JPS628045A - Apparatus for detecting flaw - Google Patents

Apparatus for detecting flaw

Info

Publication number
JPS628045A
JPS628045A JP14715485A JP14715485A JPS628045A JP S628045 A JPS628045 A JP S628045A JP 14715485 A JP14715485 A JP 14715485A JP 14715485 A JP14715485 A JP 14715485A JP S628045 A JPS628045 A JP S628045A
Authority
JP
Japan
Prior art keywords
detected
defect
circuit
detection means
dimensional image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14715485A
Other languages
Japanese (ja)
Inventor
Tamotsu Matsumoto
保 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIREKO KK
Nireco Corp
Original Assignee
NIREKO KK
Nireco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIREKO KK, Nireco Corp filed Critical NIREKO KK
Priority to JP14715485A priority Critical patent/JPS628045A/en
Publication of JPS628045A publication Critical patent/JPS628045A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To accurately detect the shape or singularity of the flaw possessed by an article to be detected, by mounting a moving means, a first unidimensional image detection means and a second unidimensional image detection means. CONSTITUTION:An article 1 to be detected is moved by a belt conveyor 2 and scanned by a first unidimensional image detection means 3. The flaw 10 of the article 1 to be detected is converted to an image signal 31 which is, in turn, inputted to a flaw detection circuit 5. The circuit 5 sends the flaw detection signal on the article 1 to be detected to a counter circuit 72 which, in turn, starts the counting of the output signal of a moving amount detection means 6. Thereafter, the circuit 72 outputs the counter output signal to a memory circuit 82 when the count value reached the value corresponding to the amount moving between the detection means 3 and a second unidimensional image detection means 4. The circuit 82 stores the image signal 41 of the detection means 4 as two-dimensional image information through an A/D converter circuit 81 and said two-dimensional image information is displayed on a display device 83. By this method,the shape or singularity of the flaw possessed by the article to be detected can be accurately detected.

Description

【発明の詳細な説明】 聚11117)iわ1匁! 本発明は欠陥検出装置に係り、特に被検出物を移動しな
がら該被検出物が有する傷、変形、着色などの欠陥や形
状の特異性(以下、欠陥等と称する)の検出を行う欠陥
等の検出装置に関する。
[Detailed description of the invention] 11117) iwa1 momme! The present invention relates to a defect detection device, and particularly to a defect detection device that detects defects such as scratches, deformation, coloring, etc., and shape specificities (hereinafter referred to as defects, etc.) of an object to be detected while moving the object. The present invention relates to a detection device.

従来技術と問題点 被検出物を一定速度で移動しながらその表面や内部にあ
る欠陥や特異性を検査する欠陥検出装置として、従来か
ら工業用テレビジョン装置(以下、ITV)やX線テレ
ビジョン装置が用いられている。かかる従来技術によれ
ば被検出物は撮像管やCCDなど(以下、撮像管)によ
って画素に分解され、電子ビームや電荷の走査によって
逐次電気信号に変換され、その後CRT等によって画像
として再生され上記欠陥等が検出されるものである。
Conventional Technology and Problems Industrial television equipment (hereinafter referred to as ITV) and X-ray television have traditionally been used as defect detection devices that inspect defects and specificities on the surface and inside of an object while moving it at a constant speed. equipment is used. According to such conventional technology, an object to be detected is decomposed into pixels by an image pickup tube, CCD, etc. (hereinafter referred to as an image pickup tube), sequentially converted into electrical signals by electron beam or charge scanning, and then reproduced as an image by a CRT or the like to display the above-mentioned images. Defects etc. are detected.

同様な従来技術として、被検出物を一定速度で移動させ
つつ一次元CODで撮像し、コンピュータや記録装置を
用いて画像再生する方式もあるが、例えば前記ITVの
垂直走査を機械的な被検出物の移動によって置換し、記
憶した画像信号をCRT上に画像再生して上記欠陥等の
検出をするものである。
As a similar conventional technique, there is a method in which the object to be detected is moved at a constant speed and imaged with one-dimensional COD, and the image is reproduced using a computer or recording device. The defect is detected by replacing the object by moving the object and reproducing the stored image signal on a CRT.

かかる従来技術によれば、被検出物の有する欠陥等はそ
の形状や形態のいかんにかかわらず一定の画素に分解さ
れ(即ち、サンプリングされ)、かつ、一定の走査速度
もしくは移動速度で走査あるいは移動して検出され、画
像再生されて欠陥等であるか否か識別されるものである
According to such conventional technology, a defect, etc. of an object to be detected is resolved into fixed pixels (i.e., sampled) regardless of its shape or form, and is scanned or moved at a fixed scanning speed or moving speed. The defect is detected and the image is reproduced to identify whether it is a defect or not.

従って、例えばL記欠陥等が幅の、狭い線状ないし針状
である場合には、画素の大きさく詰まり。
Therefore, for example, if the defect L is in the form of a narrow line or needle, the pixel size will be too large and the defect will be clogged.

分解能)は勿論走査速度と移動速度との兼ねあいによっ
てはその欠陥を正確に検出することができず、欠陥検出
装置としての信頼性を満足できないという問題を有して
いた。
Depending on the balance between the scanning speed and the moving speed as well as the resolution), the defect cannot be detected accurately and the reliability of the defect detection device cannot be satisfied.

かかる従来技術の問題点は1画素数を大幅に増加させた
高分解能なITVや、被検出物の移動速度を極めて低速
にし、かつ、大容量の記憶装置等を用いることによりあ
る程度は解消されるが、走査時間や移動時間が長時間化
し、被検出物の欠陥検出を濠率よく行う本来の目的に反
するのみでなく、装置が大型化し複雑、高価格となり、
実用性に欠けるものであった。また、2次元走査による
撮像方式では、仮りに高密かつ高分解イ侶に多数の画素
が配設されても、はとんどの画素は平均的に有効には利
用されるものでなく、有効利用率が悪いものでもあった
These problems in the conventional technology can be solved to some extent by using a high-resolution ITV with a significantly increased number of pixels, by making the moving speed of the object to be detected extremely slow, and by using a large-capacity storage device, etc. However, the scanning time and travel time become long, which not only goes against the original purpose of efficiently detecting defects in the object to be detected, but also makes the equipment larger, more complicated, and more expensive.
It lacked practicality. In addition, in the imaging method using two-dimensional scanning, even if a large number of pixels are arranged in a high-density and high-resolution manner, most of the pixels are not used effectively on average; The rate was also poor.

発明の目的 本発明は上記した従来の未解決の課題に鑑みてなされた
もので、簡便な構成により被検出物の有する欠陥等をそ
の形状や形態にかかわらず高精度、かつ能率的に検出す
ることのできる欠陥検出装置を提供することを目的とす
るものである。
Purpose of the Invention The present invention has been made in view of the above-mentioned conventional unresolved problems, and is capable of detecting defects, etc. of an object to be detected with high precision and efficiency, regardless of its shape or form, using a simple configuration. The object of the present invention is to provide a defect detection device that is capable of detecting defects.

i」L旦JLJ 上記目的を達成するため本発明に係る欠陥検出装置は、 被検出物の移動速度を可変に調整して移動する移動手段
と、前記被検出物の移動方向を横ぎる方向に走査して被
検出物の欠陥の有無を検出する第1の1次元イメージ検
出手段と、前記被検出物の欠陥の形状や特異性を詳しく
検出する第2の1次元イメージ検出手段とを備えて構成
され、前記第1の1次元イメージ検出手段が前記被検出
物の欠陥を検出して得た検知信号にもとすいて前記移動
手段は前記被検出物の移動速度を緩急に調整し、前記第
2の1次元イメージ検出手段により前記被検出物の有す
る欠陥の形状や特異性を正確に検出するようにしたもの
である。
i''LdanJLJ In order to achieve the above object, the defect detection device according to the present invention comprises: a moving means for variably adjusting the moving speed of an object to be detected; A first one-dimensional image detection means for scanning to detect the presence or absence of a defect in the object to be detected, and a second one-dimensional image detection means for detecting in detail the shape and specificity of the defect in the object to be detected. In response to a detection signal obtained by the first one-dimensional image detection means detecting a defect in the object, the moving means gradually adjusts the moving speed of the object to be detected, The second one-dimensional image detection means accurately detects the shape and specificity of the defect of the object to be detected.

N− 以下、本発明の実施例を図面を参照して説明する。なお
、以下の図面で同一作用をなす同一部材には同一符号を
付しその説明を省略する。
N- Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same members that have the same functions are designated by the same reference numerals, and their explanations will be omitted.

第1図は本発明の一実施例を示す概略構成図である。l
は表面や内部に欠陥や特異性を有する被検出物で、2は
被検出物1i:を置して移動するベルトコンベア等の移
動手段、3は第1の一次元イメージ検出手段、4は第2
の一次元イメージ検出手段である。
FIG. 1 is a schematic diagram showing an embodiment of the present invention. l
2 is a moving means such as a belt conveyor on which the detected object 1i is placed and moved; 3 is a first one-dimensional image detecting means; 4 is a first one-dimensional image detecting means; 2
This is a one-dimensional image detection means.

第1の1次元イメージ検出手段3は、被検出物lの欠陥
の有無を検出し、その出力信号を欠陥検出回路5に入力
する。欠陥検出回路5は前記イメージ検出手段3の出力
信号から画像信号をとり出し、適宜に、微分・積分等の
波形成形を行い、基準信号レベルと比較する等による通
常の画像信号処理回路によって構成するととができる。
The first one-dimensional image detection means 3 detects the presence or absence of a defect in the object 1 to be detected, and inputs its output signal to the defect detection circuit 5. The defect detection circuit 5 is constituted by a normal image signal processing circuit that extracts an image signal from the output signal of the image detection means 3, performs waveform shaping such as differentiation and integration as appropriate, and compares it with a reference signal level. I can do that.

6は被検出物の移動量を検出する移動量検出手段であり
、前記移動手段2がベルトコンベアの場合には該ベルト
コンベアに連動するパルスジェネレータ等によることが
できる。61は前記移動量検出手段6の出力信号を示す
、7は制御部で前記移動手段2の駆動装置21を制御す
る制御回路71及びカウンタ回路72を有して構成され
ている。
Reference numeral 6 denotes movement amount detection means for detecting the movement amount of the object to be detected, and when the movement means 2 is a belt conveyor, it may be a pulse generator or the like that is linked to the belt conveyor. Reference numeral 61 indicates an output signal of the movement amount detection means 6. Reference numeral 7 denotes a control section which includes a control circuit 71 for controlling the drive device 21 of the movement means 2 and a counter circuit 72.

第2の1次元イメージ検出手段4は被検出物lの欠陥の
形状や詳しく検出し出力信号を表示部8に入力する。
The second one-dimensional image detection means 4 detects the shape and details of the defect on the object 1 to be detected, and inputs an output signal to the display section 8.

表示部8はイメー・ジ検出手段4の出力するアナログ信
号をデジタル変換するA/D変換回路81、変換された
デジタル信号を記憶する記憶回路82及びCRT等の表
示装置83を有して構成されている。記憶回路82は本
実施例では前記制御部7のカウンタ回路72の出力信号
を入力し、記憶動作用のトリガ信号としてA/D変挽回
路81の出力するデジタル信号を記憶するように接続さ
れている。記憶回路82の読出し信号は欠陥評価部9に
入力する。欠陥評価部9は前記読出し信号に基づいて欠
陥の大きさを測定する測定回路91、該測定結果を基準
値と比較し欠陥の良否を判定する判定回路92及び該判
定結果に基づいてアラームを発生する警告手段93を有
して構成され、更に前記判定結果信号は制御部7の制御
回路71に接続されている。
The display section 8 includes an A/D conversion circuit 81 that digitally converts the analog signal output from the image detection means 4, a storage circuit 82 that stores the converted digital signal, and a display device 83 such as a CRT. ing. In this embodiment, the storage circuit 82 is connected to input the output signal of the counter circuit 72 of the control section 7 and to store the digital signal output from the A/D conversion circuit 81 as a trigger signal for storage operation. There is. The read signal from the memory circuit 82 is input to the defect evaluation section 9. The defect evaluation section 9 includes a measurement circuit 91 that measures the size of the defect based on the read signal, a determination circuit 92 that compares the measurement result with a reference value and determines whether the defect is good or bad, and generates an alarm based on the determination result. The judgment result signal is further connected to the control circuit 71 of the control section 7.

本実施例によれば被検出物lは移動速度を変化するベル
トコンベア2によって移動されるとともに第1の1次元
イメージ検出手段3により走査され、被検出物1の欠陥
lOは画像信号31に変換され欠陥検出回路5に電気信
号として入力される。
According to this embodiment, the object l to be detected is moved by a belt conveyor 2 whose moving speed is changed and is scanned by the first one-dimensional image detection means 3, and the defect lO of the object to be detected 1 is converted into an image signal 31. and is input to the defect detection circuit 5 as an electrical signal.

欠陥検出回路5は被検出物l上の欠陥を欠陥と認識した
とき出力信号である欠陥検出信号をカウンタ回路72に
送る。カウンタ回路72は1記欠陥検出信号を受けた瞬
間から移動量検出手段6の出力信号(例えばパルスジェ
ネレータの出力パルス)を計数開始する。その後、カウ
ンタ回路72はその計数値が被検出物lが第1の1次元
イメージ検出り段3と第2の1次元イメージ検出手段4
と間を移動する量に相当する値に達した瞬間(あるいは
その直前)にカウンタ出力信号を記憶回路82に出力す
る。記憶回路82は、記憶動作のトリガ信号であるカウ
ンタ出力信号をうけて、第2の1次元イメージ検出手段
4の画像信号41をA/D変換回路81を介して記憶回
路82に2次元画像情報として記憶する。なお、上記に
おいて2力ウンタ回路72の出力するカウンタ出力信号
は制御回路71にも入力し、駆動装置21を制御して移
動1段2を、例えば低速運転にすることができるもので
ある。記憶回路82に記憶された2次元画像情報はCR
T等の表示装置83に表示し欠陥の様子を操作員に示す
ことができ、更に前記欠陥評価部9を介して欠陥の大き
さの測定や、欠陥が看過できない場合の警報、告知、移
動手段の停止あるいは被検出物の払い落しく除去)等を
行わしめることができる。また、判定回路92の出力信
号は判定作業の終了に応じて制御回路71を所期の状態
に復帰させ、再びベルトコンベア等の移動手段2を高速
運転させることができるものである。
When the defect detection circuit 5 recognizes a defect on the object l as a defect, it sends a defect detection signal, which is an output signal, to the counter circuit 72. The counter circuit 72 starts counting the output signal (for example, the output pulse of the pulse generator) of the movement amount detection means 6 from the moment it receives the defect detection signal 1. Thereafter, the counter circuit 72 calculates the counted value of the detected object l at the first one-dimensional image detecting stage 3 and the second one-dimensional image detecting means 4.
A counter output signal is output to the memory circuit 82 at the moment (or just before) the value corresponding to the amount of movement between the two is reached. The storage circuit 82 receives the counter output signal, which is a trigger signal for storage operation, and transfers the image signal 41 from the second one-dimensional image detection means 4 to the storage circuit 82 via the A/D conversion circuit 81 as two-dimensional image information. be memorized as . In the above, the counter output signal output from the two-force counter circuit 72 is also input to the control circuit 71 to control the drive device 21 so that the first stage of movement 2 can be operated at a low speed, for example. The two-dimensional image information stored in the memory circuit 82 is CR
The condition of the defect can be shown to the operator by displaying it on a display device 83 such as T, and furthermore, the size of the defect can be measured via the defect evaluation section 9, and if the defect cannot be overlooked, an alarm, notification, and transportation means can be displayed. or the object to be detected can be removed by shaking it off). Further, the output signal of the determination circuit 92 allows the control circuit 71 to return to the desired state upon completion of the determination work, and allows the moving means 2 such as a belt conveyor to operate at high speed again.

なお、上記説明では、制御部7は1次元イメージセンサ
3の検出した画像信号31から自動的に欠陥を検出して
(例えば画像信号レベルを予め設定する閾値と比較する
などにより)被検出物lが第2の1次元イメージ検出手
段4の検出範囲に至ったとき、移動速度を自動的に調整
し、あるいは前記第2の1次元イメージ検出手段4によ
り欠陥を微細に検知するとして説明したが、操作員が制
御部7を外部からマニュアル調整して適宜移動手段2の
移動速度を自在に調整し、あるいは、第2の1次元イメ
ージ検出f段4による撮像を行なわしめるようにするこ
ともできる。以下、第2図乃至第4図を参照して本発明
の詳細な説明する。
In the above description, the control unit 7 automatically detects defects from the image signal 31 detected by the one-dimensional image sensor 3 (for example, by comparing the image signal level with a preset threshold value) and detects the detected object l. It has been explained that when the defect reaches the detection range of the second one-dimensional image detecting means 4, the moving speed is automatically adjusted or the second one-dimensional image detecting means 4 minutely detects the defect. It is also possible for the operator to manually adjust the control section 7 from the outside to freely adjust the moving speed of the moving means 2 as appropriate, or for the second one-dimensional image detection f-stage 4 to take an image. Hereinafter, the present invention will be explained in detail with reference to FIGS. 2 to 4.

第2図は本発明の一実施例の作用を説明するフローチャ
ートである。スタート命令(図中符号Zoo)に応じて
移動手段は被検出物を通常の速度(J:、記高速移動に
相当し、第1の1次元イメージ検出手段が欠陥の有無を
検出できうる分解能を得ることができる速度を指す)で
移動開始する(符号101)、第1の1次元イメージ検
出f段の出力信号は欠陥検出回路(第1図符号5)によ
り欠陥の有無をチェックされ(符号102゜103)、
万一欠陥が認識されるとカウンタ回路にカウントの開始
を命令する(符号104)、図示の実施例では前記実施
例の説明とことなリカウンタスタートののち被検出物の
移動は低速移動とするべく示されている(符号105)
、低速移動とは第2の1次元イメージ検出検出手段が欠
陥の形状や特異性を詳しく検出できうる分解能を得るこ
とができる速度を指す、その後、カウンタ回路の計数値
は予め設定する設定値と比較され(符号106)、計数
値が設定値に至った場合(即ち、被検出物が、第2の1
次元イメージ検出手段の撮像範囲に至った場合)、第2
の1次元イメージ検出手段の画像出力信号が記憶回路(
第1図符号82)に2次元情報として記憶される(符号
107)。なお、上記実施例での被検出物の低速移動(
符号105)をL記計数値と設定値との比較(符号10
6)の後に行うようにすることもできる。記憶回路の記
憶情報は表示装置に表示され(符号108)、あるいは
欠陥評価部(第1図符号109)によって欠陥が測定さ
れ(符号109)、測定値と限界値が比較される(符号
110)、Jll定値が限界に至っていない場合には被
検出物の移動速度は通常の高速移動に復帰する。また、
測定値が限界を越えている場合にはアラーム信号を発生
しく符ql 11) 、被検出物の欠陥を操作員に知ら
せる。あるいは被検出物の除去をマニピュレータを介し
て行なう、更に、インクを被検出物に着色するなど各種
の欠陥物の排除処理を行わせることができるものである
FIG. 2 is a flowchart explaining the operation of one embodiment of the present invention. In response to a start command (Zoo in the figure), the moving means moves the object to be detected at a normal speed (J:, which corresponds to high speed movement and has a resolution that allows the first one-dimensional image detecting means to detect the presence or absence of defects. The output signal of the first one-dimensional image detection stage f is checked for the presence or absence of defects by a defect detection circuit (reference numeral 5 in FIG. 1) (reference numeral 102).゜103),
If a defect is recognized, the counter circuit is commanded to start counting (104). In the illustrated embodiment, the object to be detected moves at a low speed after the counter starts, which is different from the description of the previous embodiment. (105)
, Low-speed movement refers to the speed at which the second one-dimensional image detection detection means can obtain a resolution that allows detailed detection of the shape and specificity of the defect.Then, the count value of the counter circuit is set to a preset value. (106), and when the counted value reaches the set value (i.e., the detected object has reached the second one)
(when reaching the imaging range of the dimensional image detection means), the second
The image output signal of the one-dimensional image detection means is sent to the storage circuit (
The data is stored as two-dimensional information (107) in FIG. 1, reference numeral 82). Note that in the above embodiment, the object to be detected moves at low speed (
105) with the L notation count value and the set value (105)
It is also possible to perform this after step 6). The information stored in the memory circuit is displayed on a display device (108), or a defect is measured (109) by a defect evaluation section (109 in FIG. 1), and the measured value is compared with a limit value (110). , Jll constant value has not reached the limit, the moving speed of the object to be detected returns to normal high-speed movement. Also,
If the measured value exceeds the limit, an alarm signal is generated to inform the operator of a defect in the detected object. Alternatively, the object to be detected can be removed via a manipulator, and furthermore, the object to be detected can be subjected to various types of removal processing such as coloring the object to be detected.

第3図乃至第4図の図面において200は1次元イメー
ジセンナ3.4の走査方向を示し。
In the drawings of FIGS. 3 and 4, reference numeral 200 indicates the scanning direction of the one-dimensional image sensor 3.4.

201はベルトコンベア2の移動方向を示している。ま
た、202は本発明の詳細な説明するために仮想した同
一位置を示す位置表示線である。
201 indicates the moving direction of the belt conveyor 2. Further, reference numeral 202 is a position display line indicating the same virtual position for explaining the present invention in detail.

第3図(A)は被検出物lの表面を1次元イメージ検出
・L段3側から(即ち、被検出物を上面から)見た略図
を示している。203は欠陥で、走査方向200及び移
動方向201に伸びた縦横比の大きな欠陥(例えば溝状
クラック)を示している。従来の欠陥検出方式によれば
、被検出物は移動手段により定速度移動し、テレビカメ
ラ等の撮像7段は水平走査を走査方向200に行いつつ
逐次垂直方向(移動方向201に相当する)に電子ビー
ムを走査し被検出物の欠陥を撮像する。このため、欠陥
が上記の如き縦横比の大きな線状の場合には、電子ビー
ムを垂直走査する間に被検出物体1は移動手段により位
置を移動してしまい、あるいは走査サンプリングの間隔
内に埋没してしまい精密な欠陥検出ができない場合があ
った。しかるに本発明によれば、被検出物l上の欠陥2
03は第1の1次元イメージ検出手段により欠陥の有無
が検出され、その検出信号に応じてベルトコンベア2の
移動速度が低速に変化される。しかして第2の1次元イ
メージ検出手段4に対する前記欠陥203の相対移動速
度が遅くなるので欠陥203は移動中に充分な解像度を
もって第2の1次元イメージ検出手段4によって精密に
走査され、結果として第3図(B)に示される如き移動
方向201に拡張された再生画像を記憶し、あるいは表
示することができることとなる。即ち、線状の欠陥20
3は移動方向に充分な分解能を有して拡大された欠陥検
出像として検知されるものである。
FIG. 3(A) shows a schematic diagram of the surface of the detected object 1 viewed from the one-dimensional image detection/L stage 3 side (that is, from the top of the detected object). A defect 203 is a defect with a large aspect ratio (for example, a groove-like crack) extending in the scanning direction 200 and the moving direction 201. According to the conventional defect detection method, the object to be detected is moved at a constant speed by a moving means, and seven imaging stages such as a television camera perform horizontal scanning in the scanning direction 200 while sequentially scanning in the vertical direction (corresponding to the moving direction 201). The electron beam is scanned to image defects on the object to be detected. Therefore, if the defect is linear with a large aspect ratio as described above, the object to be detected 1 may be moved by the moving means during vertical scanning of the electron beam, or may be buried within the scanning sampling interval. In some cases, accurate defect detection could not be performed. However, according to the present invention, the defect 2 on the detected object l
03, the presence or absence of a defect is detected by the first one-dimensional image detection means, and the moving speed of the belt conveyor 2 is changed to a low speed in accordance with the detection signal. Since the relative moving speed of the defect 203 with respect to the second one-dimensional image detecting means 4 becomes slow, the defect 203 is precisely scanned by the second one-dimensional image detecting means 4 with sufficient resolution during movement, and as a result, A reproduced image expanded in the moving direction 201 as shown in FIG. 3(B) can be stored or displayed. That is, the linear defect 20
3 is an image detected as a defect detection image enlarged with sufficient resolution in the moving direction.

第4図(A)は被検出物lの端部を1次元イメージ検出
手段3側から見た端部略図である。被検出物lの端部に
生じた浅いカケやクラック等204を高分解能に検出す
る場合の本発明の作用説明図である0本例においても第
1の1次元イメージ検出手段3が被検出物を検知し、該
検出信号にもとづいて移動方向201に対する被検出物
lの移動速度を低速にする′ことによって通常の場合に
は第4図(A)の如く検知・再生される画像も第4図(
B)に示される如く拡大されて記憶・再生され、わずか
なカケやクラック204も確実に検出することができる
ものである。
FIG. 4(A) is a schematic diagram of the end of the detected object 1 viewed from the one-dimensional image detecting means 3 side. This is a diagram illustrating the operation of the present invention when detecting with high resolution a shallow chip, crack, etc. 204 occurring at the end of the detected object l. In this example, the first one-dimensional image detection means 3 detects the detected object. By detecting the detection signal and slowing down the moving speed of the detected object l in the moving direction 201 based on the detection signal, the image that is normally detected and reproduced as shown in FIG. figure(
As shown in B), it is enlarged, stored and reproduced, and even the slightest chip or crack 204 can be reliably detected.

なお、上記の実施例において、欠陥長さ測定回路91は
1例えば、第2の1次元イメージ検出手段4から画像信
号41を直接に入力し、該信号レベルについて予め設定
する閾値と比較し欠陥等に応じたデジタルパルス信号に
変換する比較回路やA/D変換回路等により構成するこ
ともできる。
In the above embodiment, the defect length measuring circuit 91 directly inputs the image signal 41 from, for example, the second one-dimensional image detecting means 4, and compares the signal level with a preset threshold to detect defects, etc. It can also be configured with a comparison circuit, an A/D conversion circuit, etc., which converts it into a digital pulse signal according to the data.

また制御部7や表示!1I18の1部、あるいは欠陥評
価部9はデジタル信号を入力して所定の論理演算や時間
操作を行うマイクロコンピュータ等により構成すること
もできる。
Also the control unit 7 and display! A portion of the 1I18, or the defect evaluation section 9, can also be constituted by a microcomputer or the like that inputs digital signals and performs predetermined logical operations and time operations.

以上1本実施例をより具体的に一例をもって示すと、1
次元イメージ検出手段4は500ビツトの1次元画素を
毎秒20000回の速度で走査するとともに被検出物1
はベルトコンベア2によって低速秒速時には毎秒10c
■の速さで移動される。1次元イメージセンサ4の走査
方向視野はレンズによって100■腸に調整されている
。一方、画像メモリの記憶容量は移動方向に対応して5
00ビツト(画素)、走査方向に対応して500ビツト
(画素)である、しかして、第2の1次元イメージ検出
f段4の出力する画像信号41はA/D変換器81を介
して逐次画像記憶回路82に記録される0画像記憶回路
82内の1ビツト(画素)は、移動手段2の移動方向に
ついては前記移動速度、走査速度及び記憶容量から被検
出物lトの距離で5μ層に相当する。なお、走査方向に
ついては視野の幅と記憶容量とからビット(画素)当り
200終層に相当する。即ち、被検出物1上で移動方向
について2.5 mm、走査方向についてLoommの
領域が、前記画像記憶回路上では500ピツ)X500
ビツトに拡大され検出された事に相当する0画像記憶回
路82に1時記録された前記画像信号は近状読出されて
欠陥長さ測定回路91に入力し、被検出物の有する欠陥
等の大きさが、拡大されて記録された画像信号にもとす
いて移動方向及び/又は走査方向に対応して測定され、
該測定信号は判定回路92に入力し欠陥を警告するとと
もに制御部7等を介して+Ifびベルトコンベア2の移
動速度を調整し高速かつ高効率で欠陥検出を行うことが
できる効を奏するものである。
To explain the above-mentioned embodiment more specifically with an example, 1
The dimensional image detection means 4 scans 500-bit one-dimensional pixels at a speed of 20,000 times per second, and scans the detected object 1.
is 10 c/s at low speed by belt conveyor 2.
■It moves at a speed. The field of view of the one-dimensional image sensor 4 in the scanning direction is adjusted to 100 square meters by a lens. On the other hand, the storage capacity of the image memory is 5
00 bits (pixels) and 500 bits (pixels) corresponding to the scanning direction. Therefore, the image signal 41 output from the second one-dimensional image detection f stage 4 is sequentially transmitted via the A/D converter 81. 1 bit (pixel) in the 0 image storage circuit 82 recorded in the image storage circuit 82 is 5μ layer at the distance of the object to be detected from the moving speed, scanning speed and storage capacity of the moving means 2. corresponds to Note that in the scanning direction, this corresponds to 200 final layers per bit (pixel) due to the width of the field of view and the storage capacity. That is, an area of 2.5 mm in the moving direction and Loom in the scanning direction on the object 1 to be detected is 500 mm on the image storage circuit.
The image signal temporarily recorded in the zero image storage circuit 82, which corresponds to the detected bit and has been enlarged, is read out and input to the defect length measuring circuit 91, and the size of the defect, etc. of the object to be detected is measured. is measured corresponding to the moving direction and/or scanning direction based on the enlarged and recorded image signal,
The measurement signal is input to the determination circuit 92 to warn of a defect, and also adjusts +If and the moving speed of the belt conveyor 2 via the control unit 7 etc., thereby achieving the effect of detecting defects at high speed and with high efficiency. be.

L記説明において、1次元イメージ検出手段は例えばC
ODなどの固体撮像素子や光学的イメージセンサによる
ことも、あるいはX線を照射してx&1イメージインテ
ンシファイヤによることも、超音波ラインスキャナによ
ることもできることは勿論である。
In the description of L, the one-dimensional image detection means is, for example, C
Of course, it is possible to use a solid-state imaging device such as an OD, an optical image sensor, an x&1 image intensifier by irradiating X-rays, or an ultrasonic line scanner.

発明の効果 本発明によれば、被検出物は移動手段によって移動され
つつ第1の1次元イメージ検出手段によって被検出物が
有する欠陥の有無が検出され。
Effects of the Invention According to the present invention, the presence or absence of a defect in the detected object is detected by the first one-dimensional image detection means while the detected object is moved by the moving means.

該検出信号にもとづいて移動手段は被検出物を低速で移
動する。第2の1次元イメージ検出手段は被検出物が有
する欠陥等を精密・高分解能で検知し、該検知した画像
情報にもとづいて拡大した欠陥像を記憶・再生または判
定する。
Based on the detection signal, the moving means moves the object to be detected at low speed. The second one-dimensional image detection means detects defects and the like of the object to be detected with precision and high resolution, and stores, reproduces, or determines an enlarged defect image based on the detected image information.

即ち、移動手段の移動速度が緩急最適に設定され制御さ
れるので従来技術によれば見落されていた欠陥等が確実
に検出される効を奏するものである。更に、欠陥等のな
い部分では移動手段の移動速度を高速にし、欠陥等が微
妙な部分では低速に調整されるので被検出物の欠陥等の
検査が短時間で効率よく行われる高い作業性をも有する
ものである。
That is, since the moving speed of the moving means is optimally set and controlled, it is possible to reliably detect defects that would have been overlooked in the prior art. Furthermore, the moving speed of the moving means is adjusted to high speed in areas where there are no defects, etc., and to low speed in areas with subtle defects, etc., so inspection for defects, etc. of the object to be detected can be performed efficiently in a short time, resulting in high workability. It also has

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す概略構成図、第2図乃
至第4図は本発明の詳細な説明する説明図を示す。 l・・・被検出物 2・・・移動手段 3・・・第1の1次元イメージ検出手段4・・・第2の
1次元イメージ検出f段5・・・欠陥検出回路 6・・・移動量検出手段 7・・・制御部 8・・・表示部 9・・・欠陥評価部 第3図 (A)(B) 第4図 (A)(B)
FIG. 1 is a schematic configuration diagram showing one embodiment of the present invention, and FIGS. 2 to 4 are explanatory diagrams explaining the present invention in detail. l...Object to be detected 2...Movement means 3...First one-dimensional image detection means 4...Second one-dimensional image detection f-stage 5...Defect detection circuit 6...Movement Quantity detection means 7...control section 8...display section 9...defect evaluation section Fig. 3 (A) (B) Fig. 4 (A) (B)

Claims (1)

【特許請求の範囲】[Claims] (1)被検出物の移動速度を可変に調整して移動する移
動手段と、前記被検出物の移動方向を横ぎる方向に走査
して被検出物の欠陥の有無を検出する第1の1次元イメ
ージ検出手段 と、前記被検出物の欠陥の形状や特異性を詳しく検出す
る第2の1次元イメージ検出手段とを備え、前記第1の
1次元イメージ検出手段が欠陥を検出して得た検知信号
にもとずいて前記移動手段は被検出物の移動速度を緩急
に調整し、前記第2の1次元イメージ検出手段により前
記被検出物の有する欠陥の形状や特異性を検出すること
を特徴とする欠陥検出装置。
(1) A moving means that variably adjusts the moving speed of the object to be detected, and a first means that scans in a direction transverse to the moving direction of the object to detect the presence or absence of a defect in the object. a dimensional image detecting means, and a second one-dimensional image detecting means for detecting in detail the shape and specificity of the defect of the object to be detected; Based on the detection signal, the moving means adjusts the moving speed of the object to be detected slowly and rapidly, and the second one-dimensional image detecting means detects the shape and specificity of the defect of the object to be detected. Characteristic defect detection device.
JP14715485A 1985-07-04 1985-07-04 Apparatus for detecting flaw Pending JPS628045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14715485A JPS628045A (en) 1985-07-04 1985-07-04 Apparatus for detecting flaw

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14715485A JPS628045A (en) 1985-07-04 1985-07-04 Apparatus for detecting flaw

Publications (1)

Publication Number Publication Date
JPS628045A true JPS628045A (en) 1987-01-16

Family

ID=15423805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14715485A Pending JPS628045A (en) 1985-07-04 1985-07-04 Apparatus for detecting flaw

Country Status (1)

Country Link
JP (1) JPS628045A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438638A (en) * 1987-04-13 1989-02-08 Roth Electric Gmbh Method and apparatus for detecting surface defect of article
JP2002039948A (en) * 2000-07-27 2002-02-06 Sony Corp Apparatus and method for inspecting appearance
JP2010038572A (en) * 2008-07-31 2010-02-18 Nitto Seiko Co Ltd Inspection device of part and inspection method of part
CN103487442A (en) * 2013-09-25 2014-01-01 华南理工大学 Novel device and method for detecting defects of flexible circuit boards

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438638A (en) * 1987-04-13 1989-02-08 Roth Electric Gmbh Method and apparatus for detecting surface defect of article
JP2002039948A (en) * 2000-07-27 2002-02-06 Sony Corp Apparatus and method for inspecting appearance
JP2010038572A (en) * 2008-07-31 2010-02-18 Nitto Seiko Co Ltd Inspection device of part and inspection method of part
CN103487442A (en) * 2013-09-25 2014-01-01 华南理工大学 Novel device and method for detecting defects of flexible circuit boards

Similar Documents

Publication Publication Date Title
CA2053176C (en) Method of and apparatus for inspecting bottle or the like
JPH0357402B2 (en)
JPS628045A (en) Apparatus for detecting flaw
US4916535A (en) Method of non-destructive quality inspection of materials and videomonitor realizing this method
JPS62144008A (en) Apparatus for inspecting pattern of printed circuit board
JP2733958B2 (en) Long sheet defect inspection equipment
JP2577655B2 (en) Defect inspection equipment
JPH0531537Y2 (en)
JP3027674B2 (en) Laser emission angle detection method
JP3072787B2 (en) Printing evaluation method and printing evaluation device
JP3350244B2 (en) Method and apparatus for measuring transmission strain
JPH01214743A (en) Optical apparatus for checking
JP3119375B2 (en) Printing evaluation method and printing evaluation device
JP3072788B2 (en) Printing evaluation method and printing evaluation device
JPH073394B2 (en) Foreign material measuring device for transparent members
JP3029142B2 (en) Printing evaluation method and printing evaluation device
JPH02271209A (en) Discriminating apparatus of three-dimensional surface shape
JPS6035517A (en) Inspection device
JPS5892806A (en) Measuring method for length of plate material
JPS6153564A (en) Surface image detector by ultrasonic flaw detection
JPH07229842A (en) Method and equipment for inspecting dust particle in ic
JPH06294747A (en) Surface flaw inspection method at welded part of uo steel pipe
JPH02309251A (en) Image processing and measuring apparatus
JPS6243122B2 (en)
JPH02210211A (en) Surface inspecting device