JPS6153102B2 - - Google Patents

Info

Publication number
JPS6153102B2
JPS6153102B2 JP53120100A JP12010078A JPS6153102B2 JP S6153102 B2 JPS6153102 B2 JP S6153102B2 JP 53120100 A JP53120100 A JP 53120100A JP 12010078 A JP12010078 A JP 12010078A JP S6153102 B2 JPS6153102 B2 JP S6153102B2
Authority
JP
Japan
Prior art keywords
gas
picric acid
tar
tower
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53120100A
Other languages
Japanese (ja)
Other versions
JPS5547118A (en
Inventor
Hiroo Oohari
Koichiro Hiraoka
Masao Kato
Ryoichi Sasabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP12010078A priority Critical patent/JPS5547118A/en
Publication of JPS5547118A publication Critical patent/JPS5547118A/en
Publication of JPS6153102B2 publication Critical patent/JPS6153102B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は不純物を含有するガスの精製方法に関
する。特に不純物として硫化水素およびシアン化
水素等を含有するガスの精製方法に関する。 いま石炭乾留ガスを例とすれば、ガス中の不純
物としては硫化水素、シアン化水素およびアンモ
ニアならびタール分等があり、これらは精製して
除去する必要がある。これらの不純物の除去法と
して、特許第827210号(特公昭47−47561号)に
よれば、ガス中の有害成分である硫化水素、シア
ン化水素を有効に反応せしめることによつてロダ
ン化物を生成し、有害成分の無害化が達成され
る。このとき、ピクリン酸等の触媒が脱硫後の再
生反応の遂行に寄与し、硫黄の単離とその後のロ
ダン化反応の進行に関与することが知られてい
る。しかし、触媒としてピクリン酸を用いるとき
にはピクリン酸がきわめて冷水に難溶性のため、
少量ずつ溶解せしめなければならないという作業
上の難点があつた。ピクリン酸の水に対する溶解
度は1.2g/100g程度にすぎないからである。 石炭乾留ガスの精製系統の一例を第1図に示せ
ば、コークス炉1より乾留された粗ガス中のター
ル分はガス液とともに、先ず、デカンター2に集
められる。ついで、ガスは間接式冷縮器3で冷却
を受け、冷却されたタール分はタールピツト4に
集められる。その後、ガスはタール排除器5、排
送機6を経て、脱シアン塔7、脱硫塔8にて脱
硫、脱シアンを受ける。更に、アンモニア洗浄塔
10によつて余分のアンモニアは除去され、ナフ
タリン洗浄塔11を経て、ベンゾール吸収塔12
でベンゾールが吸収分離され、ガスはその後、フ
アイナルスクラバー13を経て乾式脱硫器14に
よつて処理を受け、ガスの精製が完成する。な
お、9は再生塔であり、脱シアン化塔7、脱硫塔
8での洗浄液は汚液槽15を経て再生塔に送られ
る。汚液槽からの液の一部は遠心分離機17で硫
黄を分離した後汚液槽15に循還するが、ピクリ
ン酸はピクリン酸溶解槽16にて水に溶解して、
汚液槽15に補給される。問題はピクリン酸溶解
槽16におけるピクリン酸の溶解にあつた。 第2図には間接式冷縮器等で冷却分離されたコ
ールタールの処理工程を示す。コールタールは1
8より供給され、熱交換器19,20を経て加圧
脱水器21に入る。加圧脱水器21で脱水を受け
た後は蒸発塔22に供給され、頂部よりの留出油
は油水分離器23でタール軽油と水に分離され
る。蒸発塔22の塔底油は加熱炉24にて加熱さ
れ、常圧精留塔25に供給され、頂部よりの留出
油は19で冷却された後、油水分離器27でタール
軽油と水に分離される。常圧精留塔25の塔底油
は一部、加圧脱水器21よりの油分と合し、又、
一部は加熱炉24に送られる。加熱炉24で加熱
を受けた後は減圧精留塔26に入り、頂部は真空
ポンプに連結して減圧を受けつつ、塔底からは熱
交換器20を経て中ピツチが取り出される。とこ
ろで23,27よりの分離排水はシアン化合物が
多く、到底このままでは放流できない。そこで油
水分離、活性汚泥処理、凝集沈澱、薬剤酸化処理
等の工程を経なければならず、設備費とランニン
グコストに相当な出費が必要であつた。該排水の
代表的な成分は第1表に示すとおりである。
The present invention relates to a method for purifying gas containing impurities. In particular, it relates to a method for purifying gas containing impurities such as hydrogen sulfide and hydrogen cyanide. Taking carbonized coal gas as an example, impurities in the gas include hydrogen sulfide, hydrogen cyanide, ammonia, and tar, which must be purified and removed. As a method for removing these impurities, according to Patent No. 827210 (Special Publication No. 47-47561), rhodanide is generated by effectively reacting hydrogen sulfide and hydrogen cyanide, which are harmful components in the gas. Harmful components are rendered harmless. At this time, it is known that a catalyst such as picric acid contributes to the regeneration reaction after desulfurization and is involved in the isolation of sulfur and the subsequent progression of the rhodanization reaction. However, when using picric acid as a catalyst, because picric acid is extremely poorly soluble in cold water,
There was a problem in the process that it had to be dissolved in small quantities. This is because the solubility of picric acid in water is only about 1.2g/100g. An example of a coal carbonization gas purification system is shown in FIG. 1. Tar in the crude gas carbonized from a coke oven 1 is first collected in a decanter 2 together with the gas liquid. The gas is then cooled in an indirect condenser 3, and the cooled tar is collected in a tar pit 4. Thereafter, the gas passes through a tar remover 5 and a discharger 6, and then undergoes desulfurization and decyanization in a desulfurization tower 7 and a desulfurization tower 8. Further, excess ammonia is removed by an ammonia washing tower 10, passed through a naphthalene washing tower 11, and then transferred to a benzol absorption tower 12.
Benzol is absorbed and separated, and the gas then passes through a final scrubber 13 and is treated by a dry desulfurizer 14, completing gas purification. Note that 9 is a regeneration tower, and the cleaning liquid from the desyanation tower 7 and the desulfurization tower 8 is sent to the regeneration tower via a waste liquid tank 15. A part of the liquid from the sewage tank is circulated to the sewage tank 15 after separating sulfur in a centrifuge 17, but picric acid is dissolved in water in a picric acid dissolving tank 16.
The waste liquid tank 15 is replenished. The problem was the dissolution of picric acid in the picric acid dissolution tank 16. Figure 2 shows the treatment process for coal tar that has been cooled and separated using an indirect condenser or the like. coal tar is 1
8 and enters the pressure dehydrator 21 via heat exchangers 19 and 20. After being dehydrated in a pressure dehydrator 21, it is supplied to an evaporation column 22, and the distillate from the top is separated into tar gas oil and water in an oil-water separator 23. The bottom oil of the evaporation tower 22 is heated in the heating furnace 24 and supplied to the atmospheric rectification tower 25, and the distilled oil from the top is cooled in 19, and then separated into tar gas oil and water in the oil-water separator 27. separated. A part of the bottom oil of the atmospheric rectification column 25 is combined with the oil from the pressure dehydrator 21, and
A portion is sent to the heating furnace 24. After being heated in the heating furnace 24, it enters a vacuum rectification column 26, the top of which is connected to a vacuum pump and subjected to reduced pressure, while the middle pitcher is taken out from the bottom of the column via a heat exchanger 20. By the way, the separated waste water from ports 23 and 27 contains a lot of cyanide, and cannot be discharged as is. Therefore, processes such as oil/water separation, activated sludge treatment, coagulation sedimentation, and chemical oxidation treatment had to be carried out, which required considerable expense in terms of equipment costs and running costs. Typical components of the wastewater are shown in Table 1.

【表】 本発明者は、一方ではガス精製用に必要とする
ピクリン酸の溶解が容易ではなく、長時間と多大
の手間を要するという難点の解決を迫られ、他方
ではタール蒸留排水の外部放流処理に多大な設備
を要するという苦難に際会して検討を重ねたので
あるが、これら両難点を一挙に解決できるすぐれ
た方法を見出すに至つた。 先ず、第2表に示すように、一定量の工業用水
とタール蒸留排水を対象として、一定量のピクリ
ン酸を同条件で投入し、すべて溶解するまでの時
間を測定比較したところ、顕著な差があることを
見出した。また、0.3%のピクリン酸を添加した
工業用水を使用した吸収液と、タール蒸留排水を
使用した吸収液について、粗石炭乾留ガスを同条
件で流した後に空気を吹込んで再生せしめた比
[Table] On the one hand, the inventor was forced to solve the problem that picric acid, which is required for gas purification, is not easy to dissolve and requires a long time and a great deal of effort. We faced the challenge of requiring a large amount of equipment for treatment, and after much deliberation, we finally discovered an excellent method that could solve both of these problems at once. First, as shown in Table 2, when a certain amount of picric acid was added under the same conditions to a certain amount of industrial water and tar distillation wastewater, and the time required for it to completely dissolve was measured and compared, there was a noticeable difference. I found out that there is. In addition, we compared the absorption liquid using industrial water with 0.3% picric acid added and the absorption liquid using tar distillation wastewater, which were regenerated by blowing air after flowing crude coal carbonization gas under the same conditions.

【表】 較試験10回の平均は、第3表に示すように脱硫効
果にも明らかな差があることが知られた。タール
蒸留排水をいたものの方が吸収液中の硫黄分が高
く、またピクリン酸の活性が不十分な場合に生ず
るチオ硫酸アンモンは少い。更に蒸留排水の方が
シアン化水素の吸収効率もよく、ロダン化反応も
進んでいる。すなわち、通常行なわれている工業
用水を使用した吸収液に代えて、タール蒸留排水
を使用した方が、脱硫、脱シアンともに良結果が
得られることを確認するに至つた。
[Table] As shown in Table 3, it was found that there was a clear difference in the desulfurization effect based on the average of 10 comparison tests. The sulfur content in the absorbent is higher when using tar distillation wastewater, and less ammonium thiosulfate is produced when the activity of picric acid is insufficient. Furthermore, distillation wastewater has better absorption efficiency of hydrogen cyanide, and the rhodanization reaction is also progressing. In other words, it has been confirmed that better results can be obtained in both desulfurization and decyanization by using tar distillation wastewater instead of the commonly used absorption liquid using industrial water.

【表】 本発明の実施方法としては、たとえば蒸発塔2
2又は常圧精留塔25よりの留出分ラインに油水
分離器23,27を設け、その水層よりの排水は
ストレーナを経てクツシヨンタンクに貯留し、そ
の後、撹拌器等を附属したピクリン酸溶解槽16
にまで導いたライン通じて、移送ポンプによつて
液を送り出せば、タール蒸留によつて生ずる排水
は全く外部に排出することなく、すべてピクリン
酸の溶解用に用いられる。その後、ピクリン酸溶
液が汚液槽15を経て再生塔9に送られ、液の再
生後ガスの精製工程に利用されることとなる。タ
ール蒸留排水がアンモニアアルカリ性であるた
め、ピクリン酸の溶解にきわめて有利であるとと
もに、タール蒸留排水に含有されるシアン分はロ
ダン化物に固定される。更にガス中の有害成分と
して存在するアンモニアを利用するときには、ロ
ダンアンモンとして固定することができ、これら
固定不純物を含有する廃液は濃縮後燃焼処理によ
つて硫酸又は硫酸塩として資源の再利用をはかる
ことができる(特公昭52−3404号)ので、本発明
は脱硫、脱シアン工程の合理化と、タール蒸留排
水の無害化にすぐれた相乗効果を奏するものであ
る。
[Table] As a method of implementing the present invention, for example, evaporation tower 2
Oil-water separators 23 and 27 are installed in the distillate line from 2 or the atmospheric rectification column 25, and the waste water from the aqueous layer is stored in a cushion tank via a strainer. Acid dissolution tank 16
If the liquid is sent out by a transfer pump through a line led to the tank, the waste water generated by tar distillation will not be discharged to the outside and will be used entirely for dissolving the picric acid. Thereafter, the picric acid solution is sent to the regeneration tower 9 via the waste liquid tank 15, and after the liquid is regenerated, it is used in the gas purification process. Since tar distillation wastewater is ammonia alkaline, it is extremely advantageous for dissolving picric acid, and the cyanide contained in tar distillation wastewater is fixed in rhodanide. Furthermore, when ammonia, which exists as a harmful component in gas, is used, it can be fixed as rhodan ammonium, and the waste liquid containing these fixed impurities is recycled as sulfuric acid or sulfate through combustion treatment after concentration. (Japanese Patent Publication No. 52-3404) Therefore, the present invention has an excellent synergistic effect in streamlining the desulfurization and decyanization steps and in making tar distillation wastewater harmless.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は不純物を含有するガスの精製工程全体
を例示する系統図であり、第2図はタール蒸留設
備を例示する系統図である。 1……コークス炉、2……デカンター、3……
冷縮器、4……タールピツト、7……脱シアン
塔、8……脱硫塔、9……再生塔、12……ベン
ゾール吸収塔、15……汚液槽、16……ピクリ
ン酸溶解槽、22……蒸発塔、25……常圧精留
塔、23,27……油水分離器。
FIG. 1 is a system diagram illustrating the entire purification process for gas containing impurities, and FIG. 2 is a system diagram illustrating tar distillation equipment. 1...Coke oven, 2...Decanter, 3...
Condenser, 4... Tar pit, 7... Desulfurization tower, 8... Desulfurization tower, 9... Regeneration tower, 12... Benzol absorption tower, 15... Sewage tank, 16... Picric acid dissolution tank, 22...Evaporation column, 25...Normal pressure rectification column, 23, 27...Oil-water separator.

Claims (1)

【特許請求の範囲】[Claims] 1 不純物として硫化水素およびシアン化水素等
を含有するガスに対して、ピクリン酸を触媒とし
た水溶液でガスを洗浄して精製する工程におい
て、ガス中の他の不純物であるタール分を冷却分
離して蒸留する際に生ずる蒸留排水を、ピクリン
酸を溶解してガスを洗浄すべき洗浄用水として用
いる、不純物を含有するガスの精製方法。
1. In the process of cleaning and purifying gas containing impurities such as hydrogen sulfide and hydrogen cyanide with an aqueous solution using picric acid as a catalyst, other impurities in the gas, such as tar, are cooled and separated and then distilled. A method for purifying gas containing impurities, in which the distilled waste water produced during the process is used as cleaning water for dissolving picric acid and cleaning the gas.
JP12010078A 1978-09-28 1978-09-28 Purification of gas containing impurity Granted JPS5547118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12010078A JPS5547118A (en) 1978-09-28 1978-09-28 Purification of gas containing impurity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12010078A JPS5547118A (en) 1978-09-28 1978-09-28 Purification of gas containing impurity

Publications (2)

Publication Number Publication Date
JPS5547118A JPS5547118A (en) 1980-04-03
JPS6153102B2 true JPS6153102B2 (en) 1986-11-15

Family

ID=14777907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12010078A Granted JPS5547118A (en) 1978-09-28 1978-09-28 Purification of gas containing impurity

Country Status (1)

Country Link
JP (1) JPS5547118A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100398421B1 (en) * 1999-12-23 2003-09-19 주식회사 포스코 A method for purification cog using chilling method
KR100446648B1 (en) * 2000-08-24 2004-09-04 주식회사 포스코 Method for purifying coke oven gas by cooling down to freezing point of water
CN101879398B (en) * 2010-06-29 2012-06-27 南京钢铁股份有限公司 Recovery process of coking crude benzene dispersing gas and device thereof
CN102994171B (en) * 2011-09-17 2014-09-17 河南利源煤焦集团有限公司 Gas turbine generating coke oven gas comprehensive purification system and purification method thereof

Also Published As

Publication number Publication date
JPS5547118A (en) 1980-04-03

Similar Documents

Publication Publication Date Title
US5236557A (en) Process for purification of aqueous solutions containing hydrogen sulfide, hydrogen cyanide, and ammonia
CN107434335A (en) A kind of semi-coke wastewater phenol recovery ammonia comprehensive treatment method for recycling
US4105545A (en) Process for removing cyanide-containing components from aqueous media
PL115232B1 (en) Process for recovery and purification of acrylonitrile or methacrylonitrile
US1428618A (en) Purification of waste liquid
CN112390445B (en) Method and system for treating phenol-ammonia wastewater
CN108117208B (en) Treatment method and treatment device for alkaline residue waste liquid
CN112624466A (en) Coal chemical industry wastewater pretreatment method
US4499060A (en) Process for removing hydrogen sulfide from gases, particularly coal distillation gases
KR20020051011A (en) Apparatus and method for purifying Coke oven gas
CN105542874A (en) Integrated process and device for semicoke coal gas
KR100446648B1 (en) Method for purifying coke oven gas by cooling down to freezing point of water
JPS6153102B2 (en)
US2701750A (en) Recovery of diethanolamine and salts
JPH03502464A (en) Treatment method for wastewater generated during coal pyrolysis
JPH0713036B2 (en) Purified solvent recovery method
US4277311A (en) Apparatus for distillation
US5607594A (en) Process for purifying an aqueous methyldiethanolamine solution
CN109701363A (en) A method of methanol in recycling low temperature washing device for methanol sour gas
CN108117209A (en) The integrated conduct method and device of a kind of alkali residue waste liquid
US1866229A (en) Aeration and gas purification process
CN111662754A (en) Novel coke oven gas desulfurization method
US4108734A (en) Process for the distillation of weak ammonia liquor
US1972883A (en) Recovery of elemental sulphur
US2928882A (en) Purification of aqueous liquors containing phenol