JPH03221862A - Ultrasonic inspecting device - Google Patents

Ultrasonic inspecting device

Info

Publication number
JPH03221862A
JPH03221862A JP2018430A JP1843090A JPH03221862A JP H03221862 A JPH03221862 A JP H03221862A JP 2018430 A JP2018430 A JP 2018430A JP 1843090 A JP1843090 A JP 1843090A JP H03221862 A JPH03221862 A JP H03221862A
Authority
JP
Japan
Prior art keywords
scanning
coordinate
scanning means
subject
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018430A
Other languages
Japanese (ja)
Inventor
Kazuhiko Hara
和彦 原
Toshiaki Takahashi
俊昭 高橋
Masato Nagura
正人 名倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018430A priority Critical patent/JPH03221862A/en
Publication of JPH03221862A publication Critical patent/JPH03221862A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To make the focusing position of an ultrasonic wave coincide with a coordinate and to accurately detect the defective position of a subject to be checked by detecting and correcting deviation between the reference position of a scanning means and the focusing position of the ultrasonic wave based on the result of scanning. CONSTITUTION:The scanning means 3 scans a line segment A-A' and a line segment B-B' parallel with a Y-axis. A probe 2 transmits an ultrasonic pulse to the reference subject S, and the reflected ultrasonic wave is received by the probe 2 again and transmitted to a gate circuit 5 through a pulser receiver 4. As to the output of a surface distance counter 6, a distance to the bottom of the groove Sd of the reference subject S is compared with a level equivalent to the middle of other distance to the surface in a control processing circuit 9 and the coordinate of a position where the scanning means 3 is located among four points where length relation between them is reversed is stored. The circuit 9 separately averages the X and Y components of the coordinate, measures and stores a difference from the coordinate of the center line of the center line of the groove Sd of the subject S which is previously inputted and finishes the preparation of correction. At the time of inspection, the stored difference is subtracted from the coordinate of the means 3 to obtain an output value.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、被検体上を焦点型超音波探触子により走査し
、パルスエコー法により欠陥検査を行う超音波検査装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an ultrasonic inspection apparatus that scans a subject with a focused ultrasonic probe and performs defect inspection using a pulse echo method.

[従来の技術] 焦点型超音波探触子により被検体上を走査しながら、超
音波パルスを被検物体に向けて送信し、その反射信号か
ら被検物体内の欠陥の深さや分布を表示する超音波検査
装置が広く知られている。
[Conventional technology] Ultrasonic pulses are transmitted toward the object while scanning the object using a focused ultrasonic probe, and the depth and distribution of defects within the object are displayed from the reflected signals. Ultrasonic testing devices that do this are widely known.

従来、この種の装置で定形の被検体を検査する場合には
、被検物体を試料台上の一定の位置に固定し、予め判っ
ている被検体の位置・大きさに合わせて走査範囲を設定
する方法が行われる。このとき、超音波探触子の位置と
走査手段の座標とが一致するように、超音波探触子は固
定される。
Conventionally, when inspecting a regular-shaped object with this type of device, the object is fixed at a fixed position on a sample stage, and the scanning range is adjusted to the previously known position and size of the object. How to set up is done. At this time, the ultrasound probe is fixed so that the position of the ultrasound probe and the coordinates of the scanning means match.

[発明が解決しようとする課題] しかしながら、一般に超音波探触子の中心と超音波の焦
点位置がずれている場合が多く、超音波の焦点位置と走
査手段の座標がずれてしまい、設定した走査範囲と実際
に超音波により測定している範囲とがずれてしまうこと
になる。このため、測定結果から被検物体内の欠陥の位
置を特定する場合や、被検物体内の成る定まった範囲に
対して測定データを処理する場合に位置ずれが生ずる。
[Problem to be solved by the invention] However, in general, the center of the ultrasound probe and the focal position of the ultrasound waves are often misaligned, and the focal position of the ultrasound waves and the coordinates of the scanning means are misaligned. This results in a deviation between the scanning range and the range actually measured by ultrasonic waves. For this reason, positional deviation occurs when specifying the position of a defect within the object to be inspected from the measurement results or when processing measurement data for a fixed range within the object to be inspected.

測定の分解能が高い場合や被検物体が小さい場合に、こ
の欠点は大きな問題となる。また、走査範囲を設定する
際に、ずれを見込んでその分だけ大きな測定範囲を設定
しなければならず、走査時間やデータメモリを浪費する
ことになる。
This drawback becomes a major problem when the measurement resolution is high or when the object to be measured is small. Furthermore, when setting the scanning range, it is necessary to take into account the deviation and set a measurement range that is correspondingly larger, which results in wasted scanning time and data memory.

本発明の目的は、上述の欠点を解消し、超音波の焦点位
置と座標とが一致する超音波検査装置を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and provide an ultrasonic inspection apparatus in which the focal position of ultrasonic waves and coordinates coincide.

[課題を解決するための手段コ 上述の目的を達成するために、本発明に係る超音波検査
装置においては、被検体を走査する焦点型超音波探触子
から超音波パルスを被検体に向けて発信し、その反射信
号を用いて被検体の内部を検査する装置において、基準
被検体上を走査する走査手段と、該走査結果から走査手
段の基準位置と超音波の焦点位置とのずれ量を検出する
検出手段と、該検出手段により検出したずれ量分により
前記走査手段の位置を補正する補正手段とを具備したこ
とを特徴とするものである。
[Means for Solving the Problems] In order to achieve the above-mentioned object, in the ultrasonic inspection apparatus according to the present invention, ultrasonic pulses are directed toward the subject from a focused ultrasound probe that scans the subject. In an apparatus for inspecting the inside of an object using the reflected signal, a scanning means scans a reference object, and the amount of deviation between the reference position of the scanning means and the focal position of the ultrasonic wave is calculated based on the scanning result. The present invention is characterized in that it comprises a detection means for detecting the amount of deviation, and a correction means for correcting the position of the scanning means based on the amount of deviation detected by the detection means.

[作用] 上述の構成を有する超音波検査装置は、定位置に置かれ
形状が既知の基準被検体上を走査した結果から、走査手
段の座標のずれ量を検出し、これによって補正を行い、
座標と超音波の焦点位置を一致させる。
[Operation] The ultrasonic inspection apparatus having the above-mentioned configuration detects the amount of deviation in the coordinates of the scanning means from the result of scanning a reference object placed in a fixed position and having a known shape, and performs correction based on this,
Match the coordinates and the ultrasound focus position.

[実施例] 本発明を図示の実施例に基づいて詳細に説明する。[Example] The present invention will be explained in detail based on illustrated embodiments.

第1図は装置の構成図を示し、超音波水浸法により測定
基準となる基準被検体Sは水槽1内の定位置に固定され
ている。この基準被検体Sに対して超音波の送受信を行
う超音波探触子2は、その先端部が水中に浸された状態
で走査手段2に取り付けられ、走査手段3によって水平
面内を走査できるようになっている。また、探触子2は
超音波を発生させる電圧の印加、及び受信信号の増幅を
行うバルサレシーバ4に接続されている。バルサレシー
バ4の受信信号の出力はゲート回路5を経て信号の要素
別に分離され、表面距離計数器6、信号強度検出器7、
欠陥深さ計数器8にそれぞれ接続され、更にそれぞれの
出力は制御処理回路9に接続されている。制御処理回路
9は走査手段3に制御信号を送り走査を制御し、画像出
力手段10、印刷手段1〕に出力信号を送出し、命令人
力手段12からの入力指令により機能するようになって
いる。
FIG. 1 shows a configuration diagram of the apparatus, in which a reference subject S serving as a measurement standard is fixed at a fixed position in a water tank 1 by the ultrasonic water immersion method. The ultrasonic probe 2 that transmits and receives ultrasonic waves to and from the reference object S is attached to the scanning means 2 with its tip immersed in water, so that it can be scanned in a horizontal plane by the scanning means 3. It has become. Further, the probe 2 is connected to a balsa receiver 4 that applies a voltage to generate ultrasonic waves and amplifies a received signal. The output of the received signal of the balsa receiver 4 is separated into signal elements via a gate circuit 5, and is then separated into a surface distance counter 6, a signal strength detector 7,
Each of the defect depth counters is connected to a defect depth counter 8, and each output is further connected to a control processing circuit 9. The control processing circuit 9 sends control signals to the scanning means 3 to control scanning, sends output signals to the image output means 10 and the printing means 1], and functions according to input commands from the instruction manual means 12. .

上述の構成において、命令出力手段12からの補正準備
段階開始の指示に従って、制御処理回路9は走査手段3
を制御し、第2図に示すようにX、Y軸にそれぞれ平行
な溝Sdを掘った平板から成る基準被検体S上のX軸に
平行な純分へ−A′上と、Y軸に平行な線分B−B’上
を走査する。
In the above configuration, the control processing circuit 9 controls the scanning means 3 in accordance with the instruction to start the correction preparation stage from the command output means 12.
As shown in FIG. Scan the parallel line segment BB'.

同時に、バルサレシーバ4は一定間隔で高電圧パルスを
探触子2に送り、探触子2は基準被検体Sに向けて超音
波パルスを送信する。基準被検体Sの表面から反射され
た超音波は、再び探触子2で受信されバルサレシーバ4
で増幅されてゲート回路5に送られる。このとき、ゲー
ト回路5及び表面距離計数器6はバルサレシーバ4と電
気的に同期しており、超音波を送信してから基準被検体
Sの表面からの反射信号が受信されるまでの時間を計数
する。表面距離計数器6の出力は制御処理回路9におい
て、基準被検体Sの溝Sdの底までの距離とそれ以外の
表面までの距離の中間に相当するレベルt、oと比較さ
れ、これとの大小関係が逆転する4点において、走査手
段3が位置する座標が記憶される。制御処理回路9はこ
の座標をX成分とY成分について別々に平均し、予め入
力済みの基準被検体Sの溝Sdの中心綿の座標との差を
計算して記憶し、補正準備段階を終了する。検査時には
、この記憶された差を走査手段3の座標から減算して出
力値とする。
At the same time, the balsa receiver 4 sends high voltage pulses to the probe 2 at regular intervals, and the probe 2 sends ultrasound pulses toward the reference object S. The ultrasonic waves reflected from the surface of the reference object S are received by the probe 2 again and sent to the balsa receiver 4.
The signal is amplified and sent to the gate circuit 5. At this time, the gate circuit 5 and the surface distance counter 6 are electrically synchronized with the balsa receiver 4, and the time elapses from transmitting the ultrasonic wave until receiving the reflected signal from the surface of the reference object S. Count. The output of the surface distance counter 6 is compared in the control processing circuit 9 with levels t and o corresponding to the intermediate distance between the distance to the bottom of the groove Sd of the reference object S and the distance to other surfaces. The coordinates at which the scanning means 3 is located at four points whose magnitude relationship is reversed are stored. The control processing circuit 9 averages these coordinates separately for the X component and the Y component, calculates and stores the difference with the coordinates of the center cotton of the groove Sd of the reference object S that has been input in advance, and completes the correction preparation stage. do. At the time of inspection, this stored difference is subtracted from the coordinates of the scanning means 3 to obtain an output value.

第3図は第2図のA−A’綿線上走査した場合の表面距
離計数器6で得られた出力図形を示し、しは表面距離計
数器6の出力である。探触子2の先端から基準被検体S
表面までの距離と表面距離計数器6の出力は比例するの
で、表面距離計数器6の出力をレベルtoと比較するこ
とにより基準被検体Sの溝Sdのエツジ位置e、e′を
検出でき、その中点X°を求めることで溝Sdの中心位
置を検出できる。検出した溝Sdの中心位置X゛ と実
際に溝Sdのある位置Xとの差ΔXが、超音波の焦点位
置と走査手段3の座標とのX軸方向のずれ量となる。Y
軸方向に関しても線分B−B’上を走査することにより
、同様にしてずれ量△yを検出する。
FIG. 3 shows an output figure obtained by the surface distance counter 6 when scanning along the line A-A' in FIG. Reference object S from the tip of probe 2
Since the distance to the surface and the output of the surface distance counter 6 are proportional, the edge positions e and e' of the groove Sd of the reference object S can be detected by comparing the output of the surface distance counter 6 with the level to. By finding the midpoint X°, the center position of the groove Sd can be detected. The difference ΔX between the detected center position X′ of the groove Sd and the actual position X of the groove Sd is the amount of deviation in the X-axis direction between the focal position of the ultrasonic wave and the coordinates of the scanning means 3. Y
In the axial direction, the deviation amount Δy is similarly detected by scanning the line segment BB'.

実際の検査における走査は、設定された走査範囲に対し
て検出したずれ量△X、△y分だけずらした範囲を走査
することにより、正確に設定した範囲を測定することが
できる。また、出力は補正されたものとなるため位置ず
れがなくなる。
In actual scanning, the set range can be accurately measured by scanning a range shifted by the detected deviation amounts ΔX and Δy with respect to the set scan range. Furthermore, since the output is corrected, there is no positional deviation.

第4図、第5図はずれ量検出に関する第2の実施例を示
している。第4図は第2の実施例の基準被検体S゛の形
状を示し、基準被検体S°は平板の上に細い溝S「が十
字状に掘られている。この実施例において、信号強度検
出器7は基準被検体S゛の表面からの反射信号の強度を
検出する。第5図は基準被検体S°上のX軸に平行な線
分C−C°上を走査した場合の信号強度検出器7の出力
図形を示し、■は信号強度検出器7の出力である。溝S
d’の上では反射信号が散乱されるために信号強度が弱
くなるので、信号強度検出器7の出力を成るレベルIo
と比較し、出力IとIoの交点f、f’ の中心を求め
ることにより溝Sd’の位置を検出することができ、検
出した位置と実際の位置との差からずれ量ΔXを検出で
きる。同様に、Y軸に平行な線分D−D’上を走査する
ことでY方向のずれ量Δyを検出できる。
FIGS. 4 and 5 show a second embodiment regarding detection of the amount of deviation. FIG. 4 shows the shape of the reference object S' of the second embodiment, in which a thin groove S' is cut in the shape of a cross on a flat plate. The detector 7 detects the intensity of the reflected signal from the surface of the reference object S. FIG. 5 shows the signal when scanning a line segment C-C° parallel to the X axis on the reference object S. The output figure of the intensity detector 7 is shown, and ■ is the output of the signal intensity detector 7.Groove S
Since the reflected signal is scattered above d', the signal strength becomes weaker, so the output of the signal strength detector 7 becomes a level Io.
The position of the groove Sd' can be detected by finding the center of the intersection f, f' between the outputs I and Io, and the deviation amount ΔX can be detected from the difference between the detected position and the actual position. Similarly, the displacement amount Δy in the Y direction can be detected by scanning the line segment DD′ parallel to the Y axis.

第6図、第7図はずれ量検出に関する第3の実施例を示
し、基準被検体S”は第6図に示すように円柱とされて
いる。第7図は第6図中のEの範囲を二次元的に走査し
、そのときの表面距離計数器6の出力から第1の実施例
と同様にして基準被検体S°゛のエツジを検出し、その
中心を求めることにより位置を検出した結果を示してい
る。このようにして検出された位置と実際の基準被検体
S°゛の位置との差から、X、Y方向のずれ量ΔX、△
yを検出できる。
FIGS. 6 and 7 show a third embodiment regarding detection of the amount of deviation, and the reference object S" is a cylinder as shown in FIG. 6. FIG. 7 shows the range of E in FIG. was scanned two-dimensionally, and from the output of the surface distance counter 6 at that time, the edge of the reference object S° was detected in the same manner as in the first embodiment, and the position was detected by finding the center. The results are shown. From the difference between the position detected in this way and the actual position of the reference object S°, the amount of deviation in the X and Y directions ΔX, △
y can be detected.

[発明の効果] 以上説明したように本発明に係る超音波検査装置は、基
準被検体を用いて入出力時の座標と超音波の焦点位置と
を正確に合わせることにより、被検物体に対して無駄な
く走査範囲が設定でき、更に被検体の欠陥の位置を正確
に知ることができる。
[Effects of the Invention] As explained above, the ultrasonic inspection apparatus according to the present invention can accurately align the coordinates at the time of input and output with the focal position of ultrasonic waves using a reference object, thereby making it possible to The scanning range can be set without waste, and the position of the defect on the object can be accurately determined.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る超音波検査装置の実施例を示し、第
1図は構成図、第2図は第1の実施例の基準被検体の斜
視図、第3図はタイムチャート図、第4図は第2の実施
例の斜視図、第5図はタイムチャート図、第6図は第3
の実施例の基準被検体の斜視図、第7図はタイムチャー
ト図である。 符号1は水槽、2は超音波探触子、3は走査手段、4は
パルザレシーバ、5はゲー ト回路、6は表面距離計数
器、7は信号強度検出器、8は欠陥深さ計数器、9は制
御処理回路、10は画像出力手段、11は印刷手段、1
2は命令人力手段、S、 S。 So。 は基準被検体である。
The drawings show an embodiment of the ultrasonic testing apparatus according to the present invention, and FIG. 1 is a configuration diagram, FIG. 2 is a perspective view of a reference object of the first embodiment, FIG. 3 is a time chart diagram, and FIG. The figure is a perspective view of the second embodiment, Figure 5 is a time chart diagram, and Figure 6 is a diagram of the third embodiment.
FIG. 7 is a perspective view of the reference object of the embodiment, and FIG. 7 is a time chart. 1 is a water tank, 2 is an ultrasonic probe, 3 is a scanning means, 4 is a pulser receiver, 5 is a gate circuit, 6 is a surface distance counter, 7 is a signal strength detector, 8 is a defect depth counter, 9 is a control processing circuit, 10 is an image output means, 11 is a printing means, 1
2 is command manual means, S, S. So. is the reference subject.

Claims (1)

【特許請求の範囲】[Claims] 1、被検体を走査する焦点型超音波探触子から超音波パ
ルスを被検体に向けて発信し、その反射信号を用いて被
検体の内部を検査する装置において、基準被検体上を走
査する走査手段と、該走査結果から走査手段の基準位置
と超音波の焦点位置とのずれ量を検出する検出手段と、
該検出手段により検出したずれ量分により前記走査手段
の位置を補正する補正手段とを具備したことを特徴とす
る超音波検査装置。
1. In a device that scans the object, a focused ultrasound probe emits ultrasound pulses toward the object, and uses the reflected signals to inspect the inside of the object, scanning over the reference object. a scanning means; a detection means for detecting the amount of deviation between the reference position of the scanning means and the focal position of the ultrasonic wave from the scanning result;
An ultrasonic inspection apparatus comprising: a correction means for correcting the position of the scanning means based on the amount of deviation detected by the detection means.
JP2018430A 1990-01-29 1990-01-29 Ultrasonic inspecting device Pending JPH03221862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018430A JPH03221862A (en) 1990-01-29 1990-01-29 Ultrasonic inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018430A JPH03221862A (en) 1990-01-29 1990-01-29 Ultrasonic inspecting device

Publications (1)

Publication Number Publication Date
JPH03221862A true JPH03221862A (en) 1991-09-30

Family

ID=11971433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018430A Pending JPH03221862A (en) 1990-01-29 1990-01-29 Ultrasonic inspecting device

Country Status (1)

Country Link
JP (1) JPH03221862A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020180902A (en) * 2019-04-26 2020-11-05 株式会社日立パワーソリューションズ Probe movable range setting device and movable range setting method
US11921085B2 (en) 2018-12-21 2024-03-05 The Boeing Company Dynamic location data correction using non-destructive inspection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11921085B2 (en) 2018-12-21 2024-03-05 The Boeing Company Dynamic location data correction using non-destructive inspection
JP2020180902A (en) * 2019-04-26 2020-11-05 株式会社日立パワーソリューションズ Probe movable range setting device and movable range setting method

Similar Documents

Publication Publication Date Title
CN105424818B (en) The system and method for dynamic gating in non-destructive weld examination
CN108414616A (en) TMCP steel plate butt weld phased array ultrasonic detecting methods
CN108414617A (en) Ferrite type steel small diameter tube butt girth welding seam phased array ultrasonic detecting method
JP7233853B2 (en) ULTRASOUND INSPECTION APPARATUS, METHOD, PROGRAM AND ULTRASOUND INSPECTION SYSTEM
JPH07167842A (en) Method and device for measuring and controlling angle of refraction of ultrasonic wave
KR102485090B1 (en) Position control device, position control method, and ultrasonic image system
CN106770666A (en) Large-diameter cylinder body agitating friction girth welding ultrasonic phase array automatic detection device
JPH04328460A (en) Ultrasonic graphic device
US20190113480A1 (en) Ultrasound imaging device and method of generating image for ultrasound imaging device
KR20070065934A (en) Apparatus and method for crack length evaluation by phased array ultrasonic
JPH03221862A (en) Ultrasonic inspecting device
CN115791982A (en) Laser ultrasonic residual stress detection system and method based on orthogonal thermal grating
JP2005274444A (en) Ultrasonic flaw detection image processor, and processing method therefor
JP2824860B2 (en) Ultrasonic surface condition measuring device
JPH0419558A (en) Image processing method for ultrasonic flaw detection test
JPS61266907A (en) Detector for surface condition
KR200318840Y1 (en) Ultrasonic flaw detecting tester
JPH09113492A (en) Ultrasonic inspection unit
Birring Phased Array Ultrasonic Testing: A Tutorial
JPS6196461A (en) Ultrasonic reflectoscope
KR200318839Y1 (en) Ultrasonic flaw detecting tester
KR102308070B1 (en) Ultrasonic inspection system of fuel tube for pressurized water reactor
JPH0249156A (en) Method and device for detecting fault by ultrasonic wave
CN106996956A (en) The inservice inspection method of nuclear power station voltage-stabiliser tube adapter safe end bead crack
JPH05172790A (en) Inspection method and device for nozzle inner surface flaw