当初光てんし
たリチウム金属のうち、約40%程度は負極中に吸蔵さ
れて充放電を行っているのに対して、残り60%は電池
の中で浮いたようになっていて充放電を行わなくなって
いるためであると考える。
In addition, the discharge capacity after repeated charge/discharge cycles is the fifth
At cycle 1, battery B had 17 mAh compared to 42 mAh for battery A. This means that in battery A, 7% of the lithium initially charged in the battery is used for charging and discharging, while in battery B, about 40% of the lithium metal initially charged is used for charging and discharging. This is thought to be because while the remaining 60% is inserted into the negative electrode and is being charged and discharged, the remaining 60% is floating inside the battery and is not being charged or discharged.

上述したように負極の集電体としての封口板をリチウム
金属の集電体として兼用させる方法として、第2図の負
極とリチウム金属の位置を逆にした方法も考えられる。
As described above, as a method of making the sealing plate serving as a current collector for the negative electrode also serve as a current collector for lithium metal, it is also possible to reverse the positions of the negative electrode and lithium metal in FIG. 2.

しかし、この方法で作った電池のインピーダンスは、先
の実施例で述べた本発明の電池と同等であるが、充放電
をくり返すと、5サイクル目の放電容量は26mAhで
あり、従来の構成の電池Bに比べ良好ではあるが、Aの
電池に比べると明らかに小さかった。その理由として負
極にリチウムか吸蔵される時には、均一に吸蔵されるの
ではなく、負極のリチウム金属に近い部分に最も多く吸
蔵されるなど、負極中に吸蔵されるリチウムの分布に偏
よりか生じていると推定している。電池の充放電量を多
くするには、負極中の正極に近い面に多くのリチウムが
吸蔵されている方が望ましいと考えられること樵よシ、
実施例のAの電池のように、負極の正極に対向している
面にリチウムを配するのが望ましいことが、上述の結果
よりわかる。
However, although the impedance of the battery made by this method is equivalent to that of the battery of the present invention described in the previous example, when charging and discharging are repeated, the discharge capacity at the 5th cycle is 26 mAh, which is different from the conventional configuration. Although it was better than battery B, it was clearly smaller than battery A. The reason for this is that when lithium is occluded in the anode, it is not occluded uniformly, but the distribution of lithium occluded in the anode is uneven, such as the largest amount being occluded in the part of the anode near the lithium metal. It is estimated that In order to increase the charge/discharge capacity of a battery, it is considered desirable that a large amount of lithium be occluded on the surface of the negative electrode near the positive electrode.
It can be seen from the above results that it is desirable to arrange lithium on the surface of the negative electrode facing the positive electrode, as in the battery of Example A.

〔実施例2〕 なる群から選んだ少なくとも1種からなる合金を用いた
[Example 2] An alloy consisting of at least one selected from the group consisting of:

これらの合金は、前述したように、リチウムの吸蔵量も
大きく、さらにはリチウムを吸蔵しても微粉化を起さな
く、また充放電の可逆性にも優れたものであった。
As mentioned above, these alloys had a large lithium storage capacity, did not become pulverized even when lithium was stored, and had excellent charge/discharge reversibility.

従来例の友や上記合金成分のうちSn、Pb。Sn and Pb of the conventional example and the above alloy components.

In、Biは、前記の実験装置の負極とした場合、リチ
ウムの吸蔵に伴って微粉化した。一方、Cd。
When In and Bi were used as the negative electrode of the above-mentioned experimental device, they were pulverized as lithium was occluded. On the other hand, Cd.

Znは微粉化しないが、負荷に流れる電気量は小さかっ
た。上記の合金については、リチウムの吸蔵にはSn、
Pb、In、Bi  がかかわり、Cd 。
Although Zn was not pulverized, the amount of electricity flowing to the load was small. For the above alloys, Sn, Sn,
Pb, In, Bi are involved, and Cd.

Znが微粉化防止の結着剤の役割をしていると考えられ
る。
It is thought that Zn plays the role of a binder to prevent pulverization.

従って、充放電量の多い負極を構成するには、Sn、P
b、In、Biの量の多い合金を用いるのがよい。しか
し、リチウムと等電位になるまでリチウムを吸蔵した場
合、微粉化しないようにするにはCd及び/又はZnの
量は少なくとも6重量%必要であり、さらに充放電のく
り返しによる微粉化を防止するくは10重量−以上必要
である。
Therefore, in order to construct a negative electrode with a large charge/discharge amount, Sn, P
It is preferable to use an alloy containing a large amount of B, In, and Bi. However, when lithium is occluded until the potential becomes equal to that of lithium, the amount of Cd and/or Zn must be at least 6% by weight to prevent pulverization, and furthermore, it is necessary to prevent pulverization due to repeated charging and discharging. or more than 10% by weight.

以下に、詳しく説明する。This will be explained in detail below.

前述したように、Sn、Pb、In、Biの群から選ん
だ少なくとも1種とCdとの合金の場合J】の量は10
重量%以上必要であるが、負極として充放電量を多くす
るには、Cdは80重量−以下が望ましく、さらには1
0〜40重量%の範囲がよい。
As mentioned above, in the case of an alloy of Cd and at least one selected from the group of Sn, Pb, In, and Bi, the amount of J] is 10
Cd is required to be at least 80% by weight, but in order to increase the amount of charge and discharge as a negative electrode, the amount of Cd is preferably 80% by weight or less, and more preferably 1% by weight.
A preferable range is 0 to 40% by weight.

Sn、Pb、In、BiO群から選んだ少なくとも2種
とCdとの合金の場合にもCd量は1Q〜80重量%、
好ましくは10〜40重量%がよい。
In the case of an alloy of at least two selected from the group Sn, Pb, In, and BiO and Cd, the amount of Cd is 1Q to 80% by weight,
Preferably it is 10 to 40% by weight.

Cdを含む2元合金よりも3元合金とする方が高率充放
電特性が優れている。これは、合金中の相と相の界面に
沿ってリチウムが拡散してゆくためと考えられる。
A ternary alloy has better high rate charge/discharge characteristics than a binary alloy containing Cd. This is thought to be because lithium diffuses along the interface between phases in the alloy.

さらに、Sn、Pb、In、Biの群から選んだ少なく
とも1種とCdとの合金に水銀、銀、アンチモン、カル
シウムの群より選んだ少なくとも1種を20重量−以下
の範囲で添加すると、充放電量は増加する。
Furthermore, when at least one selected from the group of mercury, silver, antimony, and calcium is added to an alloy of at least one selected from the group of Sn, Pb, In, and Bi and Cd in a range of 20% by weight or less, the alloy becomes full. The amount of discharge increases.

i>il述した合金中、Sn、Pbの群から選んだ少な
くともINとCdの合金の場合、コスト的にも安価であ
り、充放電量も多いOSn  Cd合金、Pb−Cd合
金ではCdの量は10〜80重量%、好ましくは1o〜
40重量−の範囲で充放電量が大きい0 Sn−Cd合金とPb −Cd  合金を比較すると、
前者の方が高率充放電特性において優れている。
i>il Among the alloys mentioned above, in the case of an alloy of at least IN and Cd selected from the group of Sn and Pb, it is inexpensive in terms of cost and has a large charge and discharge capacity.In the case of OSn Cd alloy and Pb-Cd alloy, the amount of Cd is is 10 to 80% by weight, preferably 1o to
Comparing the Sn-Cd alloy and the Pb-Cd alloy, which have a large charge/discharge amount in the range of 40% by weight,
The former is superior in high rate charge/discharge characteristics.

Sn 、l−Pb を比較すると、 PbO方が安価で
ある。
Comparing Sn and l-Pb, PbO is cheaper.

従って、Pb −Sn −Cd  合金とすることによ
り、安価で高率充放電に優れた負極とすることが可能で
ある。この場合のCd含量は10〜80M量チ、好まし
くは10〜40重量%で、Sn含量は20〜30重量%
、残部がpbの組成のものは良好でちる0 合金負極を作る際に、最も簡単な方法は、溶融した合金
中に、銅、ニッケル、鉄、ステンレス鋼などのメノンユ
状の集電体を浸漬し、引き上げて集電体に合金を被覆す
る方法である。この時、集電体金属と合金のなじみをよ
くするために、合金がInを含有していることが望まし
い。Inは充放電によりリチウムを吸蔵、放出する能力
があり、これを用いると、集電体とのなじみもよく、充
放電量の大きい負極となる。しかし、Inは高価である
ため、少量用いるべきである。Sn −In −Cd合
金では、Cd量は10〜soi量チ、好ましくは10〜
4o重量%、In量は3〜10重量%、残部がSnの組
成は好ましい例である。pb−In−Cd合金の場合に
もCd量、Inの量は、5n80重量%、好ましくは1
0〜40重量%で、In量は3〜1n重量%が好適であ
り、pb量は20〜80重量%、好ましくは40〜80
重量%の場合に性能、コスト面で有利である。
Therefore, by using a Pb-Sn-Cd alloy, it is possible to obtain a negative electrode that is inexpensive and excellent in high rate charging and discharging. In this case, the Cd content is 10-80M, preferably 10-40% by weight, and the Sn content is 20-30% by weight.
, the balance is PB, and the composition is good.When making an alloy negative electrode, the simplest method is to immerse a melon-shaped current collector made of copper, nickel, iron, stainless steel, etc. in a molten alloy. In this method, the current collector is coated with an alloy by pulling it up. At this time, in order to improve the compatibility between the current collector metal and the alloy, it is desirable that the alloy contains In. In has the ability to occlude and release lithium through charging and discharging, and when In is used, it becomes a negative electrode that is compatible with the current collector and has a large charge/discharge capacity. However, since In is expensive, it should be used in small amounts. In the Sn-In-Cd alloy, the Cd content ranges from 10 to soi, preferably from 10 to
A preferred example is a composition in which the amount of In is 3 to 10% by weight, and the balance is Sn. In the case of pb-In-Cd alloy, the amount of Cd and the amount of In are 5n80% by weight, preferably 1
0 to 40% by weight, the amount of In is preferably 3 to 1n% by weight, and the amount of Pb is 20 to 80% by weight, preferably 40 to 80% by weight.
% by weight is advantageous in terms of performance and cost.

Sn、Pb、In、Biの群から選んだ少なくとも1種
とZnの合金を負極に用いる際には、非水電解質中で、
リチウムと等電位になるまでリチウムを吸蔵しても、微
粉化を起こさせないためには、Znは10重量%以上必
要である。さら((リチウムの吸蔵、放出をくり返す充
放電によって微粉化を起こさせないようにするには、Z
nは15重世チ以上必要である。Znの量が多くなると
負極としての充放電量が低下するのでZnO量は80重
量%以下にするのがよい。
When using an alloy of Zn and at least one selected from the group of Sn, Pb, In, and Bi in a nonaqueous electrolyte,
In order to prevent pulverization from occurring even when lithium is occluded until the potential becomes equal to that of lithium, Zn must be present in an amount of 10% by weight or more. Furthermore ((To prevent pulverization from occurring due to repeated charging and discharging of lithium occlusion and desorption, Z
n must be 15 times or more. As the amount of Zn increases, the amount of charge and discharge as a negative electrode decreases, so the amount of ZnO is preferably 80% by weight or less.

B1−Zn2元合金の場合には、Zn量は、リチウムを
吸蔵しても微粉化しないようにするKは1n重量%以上
必要であるが、十分な充放電特性を得るには、60〜8
6重量%必要である。
In the case of a B1-Zn binary alloy, the amount of Zn must be 1nwt% or more to prevent pulverization even when lithium is occluded, but in order to obtain sufficient charge-discharge characteristics, the amount of K is 60 to 8% by weight.
6% by weight is required.

5n−Zn合金では、Zn量は16〜80重量%のとき
に負極としての特性は良く、特に30〜60重量%が好
ましい。
5n-Zn alloy has good properties as a negative electrode when the Zn content is 16 to 80% by weight, and 30 to 60% by weight is particularly preferred.

Sn、Pb、In、Bi(7:1群から選んだ少なくと
も2独とZnとの合金では、ZnO量は、充放電量を多
くするためには20〜80重量%がよい。5n−In−
Zn  合金では、SnとInの重量比は1/9〜9/
1  がよいo S n  P b  Z n  合金
では、Snとpb  の重量比が4/1〜1/2がよい
In an alloy of Sn, Pb, In, Bi (7:1) and at least two selected from the group 1 and Zn, the amount of ZnO is preferably 20 to 80% by weight in order to increase the amount of charge and discharge.5n-In-
In Zn alloy, the weight ratio of Sn and In is 1/9 to 9/9.
In the o Sn P b Z n alloy, the weight ratio of Sn to pb is preferably 4/1 to 1/2.

さらにPb −In −Zn 合金では、pbとIn0
重量比は3/1〜1/9 がよい。B1とZn  と、
残部がSn、Pb、In の群から選んだ少なくとも1
種の合金では、Zn量は2o〜80重量%が好ましく、
かつBiの量は50重量%以下が望ましいO Znを含む合金でも、高率充放電を行うには、pbより
もSnを多く含む合金の方がよい。5n−Pb−Zn 
 合金では、Zn量は2Q〜80重量%、望ましくは3
0〜60重量%がよく、またpb量を10〜2o重量%
とし、残部がSnの合金が好ましい。
Furthermore, in the Pb-In-Zn alloy, pb and In0
The weight ratio is preferably 3/1 to 1/9. B1 and Zn,
The remainder is at least one selected from the group of Sn, Pb, and In.
In the seed alloy, the amount of Zn is preferably 20 to 80% by weight,
The amount of Bi is desirably 50% by weight or less. Even in alloys containing Zn, alloys containing more Sn than PB are preferred in order to perform high rate charging and discharging. 5n-Pb-Zn
In the alloy, the amount of Zn is between 2Q and 80% by weight, preferably 3
0 to 60% by weight is good, and the amount of pb is 10 to 20% by weight.
It is preferable to use an alloy in which the balance is Sn.

負極の製造において、金属集電体を溶融した合金に浸漬
して集電体に合金を被覆する方法は簡単である。この時
には、集電体とのなじみをよくするために、前記Cd系
合金の場合と同様にInを含む合金を用いるのが望まし
い。5n−In−Znρ■金では、Zn量ば2Q〜80
重量%がよく、好ましくは3Q〜60重tチである。I
n量は3〜1n′TVXi%、残部がSnである合金が
よい。Sn−Pb −In−Zn  合金では、Zn量
は20〜80重量%、好ましくは30〜60重量%であ
り、Pbl′i1は10〜20重量%、In量は3〜1
0重量%、残部がSnの合金が好ましい。
In manufacturing a negative electrode, a method of coating a metal current collector with the alloy by immersing the metal current collector in a molten alloy is simple. At this time, in order to improve compatibility with the current collector, it is desirable to use an alloy containing In, as in the case of the Cd-based alloy. 5n-In-Znρ ■For gold, the amount of Zn is 2Q~80
The weight percentage is good, preferably 3Q to 60% by weight. I
It is preferable to use an alloy in which the amount of n is 3 to 1n'TVXi%, and the balance is Sn. In the Sn-Pb-In-Zn alloy, the amount of Zn is 20-80% by weight, preferably 30-60% by weight, the amount of Pbl'i1 is 10-20% by weight, and the amount of In is 3-1% by weight.
An alloy containing 0% by weight and the balance being Sn is preferable.

以上の例では、Cd、Znの少なくとも一方を含む合金
について述べたが、両者を含む合金も同様に用いられる
。その場合、リチウムと等電位になるまで、リチウムを
吸蔵しても微粉化せず、さらに充放電サイクルをくり返
しても微粉化しないようにするには、ZnとCd  の
含量の和は15〜80重量%必要であり、また充放電量
の点からCdのの含量は50重量%以下が好ましい。S
n−Zn −Cdの3元合金では、CdとZn ノ含量
の和が20〜80重量%、望ましくは30〜60重量%
、cdの量は10〜20重量%がよい。pb−3n−C
d−Znの4元合金では、ZnとCdの含量の和が20
〜80重量%、好ましくは30〜6o重f1%、Ccl
 ノー[i(が1Q〜20重量%、Pb〕量が10〜2
0重1%、残部がSnの合金が、負極とした際の充放電
特性において優れている。Sn−In −Zn−Cdの
4元合金の場合にも、ZnとCdの含量の和が2Q〜8
o重量%、好ましくは30〜60重量%で、Cdの量は
10〜20重量%、Inの量は3〜10重量%のものが
負極としての特性も良く、また比較的安価となる。pb
−3n −In −Zn −Cdの6元合金の場合にも
、ZnとCdの含量の和が20〜80重量%、好ましく
は3Q〜60重量%、Cd量は10〜20重量%、Pb
量は10〜20重量%、In量は3〜10重量%のもの
が負極としての特性もよく、また比較的安価である。
In the above example, an alloy containing at least one of Cd and Zn was described, but an alloy containing both may be used as well. In that case, the sum of the Zn and Cd contents must be 15 to 80 to prevent pulverization even when lithium is occluded until the potential is equal to that of lithium, and to prevent pulverization even after repeated charge/discharge cycles. % by weight, and from the viewpoint of charge/discharge capacity, the content of Cd is preferably 50% by weight or less. S
In the n-Zn-Cd ternary alloy, the sum of the Cd and Zn contents is 20 to 80% by weight, preferably 30 to 60% by weight.
, CD is preferably 10 to 20% by weight. pb-3n-C
In the d-Zn quaternary alloy, the sum of the Zn and Cd contents is 20
~80% by weight, preferably 30-60% by weight, Ccl
No [i (is 1Q to 20% by weight, Pb] amount is 10 to 2
An alloy containing 0 weight and 1% Sn and the balance is excellent in charging and discharging characteristics when used as a negative electrode. Also in the case of a quaternary alloy of Sn-In-Zn-Cd, the sum of the contents of Zn and Cd is 2Q to 8
o% by weight, preferably 30 to 60% by weight, the amount of Cd is 10 to 20% by weight, and the amount of In is 3 to 10% by weight, which has good properties as a negative electrode and is relatively inexpensive. pb
In the case of a six-element alloy of -3n -In -Zn -Cd, the sum of the contents of Zn and Cd is 20 to 80% by weight, preferably 3Q to 60% by weight, the amount of Cd is 10 to 20% by weight, and the content of Pb is 10 to 20% by weight.
An amount of 10 to 20% by weight, and an amount of In of 3 to 10% by weight have good properties as a negative electrode and are relatively inexpensive.

本実施例では、このような合金を負極に用いてスパイラ
ル状に巻き込んで作る電池の製造法について述べる。
In this example, a method of manufacturing a battery using such an alloy as a negative electrode and winding it in a spiral shape will be described.

負極を単独又は正極とともにスパイラル状に巻く場合、
前記合金のうち、Sn、Pb、In、Znの含量の和が
40重量−以上の合金は、特に軟らかく巻き込みが容易
である。
When winding the negative electrode alone or together with the positive electrode in a spiral,
Among the above alloys, alloys in which the sum of the contents of Sn, Pb, In, and Zn is 40% by weight or more are particularly soft and easy to roll into.

PI〕70M量チ、Cd25重量%、In5重量%の組
成の合金を溶融し、この中にニッケルのエキスバンドメ
タルの一部を浸漬して引き上げ、大きさ14MX100
M、厚さ○−2Mになるように合金を凝固させた。また
このエキスバンドメタルの露出している方に大きさ14
mmX 100+nm、厚さ0 、4 n1mのリチウ
ム板を圧着して第4図のような電極を利だ。図中8は集
電体のニッケルのエキスバンドメタノへ9はその中央部
に溶接したニッケル製リード片である。1Qはエキスバ
ンドメタルの右半分に被覆した負極合金、11はエキス
バンドメタルの左半分に圧着したリチウム金属板である
。次にエキスバンドメタルの中央部より折り曲げ、合金
上にリチウムが重なるようにした。この電極をCとする
PI] An alloy with a composition of 70M, 25% by weight of Cd, and 5% by weight of In was melted, and a part of expanded nickel metal was immersed in it and pulled up to form a 14MX100
The alloy was solidified to a thickness of M and a thickness of ○-2M. In addition, the size 14 is attached to the exposed part of this extra band metal.
A lithium plate of mm x 100+nm and thickness of 0.4 nm was crimped to form an electrode as shown in Figure 4. In the figure, 8 is a nickel lead piece welded to the center of the nickel extended metal of the current collector. 1Q is a negative electrode alloy coated on the right half of the expanded metal, and 11 is a lithium metal plate crimped onto the left half of the expanded metal. Next, the expanded metal was bent from the center so that the lithium layer overlapped the alloy. This electrode is designated as C.

従来例として、上述と同寸法で作った合金上に同寸法の
リチウム板を圧着した電極を作った。この電極をdとす
る。dの電極では、ニッケルエキスバンドメタルは合金
中に埋没しており、圧着したリチウム金属は、ニッケル
エキスバンドメタルと触れることはない。したがって、
ニッケルエキスバンドメタルは、リチウム金属の集電体
ではない。
As a conventional example, an electrode was made by pressing a lithium plate of the same size onto an alloy made of the same size as described above. Let this electrode be d. In the electrode d, the nickel expanded metal is buried in the alloy, and the crimped lithium metal does not come into contact with the nickel expanded metal. therefore,
Nickel expanded band metal is not a current collector for lithium metal.

さらに従来例として、上述と同寸法のAd、リチウム金
属を使用して、Cと同様の構成の電極e。
Furthermore, as a conventional example, electrode e has the same structure as C using Ad and lithium metals having the same dimensions as described above.

dと同じ構成の電極fを作った。Electrode f having the same configuration as d was made.

正極は、T I S 21001にアセチレンブラック
10、F、laMMl(lを混合し、チタンのエキスバ
ンドメタルの両面に成形した大きさ16M×130 m
m s厚さ1m1llのものを用いた。この正極の理論
容量は、414mAhである。
The positive electrode was made by mixing TIS 21001 with acetylene black 10, F, and laMMl (l) and molding it on both sides of a titanium expanded metal.
A material with a thickness of 1 ml was used. The theoretical capacity of this positive electrode is 414 mAh.

正極のまわりにポリプロピレン製の不織布を8き、先の
電極と重ね合わせた後、スパイラル状に巻いて電池ケー
スに入れた。この後電解液として1モル/lのL IC
I O4を溶解したプロピレンカーボネートを注入した
後封口した。電極Cを用いた電池をC1電極d、e、f
を用いた電池をそれぞれり、E、Fとする。
Eight pieces of polypropylene nonwoven fabric were wrapped around the positive electrode, overlapped with the previous electrode, then spirally wound and placed in a battery case. After this, 1 mol/l of LIC was added as an electrolyte.
After injecting propylene carbonate in which IO4 was dissolved, the vessel was sealed. A battery using electrode C has C1 electrodes d, e, f.
The batteries using these are designated as E and F, respectively.

第5図は電池Cの構造を示している。12はケ、−ス1
3の上部に設けた溝、14は合成樹脂製の封「1板であ
シ、その中央には、アルミニウムのリベIト端子15を
固定しており、端子15の上部には正極端子キャップ1
6、下部には正極のリード片17が、それぞれ溶接され
ている。18は合成樹脂製底部絶縁板、1つはケース1
3内に組み込まれたスパイラル状の極板群であり、セパ
レータ7で包んだ正極20と負極組立体をスパイラル状
に巻いたものである。正極20は集電体としてのチタン
エキスバンドメタル21と、このエキスバンドメタルの
端部に溶接したチタン製リード17とを有する。
FIG. 5 shows the structure of battery C. 12 is ke, -su 1
The groove provided in the upper part of the terminal 14 is made of a synthetic resin seal plate, and an aluminum riveted terminal 15 is fixed in the center of the plate.
6. Positive electrode lead pieces 17 are welded to the lower part. 18 is a synthetic resin bottom insulating plate, 1 is case 1
This is a spiral-shaped electrode plate group incorporated in the electrode plate 3, which is a positive electrode 20 and a negative electrode assembly wrapped in a separator 7 and wound in a spiral shape. The positive electrode 20 has a titanium expanded metal 21 as a current collector and a titanium lead 17 welded to the end of the expanded metal.

電池内の負極合金へのリチウムの吸蔵を行わせるため、
封口後1日間放置した。その後、電池をs o mAの
電流で電池電圧が0.8vになるまで放電し、2.5v
に)なるまで充電する充放電サイクルをくり返した。第
6図は電池C−Fの各サイクルにおける放電電気量をプ
ロットして示した。
In order to cause lithium to be absorbed into the negative electrode alloy in the battery,
After sealing, it was left for one day. After that, the battery was discharged with a current of s o mA until the battery voltage reached 0.8v, and the battery voltage decreased to 2.5v.
The charge/discharge cycle was repeated until the battery reached . FIG. 6 plots and shows the amount of electricity discharged in each cycle of batteries C-F.

CとDを比較すると、Cの方が放電容量が大きい。また
インピーダンスはCの方が小であった。
Comparing C and D, C has a larger discharge capacity. Moreover, the impedance of C was smaller.

これはDの場合、スパイラル状に巻き込む時に、負極と
リチウムが圧着しであるだけのため一部が剥れたためと
、圧着したリチウムは、圧着した面より、負極に吸蔵さ
れて行くため、負極から浮いたようになり、負極に吸蔵
されずに残ったためであると考える。
In the case of D, this is because the negative electrode and lithium are only crimped together when rolled into a spiral shape, so a part of the lithium peels off, and the crimped lithium is intercalated into the negative electrode from the crimped surface. This is thought to be because it appeared to be floating and remained unoccluded by the negative electrode.

電池E、Fは、はとんど充放電不可能であった。Batteries E and F were almost impossible to charge and discharge.

電池を分解すると電池Eでは、AIがほとんど泥状にな
っていて生成したLiA3はほとんど集電されていなか
った。一方電池Fでは、A1表面が泥状になっているも
のの、金属AIや、リチウムが未反応のままで相当残っ
ていた。これは、リチウムがAI中に吸蔵されるKつれ
て、Alと離れてしまったためである。
When the battery was disassembled, in Battery E, the AI was almost in the form of mud, and the generated LiA3 was hardly collecting current. On the other hand, in battery F, although the A1 surface was muddy, a considerable amount of metal AI and lithium remained unreacted. This is because lithium separates from Al as K is occluded in AI.

以上のようにスパイラル状に負極組立体を巻く時にも負
極の集電体と、リチウムの集電体を共通にしたりして、
負極と、リチウム金属との間で電子伝導性を得るように
すると、電池の充放電量は多くなる。
As mentioned above, even when winding the negative electrode assembly in a spiral shape, the negative electrode current collector and the lithium current collector are used in common.
When electronic conductivity is achieved between the negative electrode and the lithium metal, the amount of charge and discharge of the battery increases.

共面のIに電体を用いるほかに負極集電体と、リチウム
金属の集電体を直接溶接したり、あるいは金属片を介し
て、画集電体を溶接したりする方法も轟然有効である。
In addition to using an electric current on the coplanar I, it is also extremely effective to directly weld the negative electrode current collector and the lithium metal current collector, or to weld the image current collector through a metal piece. .

本発明の再充電可能な電気化学装置を構成するための正
極としては、充放電の可逆性を有するものを用イル。例
えば、Mo0TiS2.v6o13゜I Cr 30s + T i○2. WO3,TaS2.
 NaCr52などを活物質とする正極である。
As the positive electrode for constructing the rechargeable electrochemical device of the present invention, one having reversibility of charging and discharging is used. For example, Mo0TiS2. v6o13゜I Cr 30s + T i○2. WO3, TaS2.
It is a positive electrode that uses NaCr52 or the like as an active material.

壕だ、黒鉛電極あるいは電気二重層キャノくシタに用い
られている活性炭電極などの周知の炭素質電極を用いれ
ば、メモリーバックアップ用電源などとして用いること
も可能である。
If well-known carbonaceous electrodes such as graphite electrodes or activated carbon electrodes used in electric double layer capacitors are used, it can also be used as a memory backup power source.

非水電解質としては、有機電解質が好適である0その4
1機溶媒としては、プロピレンカーボネート、γ−ブチ
ロラクトン、エチレンカーボネート、1゜2−ジメトキ
シエタン、テトラノ\イドロフラン、2−メチルテトラ
ハイドロフラン、1.3−ジオキソランなど、また溶質
のリチウム塩としては、L z Clo 4. L z
 B F 4+ L I A s F  L I SO
s CF 3゜6+ L IP F eなど、有機電解質電池に用いられる周
知のものを用いることができる。これら有機溶媒。
As the non-aqueous electrolyte, an organic electrolyte is preferable.0 Part 4
Examples of single solvents include propylene carbonate, γ-butyrolactone, ethylene carbonate, 1゜2-dimethoxyethane, tetrano\hydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, etc., and lithium salts of solutes include L. z Clo 4. Lz
B F 4+ L I A s F L I SO
Well-known materials used in organic electrolyte batteries, such as s CF 3°6+ L IP Fe, can be used. These organic solvents.

溶質はそれぞれ単独に限らず、複数種混合して用いても
よい。
The solutes are not limited to being used alone, and may be used in combination.

また負極としては、実施例で述べた合金やTiO2の他
にNb2O5,Fe2o3.WO2などの酸化物も有効
であるが、負極の体積当りの充放電量という点では、合
金を用いるのが最も良い。
In addition to the alloys and TiO2 described in the examples, Nb2O5, Fe2o3. Although oxides such as WO2 are also effective, it is best to use alloys in terms of the amount of charge and discharge per volume of the negative electrode.

以上の実施例では、特定の酸化物、合金からなる負極、
正極及び電解質を組み合せた電気化学装置について説明
したが、本発明はそれらに限定されるものではない。
In the above embodiments, a negative electrode made of a specific oxide or alloy,
Although an electrochemical device combining a positive electrode and an electrolyte has been described, the present invention is not limited thereto.

発明の効果 以上のように本発明においては負極、リチウム合金を組
み合せて、負極組立体とすることにより充放電量の大き
い、またインピーダンスの小さい電気化学装置を作るこ
とが可能となり産業上の効果は大である。
Effects of the Invention As described above, in the present invention, by combining a negative electrode and a lithium alloy to form a negative electrode assembly, it is possible to create an electrochemical device with a large charge/discharge capacity and low impedance, and the industrial effects are It's large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は負極とリチウム金属とを圧着した後、電解液中
に置いた時の変化を示す模式図、第2図は本発明の一実
施例になるボタン型電池の断面図、第3図は第2図に対
応する従来の構成のボタン型電池の断面図、第4図は本
発明の異なる実施例におけるスパイラル状に巻いて組む
電池の負極組立体の模式図、第5図はスパイラル状に組
んだ電池の断面図、第6図は電池のサイクル−放電電気
惜特性図である。 1・・・・・・負極、2・・・・・・リチウム電極、4
・・・・・封口板、6・・・・・・正極、7・・・・・
・セパレータ、8・・・・・・エキスバンドメタル、9
・・・・・・ニッケルのエキスバンドメタル、1o・・
・・・・合金負極、11・・・・・・リチウム金属。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第5
図 几6図 il   イ  2 ル a、
Fig. 1 is a schematic diagram showing the changes when the negative electrode and lithium metal are placed in an electrolytic solution after pressure bonding, Fig. 2 is a cross-sectional view of a button-type battery according to an embodiment of the present invention, and Fig. 3 2 is a cross-sectional view of a conventional button-type battery, FIG. 4 is a schematic diagram of a negative electrode assembly of a spirally wound battery according to a different embodiment of the present invention, and FIG. FIG. 6 is a cross-sectional view of the assembled battery, and FIG. 6 is a cycle-discharge electricity characteristic diagram of the battery. 1... Negative electrode, 2... Lithium electrode, 4
...Sealing plate, 6...Positive electrode, 7...
・Separator, 8... Ex band metal, 9
...Nickel extract band metal, 1o...
...Alloy negative electrode, 11...Lithium metal. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 5
Figure 6 Figure il I 2 Ru a,

Claims (8)

【特許請求の範囲】[Claims] (1)可逆性正極と、リチウムイオンを含む非水電解質
と、充電により電解質中のリチウムイオンを吸蔵してリ
チウムとの化合物を形成し、放電によりリチウムをイオ
ンとして電解質中へ放出する負極とを有する再充電可能
な電気化学装置の製造法であって、前記負極が、その電
位がリチウム金属と等電位になるまでリチウムを吸蔵し
ても微粉化しないものであり、この負極の前記正極に対
向した面に、リチウム金属を置き、この負極の集電体と
、リチウム金属の集電体との間で電子伝導性を有するよ
うにして、この負極とリチウム金属を電気化学装置内へ
組み入れ、前記装置内において、負極及びリチウム金属
に電解液を接触させることを特徴とする再充電可能な電
気化学装置の製造法。
(1) A reversible positive electrode, a nonaqueous electrolyte containing lithium ions, and a negative electrode that occludes lithium ions in the electrolyte to form a compound with lithium upon charging, and releases lithium as ions into the electrolyte upon discharging. 2. A method for manufacturing a rechargeable electrochemical device comprising: a negative electrode that does not become pulverized even when occluding lithium until its potential becomes equal to that of lithium metal; A lithium metal is placed on the surface, and the negative electrode and the lithium metal are incorporated into an electrochemical device, with electronic conductivity between the negative electrode current collector and the lithium metal current collector. A method of manufacturing a rechargeable electrochemical device, comprising contacting an electrolyte with a negative electrode and lithium metal within the device.
(2)負極及びリチウム金属を、セパレータ及び正極と
ともにスパイラル状に巻く工程と、スパイラル状に巻い
た極板群を装置内へ組み入れる工程と、次に装置内へ電
解液を注入する工程を有する特許請求の範囲第1項記載
の再充電可能な電気化学装置の製造法。
(2) A patent that includes the steps of spirally winding a negative electrode and lithium metal together with a separator and a positive electrode, incorporating the spirally wound electrode plate group into a device, and then injecting an electrolyte into the device. A method of manufacturing a rechargeable electrochemical device according to claim 1.
(3)装置内へ正極を組み入れ、電解液を注入した後、
負極とリチウム金属とを、正極との間にセパレータを介
して、装置内へ組み入れる特許請求の範囲第1項記載の
再充電可能な電気化学装置の製造法。
(3) After incorporating the positive electrode into the device and injecting the electrolyte,
A method of manufacturing a rechargeable electrochemical device according to claim 1, wherein the negative electrode and lithium metal are incorporated into the device with a separator interposed between the negative electrode and the positive electrode.
(4)負極の集電体と、リチウム金属の集電体が共通の
金属集電体であることを特徴とする特許請求の範囲第1
項記載の再充電可能な電気化学装置の製造法。
(4) Claim 1, characterized in that the negative electrode current collector and the lithium metal current collector are a common metal current collector.
Method of manufacturing a rechargeable electrochemical device as described in Section 1.
(5)合金の集電体と、リチウム金属の集電体とを溶接
することを特徴とする特許請求の範囲第1項記載の再充
電可能な電気化学装置の製造法。
(5) A method for manufacturing a rechargeable electrochemical device according to claim 1, characterized in that an alloy current collector and a lithium metal current collector are welded.
(6)可逆性正極と、リチウムイオンを含む非水電解質
と、充電により電解質中のリチウムイオンを吸蔵してリ
チウムとの化合物を形成し、放電によりリチウムをイオ
ンとして電解質中へ放出する負極とを有する再充電可能
な電気化学装置の製造法であって、前記負極が、その電
位がリチウム金属と等電位になるまでリチウムを吸蔵し
ても微粉化しないものであり、この負極の集電体と、リ
チウム金属の集電体との間で電子伝導性を有するように
した、負極とリチウム金属の負極組立体を、セパレータ
及び正極とともにスパイラル状に巻いた後電気化学装置
内に組み入れ、次に電解液を装置内へ注入する再充電可
能な電気化学装置の製造法。
(6) A reversible positive electrode, a non-aqueous electrolyte containing lithium ions, and a negative electrode that occludes lithium ions in the electrolyte to form a compound with lithium upon charging, and releases lithium as ions into the electrolyte upon discharging. 2. A method for manufacturing a rechargeable electrochemical device comprising: the negative electrode does not become pulverized even when lithium is occluded until its potential becomes equal to that of lithium metal; The negative electrode and lithium metal negative electrode assembly, which has electronic conductivity between it and the lithium metal current collector, are spirally wound together with a separator and a positive electrode, and then assembled into an electrochemical device, and then subjected to electrolysis. A method of manufacturing a rechargeable electrochemical device that injects a liquid into the device.
(7)負極及びリチウム金属が板状で、共通の金属集電
体に支持される特許請求の範囲第6項記載の再充電可能
な電気化学装置の製造法。
(7) A method for manufacturing a rechargeable electrochemical device according to claim 6, wherein the negative electrode and lithium metal are plate-shaped and supported on a common metal current collector.
(8)負極及びリチウム金属が板状で、負極の集電体と
、リチウム金属の集電体を溶接することを特徴とする特
許請求の範囲第6項記載の再充電可能な電気化学装置の
製造法。
(8) The rechargeable electrochemical device according to claim 6, wherein the negative electrode and the lithium metal are plate-shaped, and the negative electrode current collector and the lithium metal current collector are welded. Manufacturing method.
JP59175901A 1984-08-24 1984-08-24 Method for manufacturing rechargeable electrochemical device Expired - Lifetime JPH0821424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59175901A JPH0821424B2 (en) 1984-08-24 1984-08-24 Method for manufacturing rechargeable electrochemical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59175901A JPH0821424B2 (en) 1984-08-24 1984-08-24 Method for manufacturing rechargeable electrochemical device

Publications (2)

Publication Number Publication Date
JPS6154165A true JPS6154165A (en) 1986-03-18
JPH0821424B2 JPH0821424B2 (en) 1996-03-04

Family

ID=16004209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59175901A Expired - Lifetime JPH0821424B2 (en) 1984-08-24 1984-08-24 Method for manufacturing rechargeable electrochemical device

Country Status (1)

Country Link
JP (1) JPH0821424B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156330A (en) * 2004-11-02 2006-06-15 Sanyo Electric Co Ltd Lithium secondary battery and method of manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235372A (en) * 1984-05-07 1985-11-22 Sanyo Chem Ind Ltd Secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235372A (en) * 1984-05-07 1985-11-22 Sanyo Chem Ind Ltd Secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156330A (en) * 2004-11-02 2006-06-15 Sanyo Electric Co Ltd Lithium secondary battery and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0821424B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
US4658498A (en) Process for producing rechargeable electrochemical device
JP3669646B2 (en) Nonaqueous electrolyte secondary battery
FR2629947A1 (en) NON-AQUEOUS ELECTROLYTE SECONDARY CELL
JP2002075324A (en) Battery
JP4910235B2 (en) Lithium secondary battery and manufacturing method thereof
JP4453882B2 (en) Flat non-aqueous electrolyte secondary battery
JPH0425676B2 (en)
JP2830365B2 (en) Non-aqueous electrolyte secondary battery
JPH10208748A (en) Non-aqueous electrolyte secondary battery
JPS6154165A (en) Manufacture of chargable electrochemical device
JP2001332240A (en) Lead for battery, and mounting structure of the lead for battery
JP3405419B2 (en) Non-aqueous electrolyte secondary battery
JP3432922B2 (en) Solid electrolyte secondary battery
JPS6215761A (en) Nonaqueous electrolyte secondary cell
JPS61208748A (en) Lithium organic secondary battery
JP2621213B2 (en) Organic electrolyte lithium secondary battery
JPS636987B2 (en)
JPH0536401A (en) Lithium secondary battery
JPH07105952A (en) Lithium secondary battery and its current collecting body
JP4590667B2 (en) battery
JPH04237955A (en) Nonaqueous secondary battery
JPS6049575A (en) Noaqueous electrolyte secondary battery
JP2001210305A (en) Battery
JPS63289758A (en) Secondary battery
JPH0458467A (en) Nonaqueous battery