JPS6153564A - Surface image detector by ultrasonic flaw detection - Google Patents

Surface image detector by ultrasonic flaw detection

Info

Publication number
JPS6153564A
JPS6153564A JP59175452A JP17545284A JPS6153564A JP S6153564 A JPS6153564 A JP S6153564A JP 59175452 A JP59175452 A JP 59175452A JP 17545284 A JP17545284 A JP 17545284A JP S6153564 A JPS6153564 A JP S6153564A
Authority
JP
Japan
Prior art keywords
signal
voltage
probe
circuit
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59175452A
Other languages
Japanese (ja)
Other versions
JPH0253725B2 (en
Inventor
Mamoru Kanbe
神戸 護
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59175452A priority Critical patent/JPS6153564A/en
Publication of JPS6153564A publication Critical patent/JPS6153564A/en
Publication of JPH0253725B2 publication Critical patent/JPH0253725B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4463Signal correction, e.g. distance amplitude correction [DAC], distance gain size [DGS], noise filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0618Display arrangements, e.g. colour displays synchronised with scanning, e.g. in real-time
    • G01N29/0636Display arrangements, e.g. colour displays synchronised with scanning, e.g. in real-time with permanent recording

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To detect a clear surface image of an object to be inspected efficiently with an automatic correction of variations in the received signal due to irregularities of the surface thereof, by detecting gage points set in a scan area of the surface of the object being inspected with a probe to correct the voltage gain of an amplifier by a differential voltage obtained in comparison with the detection voltage with a reference voltage. CONSTITUTION:A recess 20 exists in an object 1 to be inspected within a closed outer shell and gage points are provided at the positions Y1-Y1 and Y2-Y2. Horizontal position by scanning with a probe 4 is detected with Y and X direction position detectors 12 and 13 to be inputted into an X-Y recorder 14 while an output position signal of the detector 12 is inputted into a operation control circuit 21. The circuit 21 detects rising and falling voltage levels at gage points Y11, Y21-Y22 and the like, compares an input peak value 10 with a reference voltage from a reference voltage setter 23 by a correction detecting circuit 22 at the position to correct the amplification factor of a controllable amplifier 24 by the resulting differential voltage. The ultrasonic signal thus corrected is inputted into the recorder 14 via waveform conversion circuit 15 having the reference voltage as threshold to turn surface irregularities of the object 1 being inspected into an image.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、不透明な外殻等で覆われた被検体表面の状態
を超音波探傷法により画像表示するだめの表面画像検知
装置、ことに外殻による超音波信号の音圧低下を補正す
るだめの超音波信号補正手段を備えだ検知装置に関する
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a surface image detection device for displaying an image of the state of the surface of a specimen covered with an opaque outer shell etc. using an ultrasonic flaw detection method. The present invention relates to a detection device including an ultrasonic signal correction means for correcting a decrease in sound pressure of an ultrasonic signal due to an outer shell.

〔従来技術とその問題点〕[Prior art and its problems]

第3図は超音波探傷法による従来の被検体表面の表面画
像検知装置の原理的説明図でちる。図において、1は水
2中に水平に浸漬された平板状の被検体で、たとえば表
面にABCといった刻印6があるものとする。4は探触
子で、水中に一部分が浸漬され被検体1の表面に超音波
ビーム5の焦点が結ばれるよう被検体表面との間に所定
の探触距離を保持しつつ水平方向に移動制御され、被検
体10表面にジグザグ状の矢印6で示す走査経路をたど
ってインパルス状の超音波ビーム5を発信するとともに
、被検体表面からの反射超音波を受信してこれを電気信
号に変換する。7は探傷様の制御観測部で、探f独子4
にインパルス電圧を与えて超音波を発信させるとともに
、探触子4の受信信号を増幅してブラウン管に送受信超
音波の音圧レベルに比例した波高値の電圧パルス波形9
,10と伝搬時間tを表示するよう形成されており、ゲ
ートパルス110時間幅を設定することによυ、被検体
1の表面からの反射波に対応する超音波信号10のみを
外部回路に出力できるよう構成されている。また12お
よび13はポテンシオメータ等からなる探触子4の位置
検出器で、それぞれ探触子4のY方向およびX方向の移
動量に正比例した電圧値の位置信号を出力する。14は
たとえばX−Yレコーダ等の表示器で、Y方向位置検出
器12およびX方向位置検出器16の出力位置信号を受
けてペン位置を探触子位置に対応した位置に移動させる
とともに、波形変換回路15でオン嗜オフ信号に変換さ
れた超音波信号10によυペンを上下動制御するよう構
成されている。いま被検体表面は平滑で、刻印6の部分
にだけ凹凸があるものと仮定すると、凹凸のある部分で
は超音波ビーム5が乱反射して探触子4で受信される超
音波の音圧が低下し、したがって制御観測部7の出力超
音波信号10の波高値も低下する。したがって超高波信
号10の波高値を観測することで被検体表面の凹凸を検
知することができる。通常は、表面の凹凸をはりきシ区
別するために、変換回路15にしきい値を設け、超音波
信号10がこのしきい値を超えるか否かによってオン・
オフ信号に変換し、X−Yレコーダのペンを上下動制御
するようにすることによ!J、X−Yレコーダ14の記
録部には16のような被検体表面画像を表示または記録
することができる。
FIG. 3 is a diagram illustrating the principle of a conventional surface image detection device for the surface of a subject using an ultrasonic flaw detection method. In the figure, reference numeral 1 denotes a flat plate-shaped test object horizontally immersed in water 2, with markings 6 such as ABC on its surface. Reference numeral 4 denotes a probe, which is partially immersed in water and is controlled to move horizontally while maintaining a predetermined probe distance between it and the surface of the subject 1 so that the ultrasonic beam 5 is focused on the surface of the subject 1. transmits an impulse-like ultrasound beam 5 to the surface of the object 10 following a scanning path indicated by a zigzag arrow 6, and receives reflected ultrasound waves from the surface of the object 10 and converts them into electrical signals. . 7 is a flaw detection-like control observation section,
An impulse voltage is applied to transmit an ultrasonic wave, and the signal received by the probe 4 is amplified, and a voltage pulse waveform 9 with a peak value proportional to the sound pressure level of the transmitted and received ultrasonic waves is transmitted to the cathode ray tube.
, 10 and the propagation time t, and by setting the time width of the gate pulse 110, only the ultrasonic signal 10 corresponding to the reflected wave from the surface of the object 1 is output to the external circuit. It is configured so that it can be done. Reference numerals 12 and 13 designate position detectors for the probe 4, such as potentiometers, which output position signals with voltage values directly proportional to the amount of movement of the probe 4 in the Y direction and the X direction, respectively. Reference numeral 14 denotes a display device such as an X-Y recorder, which receives output position signals from the Y-direction position detector 12 and the X-direction position detector 16, moves the pen position to a position corresponding to the probe position, and displays the waveform. The vertical movement of the υ pen is controlled by the ultrasonic signal 10 converted into an on/off signal by a conversion circuit 15. Assuming that the surface of the object to be examined is smooth and that there are only irregularities at the markings 6, the ultrasound beam 5 is diffusely reflected at the uneven parts and the sound pressure of the ultrasound received by the probe 4 is reduced. Therefore, the peak value of the output ultrasonic signal 10 of the control observation section 7 also decreases. Therefore, by observing the wave height value of the ultrahigh wave signal 10, it is possible to detect irregularities on the surface of the subject. Normally, a threshold value is provided in the conversion circuit 15 in order to clearly distinguish the unevenness of the surface, and the ultrasonic signal 10 is turned on or off depending on whether or not it exceeds this threshold value.
By converting it to an off signal and controlling the vertical movement of the pen of the X-Y recorder! The recording section of the J, XY recorder 14 can display or record a subject surface image such as 16.

超音波探傷による表面画像検知装置は上述の原理に基づ
くものであるが、この発明の対象とする被検体は水等を
満たした不透明な外殻中にの七ことも取出すこともでき
ない状態で収納された被検体でちシ、その表面状態ちる
いは欠陥等を外部から検知して画像化しようとするもの
で、たとえば原子炉中の燃料棒の刻印の読取装置や燃料
棒の探傷装置等が該当する。
The surface image detection device using ultrasonic flaw detection is based on the above-mentioned principle, but the object of this invention is stored in an opaque outer shell filled with water etc. in a state that cannot be taken out. This system attempts to externally detect and image the surface conditions and defects of the specimen being inspected.For example, it is used in reading devices for markings on fuel rods in nuclear reactors, flaw detection devices for fuel rods, etc. Applicable.

第4図は刻印の読取装置に代表される表面画像検知装置
の問題点を説明するための概念図である。
FIG. 4 is a conceptual diagram for explaining problems with surface image detection devices, typified by marking reading devices.

図において、被検体1は水2を満たした金FA製の円筒
容器17中に収納されておシ、円筒容器17は自由水面
の水2中にさらに浸漬されておシ、円筒容器17の上方
に一部分が水中に浸漬された探触子4により、第6図に
示しだと同様にY方向およびX方向に走査探傷され(水
浸法とよぶ)、被検体10表面画像が検知される。探触
子4はX工位置において紙背方向(Y方向)に走査を行
ったのちX1位置に移り手前方向(Y方向)に走査され
るが、探触子4がX1位置で示すように円筒容器17の
壁に垂直に発振超音波ビーム5Aが入射し、被検体1の
表面で反射した超音波ビーム5Bが円筒容器17の壁を
垂直に透過して探触子4に到達するような場合には、器
壁における超音波ビームの音圧低下も少なく、探触子4
に充分な大きさの受(fi倍信号得られるが、探触子4
がX7位置にあり、円筒容器17の器壁を斜めに入射ま
たは透過して超音波ビームが送受信される場合には、送
信用 超音波ビーム5Aは同筒容器17の外表面でa方向の反
射波を生じ、反射超音波ビーム5Bは内表面でb方向の
反射波を生じ、器壁において二重に反射が起ることによ
り器壁を透過して探触子、4と被検体1の表面との間で
送受される超音波ビームの音圧が著しく低下してしまう
という問題を生ずる。このように探触子4のX方向の位
置が変わる度に探触子4の受信音圧が変わったのでは、
被検体1の表面の凹凸による探触子4の受信音圧の変化
を検出して画像化することはできない。そこで従来装置
においては、探触子4のX方向の位置が変わる度に制御
観測部7の受信信号増幅回路の増幅率を手動操作により
調整する方法がとられており、一つの被検体の表面画像
を表示させるために極めて多数回の増幅率の調整が必要
であるために効率のよい画面表示が阻害されるばかシで
なく、増幅率のシ、1整の人為的な誤差が大きく鮮明な
画像が得られないという欠点があった。
In the figure, the subject 1 is housed in a cylindrical container 17 made of gold FA filled with water 2, and the cylindrical container 17 is further immersed in water 2 at the free water surface. The probe 4, which is partially immersed in water, performs scanning flaw detection in the Y direction and the X direction (referred to as the water immersion method) in the same manner as shown in FIG. 6, and detects an image of the surface of the object 10. The probe 4 scans in the paper back direction (Y direction) at the X position, then moves to the X1 position and scans in the front direction (Y direction). In the case where the oscillated ultrasonic beam 5A is perpendicularly incident on the wall of the cylindrical container 17, and the ultrasonic beam 5B reflected from the surface of the object 1 passes through the wall of the cylindrical container 17 perpendicularly and reaches the probe 4. The sound pressure drop of the ultrasonic beam at the instrument wall is small, and the probe 4
A receiver of sufficient size (fi times the signal can be obtained, but the probe 4
is at the X7 position, and when the ultrasonic beam is transmitted and received by obliquely entering or passing through the wall of the cylindrical container 17, the transmitting ultrasonic beam 5A is reflected in the a direction from the outer surface of the cylindrical container 17. The reflected ultrasonic beam 5B generates a reflected wave in the b direction on the inner surface, and double reflection occurs on the instrument wall, transmitting it through the instrument wall and hitting the surfaces of the probe 4 and the object 1. This results in a problem in that the sound pressure of the ultrasonic beam transmitted and received between the two ends is significantly reduced. The sound pressure received by the probe 4 may have changed each time the position of the probe 4 in the X direction changes in this way.
Changes in the sound pressure received by the probe 4 due to irregularities on the surface of the subject 1 cannot be detected and imaged. Therefore, in conventional devices, the amplification factor of the received signal amplification circuit of the control observation section 7 is manually adjusted every time the position of the probe 4 in the X direction changes. In order to display an image, it is necessary to adjust the amplification factor extremely many times, which hinders efficient screen display. There was a drawback that images could not be obtained.

〔発明の目的〕[Purpose of the invention]

本発明は前述の状況に鑑みてなされたもので、被検体表
面の凹凸に起因する受信超音波信号の変動を自動修正す
ることができ、したがって鮮明な被検体表面画像を効率
よく検知かつ表示できる超音波探傷法による表面画像検
知装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned situation, and is capable of automatically correcting fluctuations in received ultrasound signals caused by irregularities on the surface of a subject, and thus can efficiently detect and display a clear image of the surface of the subject. The purpose of this invention is to provide a surface image detection device using ultrasonic flaw detection.

〔発明の要点〕[Key points of the invention]

本発明は、画像化すべぎ被検体表面の走査領域の周辺に
あらかじめ設定された標点位置を探触子が通過する際位
置信号の電圧レベルからこれを検知して動作信号を発す
る動作制御回路と、この動作信号を受けて超音波信号を
取込み標準電圧と比較し7て増幅率の#iii正に必要
な差電圧信号を発する増幅率の補正値検知回路と、この
差電圧信号によυ増幅率が補正される可制御増幅回路と
、この可制御増幅回路の出力超音波信号と前記標準電圧
とを比較してオン・オフ信号に変換する変換回路とによ
り、前記走査領域内において探触子により受信される被
検体表面からの超音波信号の外殻等による音圧低下を補
正し、被検体表面の凹凸を鮮明かつ効率よく検知して画
像化できるようにしたものである。
The present invention provides an operation control circuit that detects the voltage level of a position signal when a probe passes through a reference point position set in advance around a scanning area on the surface of a subject to be imaged, and issues an operation signal. In response to this operation signal, an amplification factor correction value detection circuit takes in the ultrasonic signal, compares it with the standard voltage, and generates a differential voltage signal necessary for the amplification factor #iii, and uses this differential voltage signal to A controllable amplification circuit whose amplification factor is corrected and a conversion circuit which compares the output ultrasonic signal of the controllable amplification circuit with the standard voltage and converts it into an on/off signal are used to perform a probe within the scanning area. This system corrects the drop in sound pressure caused by the outer shell of the ultrasonic signal from the surface of the subject that is received by the sensor, making it possible to clearly and efficiently detect and image irregularities on the surface of the subject.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を一実施例に基づいて説明する。 The present invention will be explained below based on one embodiment.

第1図は本発明の実施例を示す表面画像検知装置の構成
を示すブロック図である。図において、1は被検体で、
第4図における円筒状容器17は省略して被検体表面が
見える状態の模試図を示しておシ、被検体1の表面には
一字状の凹所20があるものと仮定する。Y 1−Yl
、 Y、−Y、は探触子4の走査領域のY方向の両端位
置にあらかじめ設定された標点て、点線でジグザグ状に
示す走査線上の、まづY□、位置を探触子4が通過する
際最初の増幅率補正が行われて補正された増幅率が保持
され、Y、1.Yl、、Y、、等の標点位置を探触子4
が順次通過する度に増幅率の補正が行われるよう構成さ
れる・探触子4の水平方向の位置は図示し  jない水
平方向走査台に設けられ探触子4と係合して、その移動
量に正比例した位置信号を発するY方向位置検出器12
.Y方向位置検出器13によl出され、X−Yレコーダ
14のX−Y入力端子に入力されるとともに、Y方向位
置検出器12の出力位置信号は動作制御回路21に入力
される。
FIG. 1 is a block diagram showing the configuration of a surface image detection device showing an embodiment of the present invention. In the figure, 1 is the subject;
The cylindrical container 17 in FIG. 4 is omitted to show a mock diagram in which the surface of the subject is visible, and it is assumed that the surface of the subject 1 has a linear recess 20. Y 1-Yl
, Y, -Y are the gauge points set in advance at both ends of the scanning area of the probe 4 in the Y direction, and the first Y□ position on the scanning line shown in a zigzag shape with a dotted line is the position of the probe 4. The first amplification factor correction is performed when Y,1. Position the gauge points of Yl, , Y, etc. with probe 4.
The horizontal position of the probe 4 is not shown in the figure.The horizontal position of the probe 4 is not shown. Y-direction position detector 12 that emits a position signal directly proportional to the amount of movement
.. A position signal output from the Y-direction position detector 13 is output to the X-Y input terminal of the X-Y recorder 14, and an output position signal from the Y-direction position detector 12 is input to the operation control circuit 21.

動作制御回路21は、たとえば探触子位置Yllにおけ
る位置信号の立上シミ圧しベルVxとY21位置におけ
る位置信号の立下り電圧レベルVd  とを検出してこ
の間一定電圧の動作信号を発生するたとえば波形整形回
路などが用いられる。動作制御回路21の出力動作信号
は補正値検知回路22に入力され、動作信号の立上シ直
後あるいは立下シ寸前に制御観測部7から入力される被
検体1の表面反射波に対応する超音波信号10を取込む
とともに、超音波信号100波高値と標準電圧設定器2
3によりあらかじめ設定された標準電圧■8 とを比較
してその差電圧を出力するよう構成されている。すなわ
ち、補正値検知回路22は、探触子位置Y11+Y21
あるいはYll 、 y**等の標点位置における超音
波信号10と標準電圧とを比較してその電圧差からそれ
ぞれの探触子位置における円筒容器17による音圧レベ
ルの低下を知ろうとするもので、標準電圧をたとえば第
4図のX1位置(垂直入射)における平滑面の超音波信
号1oの波高値と等しくなるよう設定しておけば、その
他の位置(たとえばX、)における音圧レベルの低下量
に比例した差電圧信号を出力することができる。24は
差電圧信号により増幅率が自動制御される可制御増幅器
で、被検体1の平滑な表面上に設定された標点位置にお
ける超音波信号1oの波高値が標準電圧と等しくなるよ
う増幅率(電圧利得)が補正される。可制御増幅回路2
4で波高値が補正された超音波信号は標準電圧をしきい
値とする波形変換回路15に入力され、超音波信号が標
準電圧を超えた場合にはたとえばオン信号に、標準電圧
以下の場合にはオフ信号(無信号)に変換され、X−Y
レコーダ14に入力され、この信号により記録ペンが上
下動制御される。いま、探触子4が図中点線のような走
査経路をたどって移動して凹所20にさしかかると、超
音波ビームは凹所で散乱して反射波の音圧レベルが低下
するので、可制御増幅回路24の出力超音波信号は他の
場所のそれに比べて低下する。したがって変換回路15
の出力はオフ信号となり、レコーダ14の記録60には
凹所20に対応する部分が無配録61となり、たとえば
被検体10表面の刻印等の凹凸を画像化することができ
る。ことに被検体1を包囲する円筒容器等の障害物によ
る超音波ビームの音圧レベルの低下を上述のように構成
された回路により補正することによ)、被検体表面の凹
凸分布を障害物が介在しないと同様に鮮明に画像化する
ことができるとともに、従来装置のように補正を手作業
で行う必要がなくなるので、効率よく正確に画像化する
ことができる。
The operation control circuit 21 detects, for example, the rising voltage level Vx of the position signal at the probe position Yll and the falling voltage level Vd of the position signal at the Y21 position, and generates an operating signal of a constant voltage during this period. A shaping circuit or the like is used. The output operation signal of the operation control circuit 21 is input to the correction value detection circuit 22, and the output operation signal of the operation signal is inputted to the correction value detection circuit 22. In addition to capturing the sonic signal 10, the wave height value of the ultrasonic signal 100 and the standard voltage setting device 2
It is configured to compare the voltage with a standard voltage (8) set in advance by 3 and output the difference voltage. That is, the correction value detection circuit 22 detects the probe position Y11+Y21.
Alternatively, the ultrasonic signal 10 at the gauging positions such as Yll, y**, etc. is compared with the standard voltage, and the reduction in sound pressure level due to the cylindrical container 17 at each probe position is determined from the voltage difference. If the standard voltage is set to be equal to the peak value of the ultrasonic signal 1o of the smooth surface at the X1 position (vertical incidence) in Fig. 4, for example, the sound pressure level will decrease at other positions (for example, X). A differential voltage signal proportional to the amount can be output. 24 is a controllable amplifier whose amplification factor is automatically controlled by a differential voltage signal, and the amplification factor is adjusted so that the peak value of the ultrasonic signal 1o at the gage position set on the smooth surface of the object 1 is equal to the standard voltage. (voltage gain) is corrected. Controllable amplifier circuit 2
The ultrasonic signal whose peak value has been corrected in step 4 is input to a waveform conversion circuit 15 that uses the standard voltage as a threshold, and when the ultrasonic signal exceeds the standard voltage, it becomes an on signal, and when it is below the standard voltage, it becomes an on signal. is converted to an off signal (no signal), and X-Y
This signal is input to the recorder 14, and the vertical movement of the recording pen is controlled by this signal. Now, when the probe 4 moves along the scanning path shown by the dotted line in the figure and reaches the recess 20, the ultrasonic beam is scattered by the recess and the sound pressure level of the reflected wave decreases. The output ultrasonic signal of the control amplifier circuit 24 is lower than that at other locations. Therefore, the conversion circuit 15
The output becomes an off signal, and the portion corresponding to the recess 20 becomes unrecorded 61 in the record 60 of the recorder 14, making it possible to image irregularities such as markings on the surface of the subject 10, for example. In particular, by correcting the decrease in the sound pressure level of the ultrasonic beam due to obstacles such as a cylindrical container surrounding the subject 1 by using the circuit configured as described above, It is possible to image as clearly as if there were no intervention, and since there is no need to manually perform corrections as in conventional devices, it is possible to efficiently and accurately image.

第2図は第1図で表わされる本発明の実施例における各
部の動作を示す信号波形図である。図において波形W1
2はY方向位置検出器12の出力位置信号波形で、探触
子4の移動(横軸)にともなってY1→Y、方向では探
触子の移動量に比例して電圧が増加し、Y、→Y1方向
では移動量に逆比例して電圧値が低下する。波形W21
は動作制御回路の出力動作信号波形で、W12において
探触子位置Yllにおける立上り電圧’btとY21位
置における立下り電圧Vdをスレッショルド電圧とする
波形成形回路等によりY0□→Y□間の走査時間に和尚
する時間幅の矩形波状の動作信号に変換されたものであ
る。波形W22は補正値検知回路22の出力差電圧信号
波形で、たとえば動作信号W21の立上シ、立下がシを
検知して所定のパルス幅のフンショットパルスに変換シ
、このワンショットパルスと制御観測部7からの超音波
信号10との論理積により1個または数個の超音波信号
10を取シ込み、この超音波信号10と標準電圧設定器
23からの標準電圧v8とを比較してその差電圧ΔVを
出力するよう構成することができる。W24は可制御増
幅回路24の出力超音波信号波形で、Yll、Y式等の
標点位置で入力される差電圧信号W22により増幅率(
電圧利得)が制御されるたとえばトランス・コンダクタ
ンス・オペアンプ、サーボ機構を備えた差動アンプ等か
らなる可制御増幅回路24により、たとえば標準電圧v
8に対してΔVなる電圧差のあったYs1位置およびそ
れ以降に繰り返し入力される超音波信号の波高値も標準
電圧7日と同等のレベルにまで補正される。また被検体
1の表面の凹所20に対応する部分では超音波ビームが
乱反射することにより超音波信号の波高値は他の部分に
比べて低い値を示し、被検体表面の凹凸を超音波信号の
波高値の差として検知することができる。波形W30は
波形変換回路15によりオン・オフ信号に変換され、X
−Yレコーダ14のペンの上下動信号に変換された信号
波形で、標準電圧v8に比べて低い凹所20における超
音波信号はオフ信号ML (無電圧)K、他の部分の超
音波信号はオン信号VHに変換され、X−Yレコーダ1
4における線状の記録が上記オン・オフ信号によυ間け
つ的に制御され、被検体表面の凹凸部が無記録(白)ま
たは記録(たとえば黒)で平滑部と区分けされ、白黒表
面画像として表面状態を検知することができる。
FIG. 2 is a signal waveform diagram showing the operation of each part in the embodiment of the present invention shown in FIG. In the figure, waveform W1
2 is the output position signal waveform of the Y-direction position detector 12. As the probe 4 moves (horizontal axis), the voltage increases in the direction from Y1 to Y, in proportion to the amount of probe movement; , → In the Y1 direction, the voltage value decreases in inverse proportion to the amount of movement. Waveform W21
is the output operation signal waveform of the operation control circuit, and at W12, the scanning time from Y0□→Y□ is determined by a waveform shaping circuit whose threshold voltages are the rising voltage 'bt at the probe position Yll and the falling voltage Vd at the Y21 position. This signal is converted into a rectangular waveform operation signal with a time width that corresponds to the period of time. The waveform W22 is the output difference voltage signal waveform of the correction value detection circuit 22. For example, the rising edge and falling edge of the operating signal W21 are detected and converted into a one-shot pulse with a predetermined pulse width. One or several ultrasonic signals 10 are received by logical product with the ultrasonic signal 10 from the control observation section 7, and this ultrasonic signal 10 is compared with the standard voltage v8 from the standard voltage setting device 23. It can be configured to output the differential voltage ΔV. W24 is the output ultrasonic signal waveform of the controllable amplifier circuit 24, and the amplification factor (
For example, the standard voltage v
The wave height values of the ultrasonic signals repeatedly input at and after the Ys1 position, where there was a voltage difference of ΔV with respect to the Ys1 position, are also corrected to a level equivalent to the standard voltage of 7 days. In addition, the ultrasonic beam is diffusely reflected in the part corresponding to the recess 20 on the surface of the object 1, so that the wave height value of the ultrasound signal is lower than that in other parts. It can be detected as a difference in the peak values of The waveform W30 is converted into an on/off signal by the waveform conversion circuit 15, and
- A signal waveform converted into a vertical movement signal of the pen of the Y recorder 14. The ultrasonic signal in the recess 20, which is lower than the standard voltage v8, is an off signal ML (no voltage) K, and the ultrasonic signals in other parts are Converted to on signal VH, X-Y recorder 1
The linear recording in step 4 is controlled intermittently by the above-mentioned on/off signal, and the uneven portions on the surface of the subject are classified as unrecorded (white) or recorded (for example, black) from the smooth portions, and a black-and-white surface image is created. The surface condition can be detected as follows.

なお、波形変換回路15における標準電圧を複数段階に
分けて超音波信号を被検体表面の凹凸の深さに対応した
複数種類のオン・オフ信号に変換し、この信号を多現象
形のX−Yレコーダの複数のペンの制御回路にそれぞれ
入力するよう構成すれば、凹凸の大小分布を色別できる
多色刷の表面画像として表示することができる。
Note that the standard voltage in the waveform conversion circuit 15 is divided into multiple stages to convert the ultrasonic signal into multiple types of on/off signals corresponding to the depth of unevenness on the surface of the subject, and this signal is converted into a multiphenomenal type X- If the information is configured to be input to the control circuits of a plurality of pens of the Y recorder, it is possible to display the surface image of multicolor printing in which the size distribution of the unevenness can be differentiated by color.

〔発明の効果〕〔Effect of the invention〕

本発明は前述のように、密閉された外殻に覆われて目視
できない状態にある被検体の表面画像を、外殻の外側に
所定の探触距離を保つよう配された探触子により、水浸
式超音波探傷法により検知かつ表示するものにおいて、
画像化しようとする領域の周囲に設定された標点位置を
検知して制御信号を発する動作制御回路と、この制御信
号により標点位置における超音波信号を取込み標準電圧
と比較して差電圧信号を出力する補正値検知回路と、こ
の差電圧信号により電圧利得が補正される可制御増幅回
路とからなる電圧利得の補正手段を設けるよう構成した
。その結果、外殻内外面における超音波ビームの反射に
より音圧(電圧値)が低下した受信超音波信号の波高値
を外殻における音圧低下分だけ自動的に補正することが
でき、したがりて外殻の影響が排除されて被検体i<面
の凹凸のみを超音波信号の波高値の分布として検知する
ことができる。それ放題音波信号の波高値の分布をオン
・オフ信号に変換してX−Yレコーダの印字制御部に入
力するとともに探触子のX、Y位置信号によりペンの水
平位置を制御するよう構成することにより被検体表面の
凹凸分布を表面画像として表示できる超音波探傷法によ
る表面画像検知装置を提供することができる。このよう
に構成された表面画像検知装置においては従来X方向の
位置が変わる度に手動操作によって行われていた電圧利
得の補正作業が不要になるため、表面画像の検知に要す
る人力と時間が著しく低減されて作条効率が高まるとと
もに、ジグザグ状の走査線の相互の間隔、いいかえれば
走査線密度を高めることができるので鮮明な画像を短時
間で表示できる利点が得られる。また電圧利得の補正を
電子回路で行うことにより、従来の手動操作に比べて補
正粒度を高められるとともに、超音波信号の波高値を複
数段階に分けてオン・オフ信号化できるので、複数現象
用のX−Yレコーダを用いれば、被検体表面の凹凸の大
小を色別できる多色刷の表面画像を得ることが可能であ
る。
As described above, the present invention uses a probe placed outside the outer shell to maintain a predetermined probe distance to obtain a surface image of a subject covered by a sealed outer shell and invisible to the naked eye. For items detected and displayed using water immersion ultrasonic flaw detection method,
An operation control circuit that detects the position of the gauge set around the area to be imaged and issues a control signal, and this control signal captures the ultrasonic signal at the position of the gauge and compares it with a standard voltage to generate a difference voltage signal. A voltage gain correction means is provided, which includes a correction value detection circuit that outputs a voltage difference signal, and a controllable amplifier circuit whose voltage gain is corrected based on this differential voltage signal. As a result, the wave height value of the received ultrasonic signal whose sound pressure (voltage value) has decreased due to the reflection of the ultrasonic beam on the inner and outer surfaces of the outer shell can be automatically corrected by the amount of the sound pressure drop at the outer shell. As a result, the influence of the outer shell is eliminated, and only the irregularities on the surface of the object i can be detected as the distribution of wave height values of the ultrasound signal. It is configured to convert the peak value distribution of the unlimited sound wave signal into an on/off signal and input it to the print control section of the X-Y recorder, and to control the horizontal position of the pen using the X and Y position signals of the probe. Thereby, it is possible to provide a surface image detection device using ultrasonic flaw detection that can display the unevenness distribution on the surface of the object as a surface image. The surface image detection device configured in this way eliminates the need for voltage gain correction, which was conventionally performed manually every time the position in the X direction changes, so the human power and time required for surface image detection are significantly reduced In addition to increasing the striping efficiency, the distance between the zigzag scanning lines, or in other words, the scanning line density, can be increased, resulting in the advantage that clear images can be displayed in a short time. In addition, by correcting the voltage gain using an electronic circuit, the correction granularity can be increased compared to conventional manual operation, and the peak value of the ultrasonic signal can be divided into multiple stages and converted into on/off signals, so it can be used for multiple phenomena. By using the X-Y recorder, it is possible to obtain a multicolor surface image in which the size of unevenness on the surface of the subject can be distinguished by color.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す表面画像検知装置のブロ
ック図、第2図は第1図の実施例における信号波形図、
第6図は超音波探傷法による従来の表面画像検知装置の
原理的な説明図、第4図は従来装置における問題点を説
明するための模試図である。 1・・・被検体、2・・・水、6・・・刻印、4・・・
探触子、5・・・超音波ビーム、5A・・・送信波、5
B・・・反射波、6・・・走査線、7・・・制御観測部
、1o・・・反射超音波信号、12.13・・・位置検
出器、14・・・X−Yレコーダ、15・・・波形変換
回路、17・・・外殻(円筒容器)、21・・・動作制
御回路、22・・・補正値検知回路、23・・・標準電
圧設定器、24・・・可制御増幅;。 回路、Yll、 Y、1. Y、、 、 Y、、 、、
、標点位置、vs−標準電圧。 !Lj−1イin 置 Y++              Y21第2図
FIG. 1 is a block diagram of a surface image detection device showing an embodiment of the present invention, FIG. 2 is a signal waveform diagram in the embodiment of FIG. 1,
FIG. 6 is an explanatory diagram of the principle of a conventional surface image detection device using an ultrasonic flaw detection method, and FIG. 4 is a mock diagram for explaining problems in the conventional device. 1... Subject, 2... Water, 6... Stamp, 4...
Probe, 5... Ultrasonic beam, 5A... Transmission wave, 5
B... Reflected wave, 6... Scanning line, 7... Control observation unit, 1o... Reflected ultrasonic signal, 12.13... Position detector, 14... X-Y recorder, 15... Waveform conversion circuit, 17... Outer shell (cylindrical container), 21... Operation control circuit, 22... Correction value detection circuit, 23... Standard voltage setting device, 24... Possible Controlled amplification;. Circuit, Yll, Y, 1. Y, , Y,, ,,
, gauge position, vs - standard voltage. ! Lj-1 in Place Y++ Y21 Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 1)水中浸漬された被検体の上方に所定の探触距離を保
つよう水平方向に移動制御される探触子により電気信号
に変換された被検体表面からの反射超音波に対応する超
音波信号と、位置検出器より出力される前記探触子のX
、Y両位置信号とを入力信号とする画像表示器により被
検体表面画像を表示するものにおいて、前記位置信号を
入力としあらかじめ定まる標点を前記探触子が通過する
たびに動作信号を発する動作制御回路と、この動作信号
を受けて前記超音波信号を取込み標準電圧と比較して差
電圧信号を発する増幅率の補正値検知回路と、この差電
圧信号により増幅率が補正される可制御増幅回路と、こ
の可制御増幅回路の出力超音波信号と前記標準電圧とを
比較してオン・オフ信号に変換する変換回路とからなる
超音波信号波高値の補正手段を備えたことを特徴とする
超音波探傷法による表面画像検知装置。
1) An ultrasonic signal corresponding to the reflected ultrasound from the surface of the object that is converted into an electrical signal by a probe whose movement is controlled in the horizontal direction so as to maintain a predetermined probe distance above the object immersed in water. and X of the probe output from the position detector
, and a Y position signal as input signals, the operation of displaying a surface image of a subject using an image display device that uses the position signals as input and generates an operation signal each time the probe passes a predetermined reference point. a control circuit, an amplification factor correction value detection circuit that receives the operating signal, takes in the ultrasonic signal, compares it with a standard voltage, and generates a difference voltage signal; and a controllable amplifier whose amplification factor is corrected by the difference voltage signal. and a conversion circuit that compares the output ultrasonic signal of the controllable amplifier circuit with the standard voltage and converts it into an on/off signal. Surface image detection device using ultrasonic flaw detection method.
JP59175452A 1984-08-23 1984-08-23 Surface image detector by ultrasonic flaw detection Granted JPS6153564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59175452A JPS6153564A (en) 1984-08-23 1984-08-23 Surface image detector by ultrasonic flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59175452A JPS6153564A (en) 1984-08-23 1984-08-23 Surface image detector by ultrasonic flaw detection

Publications (2)

Publication Number Publication Date
JPS6153564A true JPS6153564A (en) 1986-03-17
JPH0253725B2 JPH0253725B2 (en) 1990-11-19

Family

ID=15996317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59175452A Granted JPS6153564A (en) 1984-08-23 1984-08-23 Surface image detector by ultrasonic flaw detection

Country Status (1)

Country Link
JP (1) JPS6153564A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5855780A (en) * 1996-11-04 1999-01-05 Advanced Performance Technology, Inc. Fuel filter element with flow actuator
US6053334A (en) * 1993-09-15 2000-04-25 Parker Hannifin Customer Support Inc. Fuel filter with valve device
US7335300B1 (en) 2004-07-14 2008-02-26 Wix Filtration Corp Llc Fluid filter element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6053334A (en) * 1993-09-15 2000-04-25 Parker Hannifin Customer Support Inc. Fuel filter with valve device
US5855780A (en) * 1996-11-04 1999-01-05 Advanced Performance Technology, Inc. Fuel filter element with flow actuator
US7335300B1 (en) 2004-07-14 2008-02-26 Wix Filtration Corp Llc Fluid filter element
US7682507B2 (en) 2004-07-14 2010-03-23 Wix Filtration Corp Llc Fluid filter element
US8092690B2 (en) 2004-07-14 2012-01-10 Wix Filtration Corp Llc Fluid filter element

Also Published As

Publication number Publication date
JPH0253725B2 (en) 1990-11-19

Similar Documents

Publication Publication Date Title
US4670652A (en) Charged particle beam microprobe apparatus
US4395707A (en) Light pen controlled method and equipment for evaluating fluorescent screen pictures
JPH04328460A (en) Ultrasonic graphic device
JPS58223059A (en) Ultrasonic flaw detector
US6397681B1 (en) Portable ultrasonic detector
GB2116716A (en) Imaging systems
JPS6153564A (en) Surface image detector by ultrasonic flaw detection
JPH0242355A (en) Ultrasonic inspecting device
JP2654554B2 (en) Ultrasonic flaw detector
JPS6037893B2 (en) acoustic image display device
JPS61266907A (en) Detector for surface condition
JPS5993492A (en) Display unit using cathode ray indicator tube
JPS6356947B2 (en)
JP2824846B2 (en) Ultrasonic measurement method
JPS61151458A (en) C-scanning ultrasonic flaw detection method and apparatus thereof
JPS628045A (en) Apparatus for detecting flaw
SU884005A1 (en) Method of measuring diameter of electronic probe in raster electron microscope
SU847173A1 (en) Magnetographic flaw detector
JPS622530Y2 (en)
JP2980437B2 (en) Ultrasonic flaw detector
CN118090909A (en) Automatic generation method of C-scan image and storage medium
JPH03221862A (en) Ultrasonic inspecting device
JPH0797092B2 (en) X-ray photoelectron analyzer
JPS6327642B2 (en)
JPH03152454A (en) Ultrasonic wave measuring apparatus